体育对口单招数学试卷(包含答案) (7)
2023年对口单独招生考试数学试卷(答案)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分.)1、下列计算正确的是()A .(a3)2=a9B .log36-log32=1C .12a -·12a =0D .log3(-4)2=2log3(-4)2、三个数a =0.62,b =log20.3,c =30.2之间的大小关系是()A .a<c<bB .a<b<cC .b<a<cD .b<c<a3、8log 15.021+-⎪⎭⎫⎝⎛的值为()A .12 B.72C .16 D.374、下列各式成立的是()A.()52522n m n m +=+B .(b a)2=12a 12b C.()()316255-=- D.31339=5、设2a =5b =m ,且1a +1b =3,则m 等于()A.310B .12C.20D.156、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx7、已知平面向量,则与的夹角是()8、函数y=(x≠-5)的反函数是()(A)y=x-5(x∈R)(B)y=-+5(x≠0)(C)y=x+5(x∈R)(D)y=(x≠0)9、不等式的解集是()(A){x|0<x<1}(B){x|1<x<∞}(C){x|-∞<x<0}(D){x|-∞<x<0}10、已知函数之,则F(x)是区间()(A)()上的增函数(B)上的增函数(C)上的增函数(D)上的增函数11、已知直线L过点(-1,1),且与直线x-2y-3=0垂直,则直线L的方程是()(A)2x+y-1=0(B)2x+y-3=0(C)2x-y-3=0(D)2x-y-1=012、已知圆锥曲线母线长为5,底面周长为6π,则圆锥的体积是()(A)6π(B)12π(C)18π(D)36π13、是等差数列{}的前n项合和,已知=-12,=-6,则公差d=()(A)-1(B)-2(C)1(D)214、将3名教练员与6名运动员分为3组,每组一名教练员与2名运动员,不同的分法有()(A)90中(B)180种(C)270种(D)360种15、吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美。
体育对口单招数学卷(含答案) (7)

体育对口单招数学卷(满分120分,考试时间90分钟)一、选择题:(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称()(A )62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y 2.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k的值为()(A )-6(B )6(C )3(D )-33.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为()(A )0(B )-1(C )1(D )24、函数)32(log )(22-+=x x x f 的定义域是()A.[]1,3- B.()1,3-C.(][)+∞-∞-,13, D.()()+∞-∞-,13, 5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A.c b a <<B.b c a <<C.ca b << D.ac b <<6.函数sin 24y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图像可能是()GD31GD34GD32GD337.在ABC △中,若2AB BC CA === ,则AB BC ⋅等于()A.3- B.3C.-2D.28.如图所示,若,x y 满足约束条件0210220x x x y x y ⎧⎪⎪⎨--⎪⎪-+⎩≥≤≤≥则目标函数z x y =+的最大值是()A.7B.4C.3D.19.已知α表示平面,,,l m n 表示直线,下列结论正确的是()A.若,,l n m n ⊥⊥则l m ∥B.若,,l n m n l ⊥⊥⊥则mC.若,,l m l αα∥∥则∥mD.若,,l m l αα⊥⊥∥则m10.已知椭圆22126x y +=的焦点分别是12,F F ,点M 在椭圆上,如果120F M F M ⋅= ,那么点M 到x 轴的距离是()A.2B.3C.322D.111、已知54cos ,0,2=⎪⎭⎫⎝⎛-∈x x π,则x tan =()A 、34B 、34-C 、43D 、43-12、在∆ABC 中,AB=5,BC=8,∠ABC=︒60,则AC=()A 、76B 、28C 、7D 、12913、直线012=+-y x 的斜率是();A 、-1B 、0C 、1D 、214、点P(-3,-2)到直线4x-3y+1=0的距离等于()A 、-1B 、1C 、2D 、-215、过两点A (2,)m -,B(m ,4)的直线倾斜角是45︒,则m 的值是()。
体育对口单招数学卷(答案) (7)

5、如图所示,在平行四边形 OABC 中,点 A(1,-2),C(3,1),则向量 OB 的坐标是( )
第 9 题图 GD26 A.(4,-1) B.(4,1) C.(1,-4)D.(1,4) 6、过点 P(1,2)与圆 x2 y2 5 相切的直线方程是( ) A. x 2y 3 0 B. x 2y 5 0 C. x 2y 5 0 D. x 2y 5 0 7、如图在正方体 ABCD‐A′B′C′D′中,下列结论错误的是( )
3、求经过点 C(2,-3),且平行于过 M(1,2 )和 N(-1,-5)两点的直线的直线方程。 4、求过直线 3x 2 y 1 0 与 2x 3y 5 0 的交点,且与直线 l : 6x 2 y 5 0 垂直的直线方程.
