2021年高一10月月考数学试题(缺答案)
2021-2022学年陕西省安康中学高新分校高一上学期第一次月考(10月)数学试题(解析版)

2021-2022学年陕西省安康中学高新分校高一上学期第一次月考(10月)数学试题一、单选题1.已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则NA B ⋂=A .}{1,5,7B .}{3,5,7C .}{1,3,9D .}{1,2,3【答案】A【详解】试题分析:NA B ⋂为在集合A 但不在集合B 中的元素构成的集合,因此{1,5,7}NA B ⋂=【解析】集合的交并补运算2.函数11y x =+的定义域为( ) A .{}1x x >- B .{}1x x ≥ C .{}0x x ≥D .{|1x x ≤且1}x ≠-【答案】B【分析】根据偶次根式下的被开方数为非负数、分式分母不等于零列不等式组,解不等式组求得函数的定义域.【详解】要使函数11y x +有意义, 则10110x x x -≥⎧⇒≥⎨+≠⎩,所以函数的定义域为{}1x x ≥. 故选:B3.设集合{|03}A x N x =∈<的真子集个数为( ) A .16 B .8 C .7 D .4【答案】C【分析】首先判断集合A 的元素个数,再求真子集个数. 【详解】{}0,1,2A =,所以集合A 的真子集个数是3217-=. 故选:C4.已知函数()y f x =的对应关系如下表所示,函数()y g x =的图象是如图所示的曲线ABC ,则()2f g ⎡⎤⎣⎦的值为( )()f x2 3 0A .3B .0C .1D .2【答案】D【分析】根据图象可得()21g =,进而根据表格得()12f =.【详解】由题图可知()21g =,由题表可知()12f =,故()22f g =⎡⎤⎣⎦. 故选:D .5.设集合{|04},{|02}A x x B y y =≤≤=≤≤,则下列对应f 中不能构成A 到B 的映射的是 A .1:2f x y x →=B .:2f x y x →=+C .:f x y x →=D .:|2|f x y x →=-【答案】B【详解】根据映射定义, 1:2f x y x →=, :f x y x →=, :2f x y x →=- 中的对应f 中均能构成A 到B 的映射,而对于:2f x y x →=+,当4x =,6y =,而6B ∉,不能构成A 到B 的映射,选B.6.设集合{}41,Z M x x n n ==+∈,{}21,Z N x x n n ==+∈,则( ) A .M N B .N MC .M N ∈D .N M ∈【答案】A【分析】根据集合M 和N 中的元素的特征,结合集合间的关系,即可得解. 【详解】对集合M ,其集合中的元素为4的整数倍加1, 对集合N ,其集合中的元素为2的整数倍加1,4的整数倍加1必为2的整数倍加1,反之则不成立,即M 中的元素必为N 中的元素,而N 中的元素不一定为M 中的元素, 故M 为N 的真子集,即M N ,故选:A7.设函数()221,12,1x x f x x x x ⎧-≤=⎨+->⎩,则()12f f ⎛⎫⎪ ⎪⎝⎭的值为 A .1516B .2716-C .89D .18【答案】A【详解】因为1x >时,2()2,f x x x =+-所以211(2)2224,(2)4f f =+-==; 又1x ≤时,2()1f x x =-, 所以211115(()1().(2)4416f f f ==-=故选A. 本题考查分段函数的意义,函数值的运算.8.下列各组函数()f x 和()g x 的图象相同的是( )A .()f x x =,()2g x =B .()2f x x =,()()21g x x =+C .()1f x =,()0g x x =D .()f x x =,()()()00xx g x xx ⎧≥⎪=⎨-<⎪⎩ 【答案】D【分析】若两个函数图象相同则是相等函数,分别求每个选项中两个函数的定义域和对应关系,即可判断是否为相同函数,进而可得正确选项.【详解】对于A 中,函数()f x x =的定义域为R ,()2g x x ==的定义域为[)0,+∞,所以定义域不同,不是相同的函数,图象不同;对于B 中,()2f x x =,()()21g x x =+的对应关系不同,所以不是相同的函数, 两个函数图象不同;对于C 中,函数()1f x =的定义域为R ,与()01g x x ==的定义域为{|0}x x ≠,所以定义域不同,所以不是相同的函数, 两个函数图象不同;对于D 中,函数(),0,0x x f x x x x ≥⎧==⎨-<⎩与(),0,0x x g x x x ≥⎧=⎨-<⎩的定义域相同,对应关系也相同,所以是相同的函数, 两个函数图象相同; 故选:D.9.如果函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,那么实数a 的取值范围是( )A .3a ≤-B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】根据二次函数的单调性列式可求出结果.【详解】因为函数()()2212f x x a x =+-+在区间(],4∞-上单调递减,所以(1)4a --≥,解得3a ≤-. 故选:A10.若函数()1f x +的定义域为[]1,15-,则函数()2f xg x =A .[]1,4B .(]1,4C .⎡⎣D .(【答案】B【解析】先计算()f x 的定义域为[]0,16,得到201610x x ⎧≤≤⎨->⎩,计算得到答案.【详解】设1x t ,则()()1f x f t +=.由()1f x +的定义域为[]1,15-知115x -≤≤,0116x ∴≤+≤,即016t ≤≤()y f t ∴=的定义域为[]0,16,∴要使函数()2f xg x =201610x x ⎧≤≤⎨->⎩,即441x x -≤≤⎧⎨>⎩,解得14x <≤, 故选:B .【点睛】本题考查了函数的定义域,意在考查学生的计算能力.11.设P ,Q 是两个非空集合,定义(){},,P Q a b a P b Q ⨯=∈∈,若{}3,4,5P =,{}4,5,6,7Q =,则P Q⨯中元素的个数是( ) A .3 B .4 C .12 D .16【答案】C【分析】根据集合新定义,利用列举法写出集合的元素即可得答案.【详解】因为定义(){},,P Q a b a P b Q ⨯=∈∈,且{}3,4,5P =,{}4,5,6,7Q =, 所以()()()()()()()()()()()(){}3,4,3,5,3,6,3,7,4,4,4,5,4,6,4,7,5,4,5,5,5,6,5,7P Q ⨯=, P Q ⨯中元素的个数是12,故选:C.12.已知函数(3)5,1()2,1a x x f x a x x -+≤⎧⎪=⎨>⎪⎩是(-∞,+∞)上的减函数,则a 的取值范围是( )A .(0,3)B .(0,3]C .(0,2)D .(0,2]【答案】D【分析】直接由两段函数分别为减函数以及端点值的大小关系解不等式组即可. 【详解】由函数是(-∞,+∞)上的减函数可得()3020352a a a a ⎧-<⎪>⎨⎪-+≥⎩解得02a <≤.故选:D.二、填空题 13.已知集合A ={x|125x-∈N ,x ∈N },则用列举法表示为__________________. 【答案】{}1,2,3,4A = 【分析】由题设集合A ={x|125x -∈N ,x ∈N },可通过对x 赋值,找出使得125x-∈N ,x ∈N 成立的所有x 的值,用列举法写出答案. 【详解】由题意A ={x|125x-∈N ,x ∈N }∴x 的值可以为1,2,3,4, 故答案为A={1,2,3,4}.【点睛】考查学生会用列举法表示集合,会利用列举法讨论x 的取值得到所有满足集合的元素.做此类题时,应注意把所有满足集合的元素写全且不能相等. 14.已知()123f x x +=+,则()3f =______; 【答案】7【分析】由13x +=,求出x ,然后代入()123f x x +=+中可求得结果. 【详解】由13x +=,得2x =,所以()212237f +=⨯+=,即()37f =, 故答案为:715.已知集合11,2A ⎧⎫=-⎨⎬⎩⎭,{}10B x mx =-=,若A B A ⋃=,则所有实数m 组成的集合是______;【答案】{}1,0,2-【分析】由A B A ⋃=可得B A ⊆,然后分0m =和0m ≠两种情况求解即可.【详解】因为A B A ⋃=,所以B A ⊆, 当0m =时,B =∅,满足B A ⊆,当0m ≠时,则{}110B x mx x x m ⎧⎫=-===⎨⎬⎩⎭,因为B A ⊆,11,2A ⎧⎫=-⎨⎬⎩⎭,所以11m =-或112m =,得1m =-或2m =, 综上,所有实数m 组成的集合是{}1,0,2-, 故答案为:{}1,0,2-16.定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠,若()()1f m f m -<,则m 的取值范围是______. 【答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意可得函数在[]22-,上单调递减,然后根据函数的单调性解不等式即可. 【详解】因为定义在[]22-,上的函数()f x 满足()()()12120x x f x f x --<⎡⎤⎣⎦,12x x ≠, 所以()f x 在[]22-,上单调递减, 所以由()()1f m f m -<,得212221m m m m-≤-≤⎧⎪-≤≤⎨⎪->⎩,解得112m -≤<,即m 的取值范围是11,2⎡⎫-⎪⎢⎣⎭,故答案为:11,2⎡⎫-⎪⎢⎣⎭三、解答题17.