参考答案: 一、选择题: 1-5 题答案:CADDA 6-10 题答案:BCACD 11-15 题答案:CDCCB 二、填空题: 1.答案:0.1 2.答案: a||a 或 a a
函数 y f (x) 的图象如右图,当 x , y 0 ; x , y 0 ,
则大值
1,且为最大值
1;在
x
4
处取得极小值
1 4
,且为最小值
1 4
.
所以 f (x) 的增区间为 (, 1) , (4, ) ,减区间为 (1, 4) ;
f
(x)
的最大值为
1,最小值为
(2)
f
(x)
3 2x x2 a
的导数为
f
( x)
2( x 2
a) (x2
2x(3 a)2
2x)
,
由题意可得
f (1)
0 ,即
8 2a (a 1)2
体育单招数学试题及答案大全

体育单招数学试题及答案大全一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333...D. 2答案:B2. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 13B. 15C. 17D. 19答案:A3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个长方体的长、宽、高分别是4、3、2,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A6. 一个等比数列的首项是2,公比是3,那么第4项是多少?A. 72B. 81C. 108D. 144答案:A7. 一个三角形的三个内角分别是30°、60°、90°,那么这个三角形是什么三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形答案:B8. 函数y=x^2-4x+4的最小值是多少?A. 0B. 1C. 4D. 8答案:A9. 一个圆的周长是2π,那么它的直径是多少?A. 1B. 2C. 3D. 4答案:B10. 一个等差数列的首项是5,公差是-1,那么第10项是多少?A. -4B. -5C. -6D. -7答案:C二、填空题(每题3分,共30分)11. 一个等差数列的首项是7,公差是-2,那么第10项是________。
答案:-512. 函数y=x^3-3x^2+2的导数是________。
答案:3x^2-6x13. 一个长方体的长、宽、高分别是5、4、3,那么它的表面积是________。
答案:9414. 一个圆的半径是4,那么它的周长是________。
答案:8π15. 一个三角形的三个内角分别是45°、45°、90°,那么这个三角形是________。
体育单招数学卷及答案

全国普通高等学校运动训练、民族传统体育专业单独统一招生考试数 学一、选择题:本大题共10小题,每小题5分,共50分。
1、已知集合}1|2||{<-=x x M ,}02|{2<-=x x x N ,则=N M( )A 、}20|{<<x xB 、}30|{<<x xC 、}21|{<<x xD 、}31|{<<x x 2、已知α是第四象限的角,且23)sin(-=-απ,则=+)cos(απ( )A 、21- B 、21 C 、22-D 、223、三个球的表面积之比为1:2:4,它们的体积依次为1V ,2V ,3V ,则( )A 、124V V =B 、1322V V =C 、234V V =D 、2322V V =4、已知点A (-2,0),C (2,0).ABC ∆的三个内角C B A ∠∠∠,,的对边分别为c b a ,,,且c b a ,,成等差数列,则点B 一定在一条曲线上,此曲线是 ( )A 、圆B 、椭圆C 、双曲线D 、抛物线5、数列}{n a 的通项公式为nn a n ++=11,如果}{n a 的前n 项和等于3,那么=n( )A 、8B 、9C 、15D 、166、一个两头密封的圆柱形水桶装了一些水,当水桶水平横放时,桶内的水浸了水桶横截面周长的41. 当水桶直立时,水的高度与桶的高度的比值是 ( )A 、41B 、4πC 、π141-D 、π2141-7、已知函数)1(-=x f y 是偶函数,则函数)2(x f y =图象的对称轴是 ( )A 、1=xB 、1-=xC 、21=x D 、21-=x 8、ABC ∆中A ∠,B ∠和C ∠的对边分别是a ,b 和c ,满足ba cA C 3233cos cos +-=,则C∠的大小为( )A 、3πB 、6π C 、32πD 、65π9、已知0>ω,)2,2(ππϕ-∈. 如果函数)sin(ϕω+=x y 的最小正周期是π,且其图象关于直线12π=x 对称,则取到函数最小值的自变量是 ( )A 、Z k k x ∈+-=,125ππ B 、Z k k x ∈+-=,65ππC 、Z k k x ∈+=,61ππD 、Z k k x ∈+=,121ππ10、某班分成8个小组,每小组5人. 现要从班中选出4人参加4项不同的比赛. 且要求每组至多选1人参加,则不同的选拔方法共有 ( )A 、444854A C (种)B 、154448C A C (种)C 、444845A C (种)D 、444405A C (种)二、填空题:本大题共10小题,每小题5分,共50分。
体育对口单招数学试试卷(答案)

体育对口单招数学卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.若集合2{|20},{|log (1)1},M x x N x x =->=-< 则M N =()A.{|23}x x <<B.{|1}x x <C.{|3}x x >D.{|12}x x <<2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则a、b 满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=03.已知{}n a 为等差数列,3177,10,n a a a S =+=为其前n 项和,则使得n S 达到最大值的n 等于()A.4B.5C.6D.74.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()A.23B.33C.223D.2335、方程43)22(log =x 的解为()A.4=xB.2=xC.2=xD.21=x 6、下列各组函数是同一函数的是()①3()2()2f x x g x x x =-=⋅-与②2()()f x x g x x ==与③001()()f x x g x x ==与④22()21()21f x x xg x t t =--=--与A.①②B.①③C.③④D.①④7、下列命题是假命题的是()A.(0,),sin 2x x x π∀∈>B.000,sin cos 2x R x x ∃∈+=C.,30x x R ∀∈>D.00,lg 0x R x ∃∈=8.关于x,y 的方程y mx n =+和221x y m n +=在同一坐标系中的图象大致是()9.已知()2nx -的二项展开式有7项,则展开式中二项式系数最大的项的系数是()A.-280B.-160C.160D.56010.若有7名同学排成一排照相,恰好甲、乙两名同学相邻,并且丙、丁两名同学不相邻的概率是()A.421 B.121 C.114 D.2711、已知定义在R 上的函数12)(-=-m x x f (m 为实数)为偶函数,记)3(log 5.0f a =,)5(log 2f b =,)2(m f c =,则c b a ,,的大小关系为()A、cb a <<B、b ac <<C、bc a <<D、a b c <<12、不等式152x x ---<的解集是()A、(,4)-∞B、(,1)-∞C、(1,4)D、(1,5)13、函数x x y 2cos sin =是()A、偶函数B、奇函数C、非奇非偶函数C、既是奇函数,也是偶函数14、若(12)a+1<(12)4-2a,则实数a 的取值范围是()A、(1,+∞)B、(12,+∞)C、(-∞,1)D、(-∞,12)15、化简3a a 的结果是()A、aB、12a C、41a D、83a 16、下列计算正确的是()A、(a3)2=a9B、log36-log32=1C、12a -·12a =0D、log3(-4)2=2log3(-4)17、三个数a=0.62,b=log20.3,c=30.2之间的大小关系是()A、a<c<bB、a<b<cC、b<a<cD、b<c<a 18、8log 15.021+-⎪⎭⎫⎝⎛的值为()A、6B、72C、16D、3719、下列各式成立的是()A、()52522n m n m +=+B、(b a )2=12a 12b C、()()316255-=-D、31339=20、设2a=5b=m,且1a +1b=3,则m 等于()A、310B、10C、20D、100二、填空题:(共20分)1.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________;2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________;3.已知m b a ==32,且211=+b a ,则实数m 的值为______________;4.若0>a ,9432=a ,则=a 32log ____________;三、解答题:(本题共3小题,共40分)1.计算:1033cos 3)27lg0.012p +-++2.等差数列{an}中,a2=13,a4=9.(1)求a1及公差d;(2)当n 为多少时,前n 项和Sn 开始为负?3.如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2)若2)nx 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的常数项等于多少?参考答案:一、选择题1-5题答案:DCBAA6-10题答案:BDDBA11-15题答案:BABAB;16-20题答案:BBCDA.二、填空题1.-3;2.),1( ;3.6;4.3;三、解答题1.参考答案.62.参考答案.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。