已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.【答案】01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩【分析】根据集合相等的定义,结合集合元素的互异性,通过解方程组进行求解即可.【详解】∵A =B ,∴集合A 与集合B 中的元素相同∴22x x y y =⎧⎨=⎩或22x y y x⎧=⎨=⎩,解得x ,y 的值为00x y =⎧⎨=⎩或01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩, 验证得,当x =0,y =0时,A ={2,0,0}这与集合元素的互异性相矛盾,舍去.∴x ,y 的取值为01x y =⎧⎨=⎩或1412x y ⎧=⎪⎪⎨⎪=⎪⎩【点睛】本题考查了已知两集合相等求参数取值问题,考查了数学运算能力.18.已知函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩(1)求((2))f f -的值; (2)若3()2f a =,求a . 【答案】(1)2;(2)2,34-.【分析】(1)根据函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,先求得(2)f -,再求((2))f f -的值.(2)根据3()2f a =,分1a >,11a -≤≤,1a <-讨论求解. 【详解】(1)因为函数211,1,()1,11,23, 1.x x f x x x x x ⎧+>⎪⎪=+-⎨⎪+<-⎪⎩,所以()(2)2231f -=⨯-+=- ()2((2))(1)112f f f -=-+==-(2)当1a >时,1312a +=,解得2a =; 当11a -≤≤时,2312a +=,解得a = 当1a <-时,3232a +=,解得34a =-;综上:a 的值为:2,34-.【点睛】本题主要考查分段函数求值和已知函数值求参数,还考查了分类讨论的思想和运算求解的能力,属于中档题.19.已知集合{}|22A x a x a =-≤≤+,{|1B x x =≤或}4x ≥. (1)当3a =时,求A B ⋂;A B ⋃; (2)若A B ⋂=∅,求实数a 的取值范围.【答案】(1){|11A B x x ⋂=-≤≤或45}x ≤≤;A B ⋃=R ;(2)(),1-∞. 【分析】(1)直接求A B ⋂和A B ⋃;(2)对集合A 分A =∅和A ≠∅两种情况讨论分析得解.【详解】(1)当3a =时,{}|15A x x =-≤≤,{|1B x x =≤或}4x ≥, ∴{|11A B x x ⋂=-≤≤或45}x ≤≤,A B ⋃=R . (2)若A =∅,此时22a a ->+, ∴a<0,满足A B ⋂=∅,当A ≠∅时,0a ≥.{}|22A x a x a =-≤≤+, ∵A B ⋂=∅,∴21{24a a ->+<,∴01a ≤<.综上可知,实数a 的取值范围是(,1)-∞.【点睛】本题主要考查集合的运算,考查集合的运算结果求参数的取值范围,意在考查学生对这些知识的理解掌握水平.20.已知()f x 是定义在(0,)+∞上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1. (1)求证:(8)3f =;(2)求不等式()(2)3f x f x -->的解集. 【答案】(1)证明见解析;(2)1627x <<. 【分析】(1)根据()21f =,结合f (xy )=f (x )+f (y ),利用赋值法即可求得()8f ,则问题得证; (2)等价转化不等式,利用函数单调性,即可求得不等式解集.【详解】(1)由题意得(8)(42)(4)(2)(22)(2)3(2)3f f f f f f f =⨯=+=⨯+== (2)原不等式可化为()(2)(8)(8(2))f x f x f f x >-+=- 由函数()f x 是(0,)+∞上的增函数得8(2)0x x >->, 解得1627x <<.故不等式()(2)3f x f x -->的解集为162,7. 【点睛】本题考查抽象函数函数值的求解,以及利用函数单调性解不等式,属综合基础题. 21.已知集合{|210}P x x =- ,{|11}Q x m x m =-+ . (1)求集合P R;(2)若P Q ⊆ ,求实数m 的取值范围; (3)若P Q Q ⋂= ,求实数m 的取值范围. 【答案】(1){|2x x <-或10}x >; (2)9m ≥; (3)3m ≤.【分析】(1)由补集定义得结论; (2)由包含关系得不等式组,求解可得;(3)由P Q Q ⋂=,则Q P ⊆,然后分类讨论:按Q =∅和Q ≠∅分类. 【详解】(1)因为{|210}P x x =-≤≤,所以R {|2P x x =<-或10}x >;(2)因为P Q ⊆,所以12110m m -≤-⎧⎨+≥⎩,解得9m ≥;(3)P Q Q ⋂=,则Q P ⊆,若11m m ->+即0m <,则Q =∅,满足题意; 若0m ≥,则Q ≠∅,由题意12110m m -≥-⎧⎨+≤⎩,解得03m ≤≤,综上,3m ≤. 22.设函数1()1ax f x x -=+,其中a ∈R . (1)若1a =,()f x 的定义域为区间[]0,3,求()f x 的最大值和最小值; (2)若()f x 的定义域为区间(0,+∞),求a 的取值范围,使()f x 在定义域内是单调减函数. 【答案】(1)max min 1(),()12f x f x ==-(2)1a <-【详解】1()1ax f x x -=+=(1)11a x a x +--+=a -11a x ++,设x 1,x 2∈R ,则f (x 1)-f (x 2)=211111a a x x ++-++=1212(1)()(1)(1)a x x x x +-++.(1)当a =1时,设0≤x 1<x 2≤3,则f (x 1)-f (x 2)=12122()(1)(1)x x x x -++.又x 1-x 2<0,x 1+1>0,x 2+1>0,所以f (x 1)-f (x 2)<0, ∴f (x 1)<f (x 2),所以f (x)在[0,3]上是增函数,所以f (x)max =f (3)=1-24=12;f (x)min =f (0)=1-21=-1.(2)设x 1>x 2>0,则x 1-x 2>0,x 1+1>0,x 2+1>0 要f (x)在(0,+∞)上是减函数,只要f (x 1)-f (x 2)<0 而f (x 1)-f (x 2)=1212(1)()(1)(1)a x x x x +-++,所以当a +1<0即a <-1时,有f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),所以当a <-1时,f (x)在定义域(0,+∞)上是单调减函数.。
2021-2022学年上海市奉贤区奉城高级中学高一(上)月考数学试卷(10月份)(解析版)

2021-2022学年上海市奉贤区奉城高级中学高一(上)月考数学试卷(10月份)一、填空题1.集合{1,2,3}的真子集的个数为.2.关于x的不等式ax>﹣3,当a<0时的解集为.3.已知集合A={(x,y)|2x﹣y=4},B={(x,y)|x+y=5},则A∩B=.4.“x≥1且y≥1“的否定形式为.5.已知全集U=R,集合A={x|x2≤4,x∈Z}集合B={x|x>﹣},则∁U B∩A=.6.不等式x(3﹣x)≤0的解集为.7.已知集合A={y|y=x2+1},B={y|y=﹣2x2﹣2},则A∪B=.8.若a∈[12,60],b∈[16,36],则a﹣b的取值范围是.9.已知集合A={x|2a≤x≤a+3},B=(2,+∞),若A∩B=∅,则实数a的取值范围是.10.不等式≥0的解集为.11.已知集合A={x|ax2+4x+4=0},A中至少有一个元素,则a的取值范围是.二、选择题13.图中的阴影表示的集合中是()A.A∩∁U B B.B∩∁U A C.∁U(A∩B)D.∁U(A∪B)14.如果集合中的元素是三角形的边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形15.设a和b都是非零实数,则不等式a>b和同时成立的充要条件是()A.a>b B.a>b>0C.a>0>b D.0>a>b16.若a,b,c∈R,且a>b,则下列不等式中一定成立的是()A.(a﹣b)c2≥0B.ac≥bc C.a+b≥b﹣c D.三、解答题17.解不等式组.18.若某服装公司生产的衬衫每件定价80元,在某城市年销售8万件.现该公司计划在该市招收代理商来销售衬衫,以降低管理和营销成本.已知代理商要收取的代理费为总销售额金额的r%(即每销售100元销售额收取r元),为确保单件衬衫的利润保持不变,服装公司将每件衬衫价格提到元.但提价后每年的销量会减少0.62r万件.求r的取值范围,以确保代理商每年收取的代理费不少于16万元.19.设集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+4=0},若A∪B=A,求a的取值范围.20.已知集合A={x|x=4n+1,n∈Z},集合B={x|x=2n﹣1,n∈Z}.判断集合A与集合B 的包含关系,并证明你的结论.21.若a是实数,探究关于x的不等式≥a的解集.参考答案一、填空题1.集合{1,2,3}的真子集的个数为7.【分析】集合{1,2,3}的真子集是指属于集合的部分组成的集合,包括空集.解:集合的真子集为{1},{2},{3},{1,2},{1,3},{2,3},∅.共有7个.故答案为7.2.关于x的不等式ax>﹣3,当a<0时的解集为(﹣∞,﹣).【分析】利用一元二次不等式的解法求解即可.解:不等式ax>﹣3,当a<0时,解得x<﹣,所以不等式的解集为(﹣∞,﹣).