体育单招数学试题及答案

体育单招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是整数?A. 0B. 1C. 3.5D. 2答案:C2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a * b > 0D. a / b > 0答案:B3. 已知x² - 5x + 6 = 0,求x的值。
A. 2B. 3C. 1, 2D. 2, 3答案:D4. 圆的半径为5,求圆的面积。
A. 25πC. 75πD. 100π答案:B5. 函数f(x) = 2x - 3,当x = 2时,f(x)的值为多少?A. -1B. 1C. 3D. 5答案:B6. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A7. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -8答案:A8. 已知一个数列的前三项为1, 4, 7,求第四项。
B. 11C. 12D. 13答案:B9. 一个长方体的长、宽、高分别为2, 3, 4,求其体积。
A. 24B. 36C. 48D. 52答案:A10. 一个正六边形的内角是多少度?A. 120°B. 135°C. 150°D. 180°答案:B二、填空题(每题2分,共20分)1. 一个数的绝对值是其本身的数是______或______。
答案:正数;02. 一个数的相反数是其本身的数是______。
答案:03. 一个数的倒数是其本身的数是______。
答案:±14. 若a和b互为倒数,则ab=______。
答案:15. 一个数的平方等于9,这个数可以是______或______。
答案:3;-36. 一个数的立方等于-27,这个数是______。
答案:-37. 一个数的平方根是2,这个数是______。
2023年对口单独招生考试数学试卷(后面含答案)

9
(4t 2
1)2 8
577 64
,又 t2
[0, )
,
(PF1 PF2 )min
( 1)2 8
577 64
9
,即当 t
0
时, PF1 PF2
取得最小值,且最小值为 9
.
【评注】本题考查圆锥曲线的共同特征,解题的关键是巧设点的坐标,解出 A , B 两
点的坐标,列出三角形的面积关系也是本题的解题关键,运算量并不算太大.
1
焦点在 x 轴上,长轴长为 2
2 ,离心率为
2
2,
O 为坐标原点.求:
(1)求椭圆的标准方程; (2)设过椭圆左焦点 F 的直线交椭圆与 A, B 两点,并且线段 AB 的中点在直线 x y 0 上,
求直线 AB 的方程.
参考答案: 一、选择题: 1-5:DCADC 6-10:BCACB 11-15:DBDBB 16-20:AACDC 部分选择题解析: 11、参考答案: D 【解析】因为函数
() ,
,则
13. 若
,且 为第四象限角,则
的值等于 ( )
A. B.
C.
D.
14. 函数
的定义域是 ( )
A.
B.
C.
D.
15. 若 A.
,
,则
的坐标是 ( )
B.
C.
D. 以上都不对
16. 在等差数列
中,已知
与 的值分别为 ( )
A. -2,3 B. 2,-3 C. -3,2
D. 3,-2
,且
f
(x)
x 2 2x
,则
f
(2)
与
f
(1) 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体育对口单招数学卷
(满分120分,考试时间120分钟)
一、选择题:(本题共20小题,共60分)
1.已知命题,命题
恒成立。
若为假命题,则实数的取值范围为( )
A 、
B 、
C 、
D 、
2.已知平面平面,=c ,直线直线c a ,不垂直,且c b a ..交于同一点,则“c b ⊥”是“a b ⊥”的( )
A. 既不充分也不必要条件
B. 充分不必要条件
C. 必要不充分条件
D. 充要条件
3. 函数
)10()(≠>-⋅-=a a a x a a x y x
且的图像可以是( )
A B C D
4.设函数3)(x x f =,若20π
θ≤≤时,0)1()cos (>-+m f m f θ恒成立,则实数的取值范围为( )
A .)1,0(
B .)0,(-∞
C .1,(-∞)
D .)21,(-∞ 5、设集合A ={0,2,a},B ={1,a2},若A ∪B ={0,1,2,5,25},则a 的值为( )
A .6
B .8
C .2
D .5