故答案为:(﹣∞,﹣).3.已知集合A={(x,y)|2x﹣y=4},B={(x,y)|x+y=5},则A∩B={(3,2)}.【分析】根据交集的定义求方程组的解即可.解:集合A={(x,y)|2x﹣y=4},B={(x,y)|x+y=5},所以A∩B={(x,y)|}={(x,y)|}={(3,2)}.故答案为:{(3,2)}.4.“x≥1且y≥1“的否定形式为x<1或y<1.【分析】根据题意,由复合命题的否定方法分析可得答案.解:根据题意,“x≥1且y≥1“是p∧q形式的命题,其否定形式为x<1或y<1;故答案为:x<1或y<1.5.已知全集U=R,集合A={x|x2≤4,x∈Z}集合B={x|x>﹣},则∁U B∩A={﹣2,﹣1}.【分析】先求出集合A,然后由集合补集与交集的定义求解即可.解:集合A={x|x2≤4,x∈Z}={x|﹣2≤x≤2,x∈Z}={﹣2,﹣1,0,1,2},又集合B={x|x>﹣},则∁U B={x|x≤﹣},所以∁U B∩A={﹣2,﹣1}.故答案为:{﹣2,﹣1}.6.不等式x(3﹣x)≤0的解集为{x|x≤0或x≥3}.【分析】不等式化为x(x﹣3)≥0,求出解集即可.解:不等式x(3﹣x)≤0可化为x(x﹣3)≥0,解得x≤0或x≥3,所以不等式的解集为{x|x≤0或x≥3}.故答案为:{x|x≤0或x≥3}.7.已知集合A={y|y=x2+1},B={y|y=﹣2x2﹣2},则A∪B=(﹣∞,﹣2]∪[1,+∞).【分析】求函数的值域得出集合A、B,再根据并集的定义求A∪B.解:集合A={y|y=x2+1}={y|y≥1},B={y|y=﹣2x2﹣2}={y|y≤﹣2},则A∪B={y|y≤﹣2或y≥1}=(﹣∞,﹣2]∪[1,+∞).故答案为:(﹣∞,﹣2]∪[1,+∞).8.若a∈[12,60],b∈[16,36],则a﹣b的取值范围是[﹣24,44].【分析】根据题意,求出﹣b的取值范围,进而分析可得答案.解:根据题意,b∈[16,36],则﹣b∈[﹣36,﹣16],又由a∈[12,60],则a﹣b∈[﹣24,44],故答案为:[﹣24,44].9.已知集合A={x|2a≤x≤a+3},B=(2,+∞),若A∩B=∅,则实数a的取值范围是(﹣∞,﹣1]∪(3,+∞).【分析】由集合交集以及空集的定义求解即可.解:集合A={x|2a≤x≤a+3},B=(2,+∞),又A∩B=∅,当A=∅时,则2a>a+3,解得a>3;当A≠∅时,则a+3≤2,解得a≤﹣1.综上所述,实数a的取值范围为(﹣∞,﹣1]∪(3,+∞).故答案为:(﹣∞,﹣1]∪(3,+∞)10.不等式≥0的解集为[1,2)∪(2,+∞).【分析】结合x2﹣4x+4=(x﹣2)2≥0对已知不等式进行转化即可求解.解:因为x2﹣4x+4=(x﹣2)2≥0所以≥0可转化为x﹣1≥0且x≠2,故不等式的解集[1,2)∪(2,+∞).故答案为:[1,2)∪(2,+∞).11.已知集合A={x|ax2+4x+4=0},A中至少有一个元素,则a的取值范围是(﹣∞,1].【分析】集合A={x|ax2+4x+4=0}中至少有一个元素可化为方程ax2+4x+4=0有解,分类讨论即可.解:∵集合A={x|ax2+4x+4=0}中至少有一个元素,∴方程ax2+4x+4=0有解,①当a=0时,方程可化为4x+4=0,有解;②当a≠0时,△=16﹣16a≥0,解得,a≤1且a≠0,综上所述,a的取值范围是(﹣∞,1].故答案为:(﹣∞,1].二、选择题13.图中的阴影表示的集合中是()A.A∩∁U B B.B∩∁U A C.∁U(A∩B)D.∁U(A∪B)【分析】阴影表示的集合元素在B中但不在A中,进而得到答案.解:由已知可的韦恩图,可得:阴影表示的集合中是B∩∁U A,故选:B.14.如果集合中的元素是三角形的边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形【分析】利用集合元素的互异性求解.解:因为集合中任何两个元素都不相等,所以这个三角形的任意两边都不相等,所以这个三角形一定不可能是等腰三角形,故选:D.15.设a和b都是非零实数,则不等式a>b和同时成立的充要条件是()A.a>b B.a>b>0C.a>0>b D.0>a>b【分析】根据不等式a>b和同时成立,可得把不等式a>b的两边同时除以ab,不等式变号,故有a>0>b.解:设a和b都是非零实数,∵不等式a>b和同时成立,∴把不等式a>b的两边同时除以ab,不等式变号为,∴a、b异号,∴a>0>b,故选:C.16.若a,b,c∈R,且a>b,则下列不等式中一定成立的是()A.(a﹣b)c2≥0B.ac≥bc C.a+b≥b﹣c D.【分析】直接利用不等式的性质的应用判断A、B、C、D的结论.解:对于A:由于a>b,所以a﹣b>0,则(a﹣b)c2≥0,故A正确;对于B:当a=2,b=﹣1,c=﹣2,所以ac<bc,故B错误;对于C,由于a和c没有关系,所以C错误;对于D:由于a>b,所以a﹣b>0,当c=0时,所以不成立,故D错误.故选:A.三、解答题17.解不等式组.【分析】分别结合分式不等式及二次不等式的求法进行求解即可.解:由得≤0,即,转化为,解得x<0或x≥3,由x2﹣2x﹣8≤0得(x﹣4)(x+2)≤0,解得﹣2≤x≤4,所以原不等式组的解集[﹣2,0)∪[3,4].18.若某服装公司生产的衬衫每件定价80元,在某城市年销售8万件.现该公司计划在该市招收代理商来销售衬衫,以降低管理和营销成本.已知代理商要收取的代理费为总销售额金额的r%(即每销售100元销售额收取r元),为确保单件衬衫的利润保持不变,服装公司将每件衬衫价格提到元.但提价后每年的销量会减少0.62r万件.求r的取值范围,以确保代理商每年收取的代理费不少于16万元.【分析】由已知中该衬衫每件价格要提高到才能保证公司利润,由于提价每年将少销售0.62r万件,由此可以计算出年销售额,再由代销费为销售金额的r%,代入可得代理商收取的年代理费f关于r的函数解析式,再根据代理商每年收取的代理费不小于16万元,构造一个关于r的不等式,解不等式可得r的取值范围.解:根据题意,代理商每年可销售8﹣0.62r万件衬衫,每件衬衫的价格为元,因此年销售额为(8−0.62r)万元,所以代理商收取的年代理费f为f=(8−0.62r)r%,其中0<r<,(写为0≤r≤也可以)依题意,得(8−0.62r)r%≥16⇒31r2﹣410r+1000≤0,注意到0<r<100(0≤r≤100),解得≤r≤10,因此所求r的取值范围是[,10].19.设集合A={x|x2﹣3x+2=0},B={x|x2﹣ax+4=0},若A∪B=A,求a的取值范围.【分析】由A∪B=A,得B⊆A,然后分B=∅,单元素集合,双元素集合求解a的取值范围.解:∵A∪B=A,∴B⊆A,又A={x|x2﹣3x+2=0}={1,2},B={x|x2﹣ax+4=0},当(﹣a)2﹣16<0,即﹣4<a<4时,B=∅,满足B⊆A;当a=﹣4时,(﹣a)2﹣16=0,B={﹣2},不合题意;当a=4时,(﹣a)2﹣16=0,B={2},满足B⊆A;当(﹣a)2﹣16>0,即a<﹣4或a>4时,要使B⊆A,只有B={1,2},此时1×2=2≠4,a∈∅.综上,满足A∪B=A的实数a的取值范围是(﹣4,4].20.已知集合A={x|x=4n+1,n∈Z},集合B={x|x=2n﹣1,n∈Z}.判断集合A与集合B 的包含关系,并证明你的结论.【分析】可判断A⊂B,集合A中元素的特征化出集合B中元素的特征即可.解:可判断A⊂B,证明如下:集合A={x|x=4n+1,n∈Z}={x|x=2(2n+1)﹣1,n∈Z},∵n∈Z,∴2n+1∈Z,∴A⊆B,又∵﹣1∈B,﹣1∉A,∴A⊂B.21.若a是实数,探究关于x的不等式≥a的解集.【分析】先进行移项,通分化简进行转化,然后结合二次不等式对a进行分类讨论进行求解即可.解:由已知得≥0,整理得≥0,所以,即,当a<0时,解得x>0或x≤,当a=0时,解不等式得x>0,当a>0时,解不等式得0<x≤,综上,当a<0时,解集{x|x>0或x≤},当a=0时,解集{x|x>0},当a>0时,解集{x|0<x≤}.。
江苏省南京师范大学附属中学2020-2021学年高一上学期10月月考数学试题

20.若 , .
(1)求 的取值范围;
(2)求 的取值范围.
【答案】(1) ;(2) .
21.某种商品原来每件售价为25元,年销售量8万件.
(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?
(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到 元.公司拟投入 万元作为技改费用,投入50万元作为固定宣传费用,投入 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
【答案】 , .
三、解答题(本大题共6小题)
17.已知集合 , 或 .
(1)当 时,求 ;
(2)若 ,求实数 的取值范围.
【答案】(1) 或 ;(2) .
18.求下列不等式的解集:
(1)
(2)
(3)
(4)
【答案】(1) ;(2) ;(3) ;(4)
19.设p:实数x满足 或 ,q:实数x满足 ,且q是p的充分不必要条件,求实数a的取值范围.
【答案】A
7.已知 且 ,则 的最小值为()
A.3B.4C.5D.6
【答案】A
8.已知命题 , ;命题 , .若 , 都是假命题,则实数 的取值范围为()
A. B. C. 或 D.
【答案】B
9 设 , , ,且 ,则()
A. B. C. D.
【答案】D
10.不等式 成立的必要不充分条件有()
A. B. C. D.
【答案】
14.设集合 , ,若 ,则实数 的取值范围是___________.