6.若tan θ=-2,则
sin θ(1+sin2θ)sin θ+cos θ =( ) A.−6
5
B.−2
5
C.2
5 D.6
5 01,:≤+∈∃m R m p 01,:2>++∈∀mx x R x q q p ∧2≥m 2-≤m 22≥-≤m m 或22≤≤-m ⊥αββα ,α⊂a ,β⊂b
7.若过点(a,b)可以作曲线y=ex 的两条切线,则( )
A.eb<a
B.ea<b
C.0<a<eb
D.0<b<ea
8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立
B.甲与丁相互独立
C.乙与丙相互独立
D.丙与丁相互独立
9.设a ≥0,b ≥0,且122
2=+b a ,则21b a +的最大值为( )
(A )43 (B )42 (C )42
3 (D )23
10.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 ( )
(A )5 (B )3 (C )2 (D )1
11. 已知平行四边形ABCD ,则向量AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =( )
A. BD ⃗⃗⃗⃗⃗
B. DB ⃗⃗⃗⃗⃗
C. AC ⃗⃗⃗⃗⃗
D. CA ⃗⃗⃗⃗⃗
12. 下列函数以π为周期的是( )
A.y =sin (x −π8)
B. y =2cos x
C. y =sin x
D. y =sin 2x
13. 本学期学校共开设了20门不同的选修课,学生从中任选2门,则不同选法的总数是(
)
A. 400
B. 380
C. 190
D. 40
14. 已知直线的倾斜角为60°,则此直线的斜率为( )
A. −√33
B. −√3
C. √3
D. √33
15. 若sin α>0且tan α<0,则角α终边所在象限是( )
A. 第一象限
B. 第二象限
C. 第三象限
D.第四象限
16、 不等式041
2>-+x x 的解集是( )
A 、R
B 、 (1,4)
C 、 ),4()1,(+∞-∞
D 、 )4,(-∞
17、不等式()0)5(7≥-+x x 的解集是( )
A 、 ()7,5-
B 、 ),5()7,(+∞--∞
C 、 ),5[]7,(+∞--∞
D 、 []57,
- 18、若ab<0,则( )
A 、a>0,b>0
B 、a<0,b>0
C 、a>0,b<0或 a<0,b>0
D 、a>0,b>0或 a<0,b<0
19、下列命题中,正确的是( )
A 、a>-a
B 、a a <2
C 、b a b a >>那么如果,
D 、
22,0,c b c a c b a >≠>则如果 20、在等差数列{}n a 中,3,21=-=d a ,则=7a ( )
A 、16
B 、17
C 、18
D 、19
二、填空题:(本题共5小题,每小题6分,共30分.)
1.记Sn 为等比数列{an}的前n 项和.若214613a a a ==,,则S5=____________.
2.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.
3.已知双曲线C :22
221(0,0)x y a b a b -=>>的左、右焦点分别为F1,F2,过F1的直线与C 的两条
渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 4.{}{},13),(,3),(=+==-=y x y x B y x y x A
那么=B A _____;
5、042=-x 是x+2=0的 ____条件.
三、解答题:(本题共4小题,每小题10分,共40分)
1、计算:sin π2−lg 1000+0.25−12÷√325
−3!+√(−5)2. 2、求过点),(24-,且与直线033=+-y x 平行的直线方程。
3、求经过点C (2,-3),且平行于过M (1,2 )和N (-1,-5)两点的直线的直线方程。
4、在△ABC 中,∠B=∠C=30°,a=2√3.
(1)求c ;
(2)N 为AC 中点时,求△ABN 的面积.
参考答案:
一、选择题:
1-5题答案:DCCDD
6-8题答案:CDBCA
11-15题答案:CDCCB
16-20题答案:DDCDA;
部分选择题解析:
二、填空题:
1.答案:121
3
2.答案:0.18
3.答案:2
4、{(1,-2)}
5、必要
三、问答题:
1、参考答案. -2
2、解:设两直线斜率分别为21k k 、,且21k k =
31
,131
1=+=k x y ,则31
2=k
)4(31)2(-=--∴x y ,所求直线方程为0103=--y x
3、解:设两直线斜率分别为21k k 、,且21k k = 由已知27)1(1521=----=)(k
)2(27)3(-=--∴x y
02027=--y x
4、参考答案.
(1)2;(2。