2021-2022学年上海市洋泾中学高一上学期10月月考数学试题(解析版)

2021-2022学年上海市洋泾中学高一上学期10月月考数学试题一、单选题1.若0a b <<,则下列不等式错误的是( ). A .11a b> B .11a b a>- C .||||a b > D .22a b > 【答案】B【分析】根据不等式的性质逐项判断即可. 【详解】解:对A ,0a b <<,11a b ∴>,故A 正确; 对B ,0a b <<,0b ∴->,即0a a b <-<, 11a a b∴>-,故B 错误; 对C ,0a b <<,0a b ∴->->,即||||a b ->-, 即||||a b >,故C 正确, 对D ,0a b <<,0a b ∴->->,即22()()a b ->-,即22a b >,故D 正确.故选:B.2.已知R a b ∈、,下列四个条件中,使“a b >”成立的必要而不充分的条件是( ) A .1a b >- B .1a b >+C .||||a b >D .||a b >【答案】A【分析】根据必要不充分条件的概念依次分析各选项即可得答案.【详解】解:使a b >成立的必要不充分条件,即a b >能得到哪个条件,而由该条件得不到a b >,故对于A 选项,a b >可以得到1a b >-,反之不成立,故1a b >-是a b >必要而不充分的条件;对于B 选项,1a b >+可以得到a b >,反之不成立,故1a b >+是a b >的充分不必要条件;对于C 选项,||||a b >是a b >的既不充分也不必要条件; 对于D 选项,||a b >是a b >的充分不必要条件. 故选:A .3.三个集合A 、B 、C 满足,==A B C B C A ,那么一定有( ) A .A B C == B .A B ⊆C .,=≠A C A BD .=⊆A C B【答案】D【分析】由题知C A ⊆且C B ⊆,进而结合交集运算求解即可. 【详解】因为A B C =,所以C A ⊆且C B ⊆,所以B C C =, 又B C A ⋂=,所以A C =, 所以=⊆A C B . 故选:D .4.以某些整数为元素的集合P 具有以下性质:(1)P 中元素有正数,也有负数;(2)P 中元素有奇数,也有偶数; (3)1P -∉;(4)若x y P ∈、,则x y P +∈. 则下列选项哪个是正确的( ) A .集合P 中一定有0但没有2 B .集合P 中一定有0可能有2 C .集合P 中可能有0可能有2 D .集合P 中既没有0又没有2【答案】A【分析】由(4)得x P ∈,则∈kx P (k 是正整数),由(1)可设,∈x y P ,且0x >,0y <,可得0P ∈.利用反证法可得若2P ∈,则P 中没有负奇数,若P 中负数为偶数,得出矛盾即可求解.【详解】解:由(4)得x P ∈,则∈kx P (k 是正整数).由(1)可设,∈x y P ,且0x >,0y <,则xy 、()-∈y x P ,而0()=+-∈xy y x P . 假设2P ∈,则2∈k P .由上面及(4)得0,2,4,6,8,…均在P 中, 故22-∈k P (k 是正整数),不妨令P 中负数为奇数21k -+(k 为正整数), 由(4)得(22)(21)1-+-+=-∈k k P ,矛盾.故若2P ∈,则P 中没有负奇数.若P 中负数为偶数,设为2k -(k 为正整数),则由(4)及2P ∈, 得2,4,6,---均在P 中,即22--∈m P (m 为非负整数),则P 中正奇数为21m +,由(4)得(22)(21)1--++=-∈m m P ,矛盾. 综上,0P ∈,2∉P . 故选:A .二、填空题5.己知集合{,||,2}A a a a =-,若3A ∈,则实数a 的值为____________. 【答案】3-【分析】根据集合中元素的特征,用集合元素互异性分析即可.【详解】由集合中元素的互异性得||a a ≠,故0a <,则20a -<,又3A ∈,所以||3=-=a a ,解得3a =-.故答案为:3a =- 6.不等式203->-xx 的解集是___________. 【答案】()2,3【分析】根据分式不等式等价于()()320x x -->,即可根据一元二次不等式的解法求解. 【详解】203->-xx 等价于()()()()320320x x x x -->⇒--<,故解集为:()2,3, 故答案为:()2,37.若关于x 的不等式2250-+>x ax 的解集为(,1)(,)-∞+∞m ,则a m +的值为__________. 【答案】8【分析】根据题意得到1和m 是方程2250x ax -+=的两个根,结合根与系数的关系,列出方程组,即可求解.【详解】因为不等式2250-+>x ax 的解集为(,1)(,)-∞+∞m , 可得1和m 是方程2250x ax -+=的两个根,所以1215m a m +=⎧⎨⨯=⎩,解得3,5a m ==,所以8+=a m .故答案为:88.若集合{(,)|23},{(,)|3}A x y x y B x y ax y =+==-=,则A B =∅,则实数a 的值为_________. 【答案】2-【分析】根据题意转化为23x y +=与3ax y -=平行,列出关系式,即可求解. 【详解】由题意,集合{(,)|23},{(,)|3}A x y x y B x y ax y =+==-=,因为A B =∅,可得方程组233x y ax y +=⎧⎨-=⎩无解,即直线23x y +=与3ax y -=平行,可得13213a --=≠-,解得2a =-. 故答案为:2-.9.设:231,:27αβ<≤+-≤≤a x a x ,若α是β的充分非必要条件,则实数a 的取值范围是__________. 【答案】(],2-∞【分析】由题知(]2,31a a +是[]2,7-的真子集,再根据集合关系求解即可. 【详解】解:因为α是β的充分非必要条件,(]2,31a a +是[]2,7-的真子集, 所以,当(]2,31a a +=∅时,231a a ≥+,解得1a ≤-, 当(]2,31a a +≠∅时,22317-≤<+≤a a ,解得12a -<≤. 综上,实数a 的取值范围是(],2-∞ 故答案为:(],2-∞10.对于任意的222R,21ax bx x x x +-+∈+为定值,则a b +的值为___________.【答案】5【分析】由条件列方程求出,a b 即可. 【详解】因为22221ax bx x x +-++为定值,所以可设22221ax bx x t x +-+=+, 所以2222ax bx x tx t +-+=+恒成立, 所以2a t =,10b -=,2t =, 所以4a =,1b =, 所以5a b +=. 故答案为:5.11.已知全集{3,15U x x n n ==≤≤且N}n ∈,{}2|270,N A x x px p =-+=∈,{}2|150,N B x x x q q =-+=∈,且{3,9,12,15}=AB ,则p q +的值为_____________.【答案】66【分析】结合韦达定理,根据集合运算结果求解即可. 【详解】解:因为全集{3,6,9,12,15}=U ,{3,9,12,15}=A B ,所以3,9,12,15中有两个属于A ,因为A 中的方程2270-+=x px 中,两根之积1227=x x ,所以3,9A ∈, 所以3912p =+=,又12,15A ∉,所以12,15B ∉,因为B 中的方程2150-+=x x q 中,两根之和3415x x +=,所以6,9B ∈, 则6954q =⨯=,所以66+=p q . 故答案为:66.12.已知R 是全集,集合{}2|1,R A y y x x ==-+∈,集合{}|3||,R B x x a a ==+∈,则A B ⋃=______.【答案】(1,3)【分析】由题知(,1]A ∞=-,[3,)B =+∞,再进行集合运算即可.【详解】解:因为{}2|1,R (,1]A y y x x ==-+∈=-∞,{}|3||,R [3,)B x x a a ==+∈=+∞,所以(1,3)=A B . 故答案为:(1,3)13.若“存在实数x ,使得2390ax ax -+≤成立”为假命题,则实数a 的取值范围是____________. 【答案】[0,4)【分析】根据一元二次型不等式恒成立问题,分类讨论即可求解. 【详解】由题意知:对任意实数x ,都有2390ax ax -+>恒成立. 当0a =时,满足题意;当0a ≠时,2Δ9360a a a >⎧⎨=-<⎩,解得04a <<, 则实数a 的取值范围是[0,4). 故答案为:[0,4)14.已知集合{1,2,3,4,5}A =,则集合A 的含偶数的子集的个数为___________.【答案】24【分析】根据结论分别求出集合A 的所有子集的个数和集合A 的不含偶数的子集的个数,由此可得结果.【详解】因为{1,2,3,4,5}A =,所以集合A 的所有子集共有52个, 又集合{1,3,5}的所有子集有32个,所以集合A 的含偶数的子集的个数为532224-=. 故答案为:24.15.设集合1,{}2,A m =,其中m 为实数,令{}2,B a a A C A B =∈=⋃,若C 的所有元素之和为5,则C 的所有元素之积为____________. 【答案】16-【分析】根据集合C 中的元素和为5可得集合B 的元素,从而可求集合C 中的元素,进而得到各元素的积.【详解】由题意得21,2,4,,m m (允许有重复)为集合C 的全部元素. 注意到,当m 为实数时,21245m m ++++>,21245m +++>故只可能是集合{1,2,4,}=C m ,且1245+++=m ,于是2m =-(经检验符合题意), 此时集合C 的所有元素之积为124(2)16⨯⨯⨯-=-. 故答案为:16-16.已知0a >,若集合{}22222220,,A x x x a x x a a x A =---+-+--=∈⋂R Z 中的元素有且仅有2个,则实数a 的取值范围为_____________. 【答案】[1,2)【分析】令222t x x =--,方程22222220x x a x x a a ---+-+--=即为2t a t a a -++=,所以a t a -≤≤,问题转化为函数222y x x =--的图象在直线y a =与y a =-之间只有两个整数x 满足,由函数图象易得结论.【详解】令222t x x =--,14x =时,min 178t =-,0x =时,2t =-,1x =时,1t =-,1x =-时,1t =,2x =时,4t =,方程22222220x x a x x a a ---+-+--=即为2t a t a a -++=,所以a t a -≤≤,作出函数222y x x =--的图象,如图,在直线y a =和y a =-之间只有两个整数解,则12a ≤<.故答案为:[1,2).三、解答题17.已知集合{}{}2|680,|20,R A x x x B x mx m =-+<=-=∈,若A B A ⋃=,求实数m的取值范围.【答案】1{0},12⎛⎫⎪⎝⎭【分析】由题知B A ⊆,进而结合0m =和0m ≠分类讨论求解即可.【详解】解:由题知:{}(){}2|6802,4,|20,R A x x x B x mx m =-+<==-=∈,因为A B A ⋃=,则B A ⊆, 当0m =时,B =∅,满足题意;当0m ≠时,2⎧⎫=⎨⎬⎩⎭B m ,所以224<<m ,所以1,12m ⎛⎫∈ ⎪⎝⎭,综上,实数m 的取值范围是1{0},12⎛⎫⎪⎝⎭.18.设1234,,,a a a a 是四个正数. (1)已知3124a a a a <,比较12a a 与1324a a a a ++的大小; (2)已知()()()()1234111116a a a a ++++<,求证:1234,,,a a a a 中至少有一个小于1. 【答案】(1)131224a a a a a a +<+ (2)证明见解析【分析】(1)利用比差法比较12a a 与1324a a a a ++的大小; (2)利用反证法证明.【详解】(1)因为1234,,,a a a a 是四个正数,3124a a a a <,所以1423a a a a <,所以()()131214122314231224224224a a a a a a a a a a a a a a a a a a a a a a a a ++----==+++,因为1423a a a a <,所以14230a a a a -<,因为1234,,,a a a a 是四个正数,所以224()0a a a +>, 所以1312240a a a a a a +-<+ 所以131224a a a a a a +<+ (2)假设1234,,,a a a a 都不小于1,则1(1,2,3,4)n a n ≥=,那么()()()()12341111222216a a a a ++++≥⨯⨯⨯=与已知条件矛盾,所以假设不成立,所以1234,,,a a a a 中至少有一个小于1. 19.不等式112+≥x 的解集为A ,关于x 的不等式23(53)50+++<x a x a 的解集为B . (1)求集合A ,集合B ; (2)若集合N A B中有2021个元素,求实数a 的取值范围.【答案】(1)答案见解析. (2)[2022,2021)a ∈--【分析】(1)根据绝对值不等式的解法和含参二次不等式的解法求解即可; (2)由题知A B 中包含2021个正整数,进而当53a <,531,,322A B a ⎛⎤⎡⎫=--- ⎪⎥⎢⎝⎦⎣⎭才能满足题意,再求解范围即可. 【详解】(1)解:由112+≥x ,解得12x ≥或32x ≤-,所以31,,22⎛⎤⎡⎫=-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭A 23(523)5(35)()0+++=++<x x a x x a ,当53a -<-,即53a >,53-<<-a x ;当53a =时,不等式解集为∅;当53->-a ,即53a <时,53-<<-x a ;所以,当53a >时,5,3B a ⎛⎫=-- ⎪⎝⎭,当53a =时,B =∅;当53a <时,5,3B a ⎛⎫=-- ⎪⎝⎭.(2)解:若集合N A B中有2021个元素,则A B 中包含2021个非负整数;又31,,22⎛⎤⎡⎫=-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭A , 所以,要使则AB 中包含2021个正整数,则53a <,5,3B a ⎛⎫=-- ⎪⎝⎭,531,,322A B a ⎛⎤⎡⎫=--- ⎪⎥⎢⎝⎦⎣⎭,所以A B 中的正整数为1,2,…,2021,所以202120221253a a a ⎧⎪<-≤⎪⎪->⎨⎪⎪<⎪⎩,解得20222021a -≤<-.所以[)2022,2021a ∈--.20.给定的正整数(2)n n ≥,若集合{}12,,,n A a a a M =⊆满足1212+++=⋅n n a a a a a a ,则称A 为集合M 的n 元“好集”.(1)写出一个实数集R 的2元“好集”; (2)证明:不存在自然数集N 的2元“好集”. 【答案】(1)11,2⎧⎫-⎨⎬⎩⎭(2)证明见解析【分析】(1)根据新定义确定实数集R 的一个2元“好集”;(2) 设{}12A a ,a =是自然数集N 上的一个2元“好集”,且12a a <,讨论1a 与0的关系,推出矛盾,完成证明. 【详解】(1)因为111122-+=-⨯,又11,R 2⎧⎫-⊆⎨⎬⎩⎭, 所以11,2A ⎧⎫=-⎨⎬⎩⎭是实数集R 的一个2元“好集”;(2)设{}12A a ,a =是自然数集N 上的一个2元“好集”,不妨设12a a <,①若10a =,则2N a *∈,故1212a a a a +=⨯不成立;②若1N a *∈,由1212a a a a +=⋅得()1122121=⋅-=-a a a a a a , 所以1121a a a -=,因为12,N a a *∈且12a a <,所以11201,1N a a a <<-∈, 故1121a a a -=不成立, 综上所述,自然集N 不存在2元“好集”.21.设数集A 由实数构成,且满足:若x A ∈(1x ≠且0x ≠),则11A x∈-. (1)若2A ∈,则A 中至少还有几个元素? (2)集合A 是否为双元素集合?请说明理由. (3)若A 中元素个数不超过8,所有元素的和为143,且A 中有一个元素的平方等于所有元素的积,求集合A .【答案】(1)A 中至少还有两个元素;(2)不是双元素集合,答案见解析;(3)112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭.【解析】(1)由x A ∈(1x ≠且0x ≠),则11A x∈-,结合2A ∈可计算得出集合A 中的元素;(2)由x A ∈,逐项可推导出11A x ∈-,1x A x-∈,结合集合元素满足互异性可得出结论;(3)由(2)A 中有三个元素为x 、11x -、1x x-(1x ≠且0x ≠),设A 中还有一个元素m ,可得出11A m ∈-,1m A m-∈,由已知条件列方程求出x 、m 的值,即可求得集合A 中的所有元素.【详解】(1)2A ∈,1112A ∴=-∈-. 1A -∈,()11112A ∴=∈--.12A ∈,12112A ∴=∈-.A ∴中至少还有两个元素为1-,12;(2)不是双元素集合.理由如下:x A ∈,11A x∴∈-,11111x A x x-=∈--, 由于1x ≠且0x ≠,22131024x x x ⎛⎫-+=-+> ⎪⎝⎭,则210x x -+≠,则()11x x -≠,可得11x x ≠-,由221x x x -+≠-,即()21x x -≠-,可得111x x x-≠-,故集合A 中至少有3个元素,所以,集合A 不是双元素集合. (3)由(2)知A 中有三个元素为x 、11x -、1x x-(1x ≠且0x ≠), 且1111x x x x-⋅⋅=--, 设A 中有一个元素为m ,则11A m ∈-,1m A m -∈,且1111m m m m-⋅⋅=--, 所以,1111,,,,,11x m A x m x x m m --⎧⎫=⎨⎬--⎩⎭,且集合A 中所有元素之积为1.由于A 中有一个元素的平方等于所有元素的积,第 11 页 共 11 页 设2111x ⎛⎫= ⎪-⎝⎭或211x x -⎛⎫= ⎪⎝⎭,解得0x =(舍去)或2x =或12x =. 此时,2A ∈,1A -∈,12A ∈, 由题意得1111421213m m m m -+-+++=-,整理得3261960m m m -++=, 即()()()621320m m m -+-=,解得12m =-或3或23, 所以,112,2,1,,3,223A ⎧⎫=--⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查集合中元素相关的问题,解题时要结合题中集合A 满足的定义推导出其它的元素,以及结合已知条件列方程求解,同时注意集合中元素满足互异性.。
2021届高一上学期 第一学期10月月考(10月份月考)(word含答案版)

高一上学期第一学期10月月考第Ⅰ卷(选择题共40分)本卷共20小题,每小题2分。
在每小题列出的四个选项中,选出符合题目答案的一项。
可能用到的相对原子质量:Na 23 H 1 O 16 C 121. (2020·福建惠安中学月考)用下图表示的一些物质或概念间的从属关系不正确的是( )2.在①化合反应②分解反应③置换反应④复分解反应四种基本反应类型中,可以生成水的是( )A.只有②③B.只有①④C.只有①②④D.①②③④3.(2020·武汉期末)磁流体是电子材料的新秀,它既具有固体的磁性,又具有液体的流动性。
磁流体的分散质粒子直径在5.5~36nm之间。
下列说法正确的是( )A.所得的分散系属于悬浊液B.该分散系能产生丁达尔效应C.所得的分散系中水是分散质D.将所得分散系过滤,在滤纸上能得到分散质4.下列离子能大量共存的是( )A.使无色酚酞溶液呈红色的溶液中:Na+、K+、SO2-4、CO2-3B.无色透明的溶液中:Cu2+、K+、SO2-4、NO-3C.含有大量Ba(NO3)2的溶液中:Mg2+、NH+4、SO2-4、Cl-D.使紫色石蕊溶液呈红色的溶液中:Na+、K+、CO2-3、NO-35.下列离子方程式正确的是( )A.二氧化碳与足量澄清石灰水反应:CO2+2OH-===CO2-3+H2OB.将稀硫酸滴在铜片上:Cu+2H+===Cu2++H2↑C.碳酸氢钠溶液与稀H2SO4反应:CO2-3+2H+===H2O+CO2↑D.氯化镁溶液与氢氧化钠溶液反应:Mg2++2OH-===Mg(OH)2↓6.对四组无色透明溶液进行离子检验,四位同学各鉴定一组,他们的实验报告的结论如下,其中可能正确的是( )A.MnO-4、K+、S2-、Na+B.Mg2+、NO-3、OH-、Cl-C.K+、H+、Cl-、CO2-3D.Na+、OH-、Cl-、NO-37.按照物质的组成和性质进行分类,HNO3应属于①酸②氧化物③无氧酸④挥发性酸⑤化合物⑥混合物⑦纯净物⑧一元酸A.③④⑤⑦ B.②③④⑤ C.①④⑤⑦⑧ D.②⑤⑥⑦⑧8.下列化学反应中,不.属于氧化还原反应的是A.Cl2+H2O == HCl+HClO B.C +2H2SO4(浓)∆==CO2↑+ 2SO2↑+ 2H2OC.NH4Cl ∆== NH3↑+ HCl↑ D.2Al + Fe2O3高温==== 2Fe + Al2O39. 下列操作过程中一定有氧化还原反应发生的是10. 下列基本反应类型中,一定是氧化还原反应的是A. 复分解反应B.分解反应C.化合反应D. 置换反应11.右图为反应Fe + CuSO4 === Cu + FeSO4中电子转移的关系图,则图中的元素甲、乙分别表示A.Fe,SB.Fe,CuC.Fe,OD.Cu,S12.下列关于分散系的说法正确的是A. 稀硫酸、盐酸、空气和水等都是分散系B. 区分溶液和浊液一般用丁达尔现象C. 分散系中分散质粒子直径由大到小的顺序是:浊液、胶体、溶液D. 按稳定性由弱到强的顺序排列的是溶液、胶体、浊液(以水为分散剂时)13. 某一化学兴趣小组的同学在家中进行实验,按照图示连接好线路,发现图B中的灯泡亮了。
2021-2022学年河北省高一上学期第一次月考(10月)数学模拟试卷及解析

2021-2022学年河北省高一上学期第一次月考(10月)数学模拟试卷(时间120分钟,满分150分)题号一二三四五总分得分一、单选题(本大题共8小题,共40.0分)1.已知集合A={x|(x-4)(x+2)>0},B={x|x2+(1-a)x-a<0,a>0},A∩B中有且只有一个整数解,则a的取值范围是()A. [5,6)B. (5,6]C. [5,6]D. (5,+∞)2.命题“存在实数x,使x>1”的否定是()A. 对任意实数x,都有x>1B. 不存在实数x,使x≤1C. 对任意实数x,都有x≤1D. 存在实数x,使x≤13.函数f(x)=x sinx+cos x+x2,则不等式f(ln x)<f(1)的解集为()A. (0,e)B. (1,e)C.D.4.若{1,a,}={0,a2,a+b},则a2015+b2014的值为()A. 1或-1B. 0C. 1D. -15.有下列四个命题:①(a·b)2=a2·b2;②|a+b|>|a-b|;③|a+b|2=(a+b)2;④若a∥b,则a·b=|a|·|b|.其中真命题的个数是()A. 1B. 2C. 3D. 46.设集合A={4,5,7,9},B={3,4,7,8,9},全集U = A∪B,则集合的真子集共有()A. 3个B. 6个C. 7个D. 8个7.定义集合运算:.设,,则集合的所有元素之和为( )A. 0B. 2C. 3D. 68.设,则是的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件二、多选题(本大题共4小题,共20.0分)9.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k-2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=∅D. M∪N=P10.设a>b,c<0,则下列结论正确的是()A. B. ac<bc C. D. ac2>bc211.下列判断正确的是()A. 0∈∅B. 函数y=a x-1+1(a>0,a≠1)过定点(1,2)C. ∃x∈R,x2+x+3=0D. x<-1是不等式>0成立的充分不必要条件12.若x>0,y>0且满足x+y=xy,则()A. x+y的最小值为4B. x+y的最小值为2C. +的最小值为2+4D. +的最小值为6+4三、单空题(本大题共3小题,共15.0分)13.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②“若a>b,则a+c>b+c”的否命题;③“菱形的对角线垂直”的逆命题;④“若xy=0,则x,y中至少有一个为0”的否命题.其中真命题的序号是______.14.已知集合,,那么集合N ,, .15.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B= .四、多空题(本大题共1小题,共5.0分)16.在直角坐标系xOy中,动点A,B分别在射线和上运动,且△OAB的面积为1.则点A,B的横坐标之积为 (1) ;△OAB周长的最小值是 (2) .五、解答题(本大题共6小题,共70.0分)17.给出三个不等式(1)>;(2)bc>ad;(3)ab>0.以其中任意两个不等式为条件,剩下的一个不等式为结论所构造的命题中,有几个真命题?请写出所有的真命题,并加以证明.18.已知全集U=R,集合A={x∈R|2x-1≤30},集合.(1)求A∩B及(∁R A)∪B;(2)若集合C={x∈R|a≤x<2a,a>0},C⊆B,求实数a的取值范围.19.已知集合A={x|x2-8x+15=0},B={x|x2-ax-b=0},(1)若A∪B={2,3,5},A∩B={3},求a,b的值;(2)若∅⊊B⊊A,求实数a,b的值.20.已知函数y=x+有如下性质:如果常数b>0,那么该函数在(0,]上是减函数,在(,+∞)上是增函数,现已知函数f(x)=.(1)求f(x)在区间[0,1]上的减区间和值域;(2)另设g(x)=x+a,在x∈[0,+∞)上,如果f(x)的图象恒在g(x)的上方,求实数a的取值范围.21.试比较x2+2x与-x-3的大小.22.已知函数(1)写出函数的单调区间;(2)若在恒成立,求实数的取值范围;(3)若函数在上值域是,求实数的取值范围.答案和解析1.【答案】B【解析】解:∵集合A={x|(x-4)(x+2)>0}={x|x<-2或x>4},B={x|x2+(1-a)x-a<0,a>0}={x|-1<x<a},A∩B中有且只有一个整数解,∴5<a≤6.∴a的取值范围是(5,6].故选:B.求出集合A,B,利用A∩B中有且只有一个整数解,能求出a的取值范围.本题考查集合的运算,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】该命题为存在性命题,其否定为“对任意实数x,都有x≤1”.3.【答案】C【解析】【分析】本题主要考查函数的奇偶性的判断,利用导数研究函数的单调性,对数不等式的解法,体现了等价转化的数学思想,属于中档题.首先判断函数为偶函数,利用导数求得函数在(0,+∞)上是增函数,在(-∞,0)上是减函数,所给的不等式等价于-1<ln x<1,解对数不等式求得x的范围,即为所求.【解答】解:∵函数f(x)=x sinx+cos x+x2,满足f(-x)=-x sin(-x)+cos(-x)+(-x)2=x sinx+cos x+x2=f(x),故函数f(x)为偶函数.由于f′(x)=sin x+x cosx-sin x+2x=x(2+cos x),当x>0时,f′(x)>0,故函数在(0,+∞)上是增函数,当x<0时,f′(x)<0,故函数在(-∞,0)上是减函数.不等式f(ln x)<f(1)等价于,即-1<ln x<1,∴<x<e,故选C.4.【答案】D【解析】解:根据集合相同的性质可知,a≠0,∴=0,解得b=0,当b=0时,集合分别为{1,a,0}和{0,a2,a},∴此时有a2=1,解得a=1或a=-1,当a=1时,集合分别为{1,1,0}和{0,1,1},不成立.当a=-1时,集合分别为{1,-1,0}和{0,1,-1},满足条件.∴a=-1,b=0,∴a2015+b2014=(-1)2015+02014=-1,故选:D.根据集合相等的条件求出a,b,然后利用指数幂的运算进行求值即可.本题主要考查集合相等的应用,利用条件建立元素的关系是解决本题的关键,注意进行检验.5.【答案】A【解析】①(a·b)2=|a|2·|b|2·cos2< a,b>≤|a|2·|b|2=a2·b2;②|a+b|与|a-b|大小不确定;③正确;④a∥b,当a,b同向时有a·b=|a|·|b|;当a,b反向时有a·b=-|a|·|b|.故不正确.6.【答案】C【解析】【分析】本题考查集合的子集、真子集的交、并、补集运算.难度较易.【解答】A∪B={3,4,5,7,8,9};A∩B={4,7,9} ;所以={3,5,8}所以其真子集的个数为23-1=7个,故选C.7.【答案】D【解析】试题分析:根据题意,结合题目的新运算法则,可得集合A*B中的元素可能的情况;再由集合元素的互异性,可得集合A*B,进而可得答案解:根据题意,设A={1,2},B={0,2},则集合A*B中的元素可能为:0、2、0、4,又有集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D.考点:元素的互异点评:解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍8.【答案】A【解析】试题分析:由得,或,因为Ü,或,故是的充分不必要条件.考点:充分条件和必要条件.9.【答案】CD【解析】解:P={x|x=3k-2,k∈Z}={……,-14,-11,-8,-5,-2,1,4,7,10,13,16,19,22,……},M={x|x=6k+1,k∈Z}={……,-11,-5,1,7,13,19,……},N={x|x=6k+4,k∈Z}={……,-14,-8,-2,4,10,16,22,……},故M⊊P,N⫋P.M≠N,故A错,M∪N=P,故B错,M∩N=∅,故C对,M∪N=P,故D对,故选:CD.根据题意列举出集合M,N,P,进行判断.本题考查集合的表示方法,集合的运算,属于基础题.10.【答案】BD【解析】解:对于A:令a=1,b=-1,c=-1,显然错误;对于B:∵a>b,c<0,∴ac<bc,故B正确;对于C:令a=1,b=-1,c=-1,显然错误;对于D:a>b,c<0,则c2>0,故ac2>bc2,故D正确;故选:BD.根据特殊值法判断A,C,根据不等式的基本性质判断B,D即可.本题考查了不等式的基本性质,考查特殊值法的应用,是一道基础题.11.【答案】BD【解析】【分析】本题考查了元素与集合的关系,指数函数图像过定点问题,存在量词命题真假的判定以及充分条件的判定,属于基础题.根据空集定义可判断A;由指数函数恒过(0,1),可计算B;由于方程无解,所以不存在实数可以使方程成立,可判断C;求解不等式,由充分、必要条件的定义可判断D.【解答】解:对于A,空集中是没有任何一个元素的,所以A错误;对于B,由指数函数恒过(0,1),可得y=a x-1+1(a>0,a≠1)过(1,2),故B正确;对于C,因为方程中△=1-12<0,故方程无解,所以C错误;对于D,解不等式得:x<0或x>1,由x<-1⇒x<0或x>1,反之由x<0或x>1不能推出x<-1,故x<-1是x<0或x>1的充分不必要条件,故D正确,故选:BD.12.【答案】AD【解析】【试题解析】【分析】本题考查了利用基本不等式求最值,注意运用的条件"一正二定三相等",属于基础题.由x>0,y>0且满足x+y=xy,得+=1,利用“乘1法”利用基本不等式可得x+y的最小值,即判定A,B;将+恒等变形后得到4x+2y,再利用利用“乘1法”结合基本不等式可得最小值,可判定CD.【解答】解:由x>0,y>0且满足x+y=xy,得+=1,∴x+y=(x+y)(+)=2=4,故A正确,B错误,+==4x+2y=(4x+2y)(+)=6++=6+4,故D正确,C错误,故选:AD.13.【答案】①②④【解析】解:①若k>0,则△=4+4k>0,故方程x2+2x-k=0有实数根,故为真命题;②“若a>b,则a+c>b+c”的否命题为“若a≤b,则a+c≤b+c”,为真命题;③“菱形的对角线垂直”的逆命题为“对角线垂直四边形为菱形”,为假命题;④“若xy=0,则x,y中至少有一个为0”的否命题为“若xy≠0,则x,y中均不为0”,为真命题.故答案为:①②④根据一元二次方程根的个数与△的关系,可判断①;写出原命题的否命题,可判断②;写出原命题的逆命题,可判断③;写出原命题的否命题,可判断④本题考查的知识点是四种命题,命题的真假判断与应用,难度中档.14.【答案】N={x|-3≤x≤0或2≤x≤3},{x|0< x<1},{x︱-3≤x<1,或2≤x≤3}【解析】解:∵,,则N={x|-3≤x≤0或2≤x≤3},{x|0< x<1},M∪N={x︱-3≤x<1,或2≤x≤3}.15.【答案】{3,9}【解析】【分析】本题考查集合的交集运算,难度不大,应注意集合的表示须用{ }.根据交集的意义,A∩B是A与B的相同元素组成的集合,分析A、B的元素可得答案.【解答】解:根据交集的意义,A∩B是A与B的相同元素组成的集合,则A={1,3,5,7,9},B={0,3,6,9,12}的共有元素为3,9;则A∩B={3,9}.故答案为{3,9}.16.【答案】【解析】解:∵的斜率k1=,的斜率k2=∴k1•k2=-1,可得OA⊥OB设A(x1,x1),B(x2,-x2)∴|OA|==x1,|OB|==2x2,可得△OAB的面积为S=|OA|×|OB|=×x1×2x2=1解之,得x1x2=∵|AB|2=|OA|2+|OB|2=x12+4x22∴|AB|=≥===2又∵|OA|+|OB|=x1+2x2≥2=2=2=2∴△OAB周长|OA|+|OB|+|AB|≥2+2=2(1+)当且仅当x1=2x2=,即x1=,x2=时,△OAB周长取最小值2(1+)故答案为:,2(1+)根据题意,OA、OB的斜率之积为-1,得OA⊥OB.设A(x1,x1),B(x2,-x2),算出|OA|=x1,|OB|=2x2,结合三角形面积为1列式,化简即得x1x2=.再由基本不等式算出△OAB周长|OA|+|OB|+|AB|≥2+2,当且仅当x1=2x2=时,△OAB周长取最小值2(1+).本题给出互相垂直的射线OA、OB上两点A、B,在已知△OAB的面积为1的情况下,求三角形周长的最小值.着重考查了直线的斜率、两直线的位置关系和用基本不等式求最值等知识,属于中档题.17.【答案】解:给出三个不等式(1)>;(2)bc>ad;(3)ab>0,(2)(3)⇒(1),证明:bc>ad,ab>0,由⇔>;(1)(3)⇒(2),证明:由>⇔,ab>0,则bc-ad>0,故bc>ad;(1)(2)⇒(3),证明:由>⇔,bc>ad,则bc-ad>0,所以ab>0.【解析】本题考查了不等式的性质的应用,基础题.根据题意,得到3个成立的真命题,运用不等式的性质分别证明即可.18.【答案】解:(1)由2x-1≤30=1,解得x≤1,所以A={x|x≤1};由<2x≤4,即2-1<2x≤22,解得-1<x≤2,所以B={x|-1<x≤2};所以A∩B={x|-1<x≤1},∁R A={x|x>1},(∁R A)∪B={x|x>-1};(2)因为C⊆B,且a>0,所以2a≤2,解得a≤1;故所求a的取值范围是:0<a≤1.【解析】本题考查了集合的化简与运算问题,也考查了不等式的解法应用问题,是中档题.(1)化简集合A、B,再计算A∩B和(∁R A)∪B;(2)根据C⊆B列出关于a的不等式,求出解集即可.19.【答案】解:(1)A={3,5};若A∪B={2,3,5},A∩B={3},则:B={2,3};∴;∴a=5,b=-6;(2)若∅⊊B⊊A,则:B={3},或B={5};∴,或;∴,或.【解析】(1)先求出A={3,5},根据交集、并集的定义即可得出a,b;(2)根据∅⊊B⊊A即可得到B={3},或{5},根据韦达定理便可求出a,b.并集与交集的定义,描述法与列举法表示集合,以及空集、真子集的概念.20.【答案】解:(1)设t=2x+1,则x=,则函数f(x)=等价为h(t)===t++6,∵0≤x≤1,∴1≤t≤3,由条件知h(t)在[1,2]上为减函数,在[2,3]上为增函数,即由1≤t≤2,得1≤2x+1≤2,得0≤x≤时,f(x)为减函数,即f(x)的单调递减区间为[0,],当≤x≤1时,f(x)为增函数,即f(x)的单调递增区间为[,1],即h(t)的最小值为h(2)=2+2+6=10,h(1)=1+4+6=11,h(3)=3++6=<11,即函数的最大值为11,则函数的值域为[10,11].(2)若f(x)的图象恒在g(x)的上方,即f(x)>g(x)在[0,+∞)上恒成立,t=2x+1,则x=,则g(x)=x+a,等价为m(t)=+a,当x≥0时,t≥1,则由(1)知f(x)>g(x)等价为m(t)<h(t),即+a<t++6,在[1,+∞)上恒成立,即a<++,当t≥1时,++≥2+=2+,当且仅当=,即t=时取等号,即++的最小值为2+,∴a<2+,即实数a的取值范围是(-∞,2+).【解析】(1)利用换元法结合函数性质进行求解即可.(2)f(x)的图象恒在g(x)的上方,等价为f(x)>g(x)在[0,+∞)上恒成立,利用换元法结合基本不等式的性质进行转化求解即可.本题主要考查函数与方程的应用,利用换元法结合函数性质,以及利用基本不等式进行求最值是解决本题的关键.考查学生的转化能力.21.【答案】解:作差x2+2x-(-x-3)=x2+3x+3=+>0,∴x2+2x>-x-3.【解析】作差配方利用二次函数的单调性即可得出.本题考查了作差配方法、二次函数的单调性,考查了推理能力与计算能力,属于基础题.22.【答案】(1)增区间, 减区间;(2)实数的取值范围为(3)实数的取值范围为【解析】试题分析:(1)由已知函数可化为,根据函数的单调区间,得出所求函数的单调区间;(2)由(1)可知不等式可化为,根据函数在的单调性,可求得函数在上的值域,从而求出所实数的范围;(3)由(1)可知函数的单调区间,可将区间分与两种情况进行讨论,根据函数的单调性及值域,分别建立关于,的方程组,由方程组解的情况,从而求出实数的取值范围.试题解析:(1)增区间, 减区间 2分(2)在上恒成立即在上恒成立易证,函数在上递减,在上递增故当上有故的取值范围为 5分(3)或①当时,在上递增,即即方程有两个不等正实数根方程化为:故得 10分②当时在上递减即(1)-(2)得又, 13分综合①②得实数的取值范围为 14分考点:1.分段函数;2.函数的单调性;3.分类讨论思想.。
2021-2022年高三上学期10月月考数学试卷 含答案

2021年高三上学期10月月考数学试卷 含答案一、填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1、已知函数,则该函数的定义域为__________.2、不等式的解集是 .3、若,则的取值范围是 _________.4、函数在区间[,]上的最小值为m ,最大值为M ,则M+m 的值为___6_______.5、函数)(1)(3R x x x x f ∈++=,若,则__0____.6、已知集合只含有一个元素,则 0 或1 .7、展开式中的系数为_____28_____.8、计算:_______3_2222210n n n n n n n C C C C =++++ . 9、在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 .(结果用分数表示)10、若圆锥的侧面积为,且母线与底面所成的角为,则此圆锥的体积为________.(答案保留)11、若是R 上的减函数, 且的图象过点A(0,3), B(3,-1),则不等式的解集是___________.12、已知函数242(1)()log (1)ax ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间上是减函数,则的取值范围为______________.13、由函数、的图象及直线、所围成的封闭图形的面积是 10 .14、设定义域为的函数()()()⎪⎩⎪⎨⎧=≠+=--11121x ax x f x ,若关于的方程22()(23)()30f x a f x a -++=有五个不同的实数解,则满足题意的的取值范围是___________.二、选择题(本大题满分16分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在答题纸上的相应位置,选对得4分,不选、选错或者选出的代号超过一个,一律得零分.15、下列函数中,与函数相同的函数是( C )(A ). (B ) . (C ) . (D ) .16、已知平面和直线、,且,则“”是“”的( A )(A)充分不必要条件.(B)必要不充分条件. (C)充要条件. (D)既不充分也不必要条件.17、设M 、P 是两个非空集合,定义M 与P 的“差集”为{}P x M x x P M ∉∈=-且|,则等于( B )(A )P . (B ). (C ). (D )M .18、气象意义上从春季进入夏季的标志为:“连续天的日平均温度均不低于”.现有甲、乙、丙三地连续天的日平均温度的记录数据(记录数据都是正整数):①甲地:个数据的中位数为,众数为;②乙地:个数据的中位数为,总体均值为;③丙地:个数据中有一个数据是,总体均值为,总体方差为,则肯定进入夏季的地区有( C )(A)个. (B)个. (C)个. (D)个.三、解答题(本大题满分78分)本大题共有5题,解答下列各题必须写出必要的步骤.19、(本题满分14分) 本题共有2个小题。
2021-2022学年上海市七宝中学高一上学期10月月考数学试题(解析版)

2021-2022学年上海市七宝中学高一上学期10月月考数学试题一、单选题1.下列条件中,使“020x x >⎧⎨-<⎩”成立的充分不必要条件是( )A .01x <<B .02x <<C .03x <<D .11x -<<【答案】A【解析】本题首先可以解不等式020x x >⎧⎨-<⎩,解得02x <<,然后根据充分不必要条件的性质即可得出结果.【详解】不等式020x x >⎧⎨-<⎩,即02x x >⎧⎨<⎩,解得02x <<,因为使“02x <<”成立的充分不必要条件应该满足取值范围小于()0,2, 所以观察四个选项易知,只有A 项的01x <<满足, 故选:A.【点睛】本题考查充分不必要条件的判断,使(),x a b ∈成立的充分不必要条件应该满足取值范围小于(),a b ,考查推理能力,是中档题.2.设a ,b ,c 是互不相等的正数,则下列等式中不恒成立的是( ) A .||||||a b a c b c -≤-+- B .2211a a a a+≥+C .1||2a b a b-+≥- D ≤【答案】C【分析】逐项判断,可得答案. 对于A ,由绝对值三角不等式易得恒成立;对于B ,作差法比较大小,可得B 恒成立;对于C ,对,a b 取一组特殊值,代入可得C 不恒成立;对于D ,作差法证明不等式22≤成立,两端开方,可得D恒成立.【详解】a ,b ,c 是互不相等的正数.对于A ,()()||||||a c b c a c b c a b -+-≥---=-,当且仅当()()0a c b c --≤时,等号成立,故A 恒成立;对于B ,由()22432222(1)11110a a a a a a a a a a a a -++--+⎛⎫+-+==≥ ⎪⎝⎭,得2211a a a a +≥+,故B 恒成立;对于C ,当2,3a b ==,不等式不成立,故C 不恒成立; 对于D ,((222323a a -=++-++2=,又()()()()()()32120,321a a a a a a a a +-++=-<∴+<++,220<-<,22,∴<<D 恒成立. 故选:C .【点睛】本题考查绝对值三角不等式、作差法比较大小和基本不等式,属于中档题. 3.已知0,0a b >>,则“1120182019420182019a b a b+++=”是“11(20182019)()420182019a b a b++=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A【分析】本道题反复运用基本不等式a b +≥,即可.【详解】结合题意可知,1201822018a a +≥,1201922019b b +≥ 而1120182019420182019a b a b+++=,得到112018,201920182019a b a b == 解得1120182019120182019a b a b====,故可以推出结论, 而当()1120182019420182019a b a b ⎛⎫++= ⎪⎝⎭得到1120182019420182019a b a b+++≥,故由结论推不出条件,故为充分不必要条件.【点睛】本道题考查了基本不等式的运用,关键注意a b +≥即可,属于中等难度的题.4.已知函数2()f x ax bx c =++,且a b c >>,0a b c ++=,集合{|()0}A x f x =<,则下列结论中正确的是( ) A .任意x A ∈,都有(3)0f x +> B .任意x A ∈,都有(3)0f x +< C .存在x A ∈,都有(3)0f x += D .存在x A ∈,都有(3)0f x +<【答案】A【分析】由题意可得 0a >,且0c <,122c a -<<-,1x =为()f x 的一个零点,再由根与系数的关系可得,另一零点为c a.可得{|1}cA x x a =<<,31x +>,有(3)0f x +>恒成立,从而得出结论.【详解】解:函数2()f x ax bx c =++,且a b c >>,0a b c ++=,故有0a >,且0c <,02a a c a c ∴<++=+,即2ca>-,且02a c c a c >++=+, 即12c a <-,因此有122c a -<<-, 又(1)0f a b c =++=,故1x =为()f x 的一个零点, 由根与系数的关系可得,另一零点为0c a<,所以有:{|1}cA x x a =<<,所以,331cx a+>+>,所以有(3)0f x +>恒成立, 故选:A .【点睛】本题主要考查二次函数的性质,一元二次方程根的分布与系数的关系,体现了转化的数学思想,属于中档题.二、填空题 5.不等式203x x -<+的解为___________. 【答案】{}|32x x -<<【分析】先将分式不等式转化为整式不等式,再结合二次不等式求解. 【详解】∵203x x -<+,则()()230x x -+< ∴32x -<< 不等式203x x -<+的解为{}|32x x -<< 故答案为:{}|32x x -<<.6.若 0x >,则4x x+的最小值为________________. 【答案】4【分析】利用基本不等式求得最小值.【详解】40,4x x x >+≥=, 当且仅当4,2x x x==时等号成立. 故答案为:47.若α、β是一元二次函数2410x x ++=的两个实数根,则11αβ+=______.【答案】4-【分析】利用韦达定理得出αβ+、αβ的值,然后将代数式通分代值计算即可. 【详解】由韦达定理可得4αβ+=-,1αβ=,因此,11441βααβαβ+-+===-. 故答案为4-.【点睛】本题考查一元二次方程根与系数的关系,考查计算能力,属于基础题. 8.不等式31x x -<-的解集是______; 【答案】()2,+∞【分析】直接利用绝对值不等式的求解展开,即可求得不等式的解集.【详解】不等式24,311313 1.x x x x x x >⎧-<-⇔-<-<-⇔⎨-<-⎩, 解得:2x >,所以不等式的解集为()2,+∞. 故答案为:()2,+∞【点睛】本题考查绝对值不等式的求解,考查运算求解能力,求解时注意答案写成集合或区间的形式.9.关于x 的不等式组10ax x a <⎧⎨-<⎩的解集不是空集,则实数a 的取值范围是_____.【答案】(1,)-+∞【分析】对a 进行分类讨论,解出1ax <的三种情况,再和x a <取公共部分,从而求得实数a 的取值范围.【详解】根据题意,0x a -<的解为x a <, 当0a >时,1ax <的解为1x a<,此时x a <与1x a<显然有公共部分,所以解集不为空集. 当0a =时,1ax <的解为R ,此时x a <与R 显然有公共部分,所以解集不为空集. 当0a <时,1ax <的解为1x a>, 关于x 的不等式组11,,0,,ax x a x a x a ⎧<>⎧⎪⇔⎨⎨-<⎩⎪<⎩的解集不是空集, ∴1a a <,即21a <,解得10a -<<. 综上所述a 的取值范围为(1,)-+∞. 故答案为(1,)-+∞.【点睛】本题考查一元一次不等式组的求解,考查分类论论思想的运用,注意对a 进行分类讨论后,把求得a 的范围进行整合.10.若关于x 的不等式11x x a -++≥的解集为R ,则实数a 的取值范围为______. 【答案】2a ≤【分析】先由绝对值不等式性质得到112-++≥x x ,再由题意,即可得出结果. 【详解】由绝对值不等式的性质可得: 1111112-++=-++≥-++=x x x x x x , 又关于x 的不等式11x x a -++≥的解集为R , 即11x x a -++≥恒成立; 所以只需2a ≤. 故答案为 2a ≤【点睛】本题主要考查由不等式恒成立求参数的问题,熟记绝对值不等式的性质即可,属于常考题型.11.不等式()40x -的解集是___________. 【答案】[)4,+∞【分析】根据不等式特点得到2230x x --≥且40x -≥,解不等式,求出交集即为答案. 【详解】0,且2230x x --≥, 所以40x -≥,由40x -≥解得:4x ≥,由2230x x --≥解得:3x ≥或1x ≤-,综上:4x ≥ 故答案为:[)4,+∞12.方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________. 【答案】()()2,13,4--【分析】()()227132f x x a x a a =-++--,由题意可得()()()001020f f f ⎧>⎪<⎨⎪>⎩,解之即可得出答案.【详解】解:令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<, 所以实数a 的取值范围为()()2,13,4--. 故答案为:()()2,13,4--.13.已知关于x 的不等式2(5)()0mx x m --<的解集为A ,若2A ∈且3A ∉,则实数m 的取值范围为________ 【答案】55[,)(4,9]32【解析】由2A ∈且3A ∉,可得(25)(4)0m m --<且(35)(9)0m m --,解之即可. 【详解】解:2A ∈且3A ∉,(25)(4)0m m ∴--<且(35)(9)0m m --,解得4m >或52m <且593m , 综上,5532m <或49m <, ∴实数m 的取值范围为55,(4,9]32⎡⎫⎪⎢⎣⎭.故答案为:55,(4,9]32⎡⎫⎪⎢⎣⎭.【点睛】本题解答的关键是根据2A ∈且3A ∉得到不等式组(25)(4)0m m --<且(35)(9)0m m --,再解一元二次不等式组;14.若三个关于x 的方程24430x x a +-+=,225(1)04a x a x ++-+=,2210x ax ++=中至少有一个方程有实根,则实数a 的取值范围为___________. 【答案】1(,1][,)4-∞--+∞【解析】结合判别式求出当三个方程都没有实根时的实数a 的取值范围,进而可求出所求答案.【详解】解:若三个方程都没有实根,则()()2222444316405142404440a a a a a a ⎧∆=--+=+<⎪+⎪∆=--⋅=--<⎨⎪∆=-<⎪⎩,解得114a -<<-,所以当至少有一个方程有实根时,1a ≤-或14a ≥-,故答案为: 1(,1][,)4-∞--+∞.【点睛】本题考查了方程的实数解的问题,将至少有一个方程转化为都没有实根再求解是解题的关键.15.不等式()()21430x x x +-+>有多种解法,其中之一是在同一直角坐标系中作出21,43y x y x x =+=-+的图像,然后求解,请类比求解以下问题:设,R,0a b a ∈≠,若对任意0x ≤,都有()210b ax x a ⎛⎫++≤ ⎪⎝⎭,则-a b 的取值范围是___________.【答案】[2,)+∞.【分析】类比图像法,画出11y ax =+和22by x a=+的图像,根据图像列出方程即可. 【详解】类比图像法解不等式,画出11y ax =+和22by x a=+,若对任意0x ≤都有()210b ax x a ⎛⎫++≤ ⎪⎝⎭,则11y ax =+应为增函数,所以两个函数图像应如下图所示:由图像得001a ba a⎧⎪>⎪⎪<⎨⎪⎪-=⎪⎩,解得1ab -=其中0,0a b ><,所以()2a b a b -=+-≥=,当且仅当1a b =-=-时等号成立, 故-a b 的范围为[2,)+∞. 故答案为:[2,)+∞.16.定义区间()[)[](],,,,,,,a b a b a b a b 的长度均为d b a =-,多个区间并集的长度为各区间长度之和,如()[)1,23,5的长度()()21533d =-+-=,设()[]{}f x x x =⋅,其中[]x 表示不超过x 的最大整数,且{}[](),1x x x g x x +==-,若用d 表示不等式()()f x g x ≥的解集区间的长度,则当[]2020,2020x ∈-时,d =___________. 【答案】2022【分析】由所给的定义可得()f x 的解析式,分区间求出不等式()()f x g x ≥的解集,进而求出不等式的解集区间长度.【详解】解:因为[]x 表示不超过x 的最大整数,所以[]01x x ≤-<,即[][]1x x x ≤<+, 又2()[]{}[]([])[][]f x x x x x x x x x ==-=-,所以()()f x g x ≥等价于2[][]1x x x x -≥-,即2([]1)[]1x x x -≥-,①当[]10x ->,即2x ≥时,不等式化为[]1x x ≥+,即[]1x x -≥不成立; ②当[]10x -=,即12x ≤<时,[]()[]211x x x -≥-恒成立;③当[]10x -<,即1x <时,不等式化为[]1x x ≤+恒成立,所以不等式()()f x g x ≥在[]2020,2020x ∈-时的解集为[)2020,2-,所以解集的区间长度2022d =.故答案为:2022.三、解答题 17.解不等式 (1)2332x x ->-(2)1144x x x≤--- 【答案】(1){}1x x <(2)542x x x ⎧⎫>≤⎨⎬⎩⎭或【分析】(1)分32x ≥和32x <两种情况去绝对值符号,解不等式即可; (2)根据分式不等式的解法解不等式即可. 【详解】(1)解:由2332x x ->-, 得322332x x x ⎧≥⎪⎨⎪->-⎩或322332x x x ⎧<⎪⎨⎪-+>-⎩, 解得x ∈∅或1x <,所以不等式的解集为{}1x x <; (2)解:由1144xx x≤---, 得2504x x -≥-, 则()()254040x x x ⎧--≥⎨-≠⎩,解得4x >或52x ≤,所以不等式的解集为542x x x ⎧⎫>≤⎨⎬⎩⎭或.18.记关于x 的不等式1101a x +-<+的解集为P ,不等式23x +<的解集为Q . (1)若3a =,求P ;(2)若P Q Q ⋃=,求正数a 的取值范围. 【答案】(1)(1,3)P =- (2)(]0,1【分析】(1)当3a =时,分式不等式化为301x x -<-,结合分式不等式解法的结论,即可得到解P .(2)由含绝对值不等式的解法,得(5,1)Q =-,并且集合P 是Q 的子集,由此建立不等式关系,即可得到正数a 的取值范围. 【详解】(1)3a =时,1101a x +-<+,即1140x -<+,化简得301x x -<+,即(3)(1)0x x -+<,所以13x , 所以不等式的解集为(1,3)-由此可得(1,3)P =-.(2){}{}{}2332351Q x x x x x x =+<=-<+<=-<<,可得(5,1)Q =-,0a >,110(1,)1a P x a x ⎧⎫+∴=-<=-⎨⎬+⎩⎭,又P Q Q ⋃=,得P Q ⊆, (1,)(5,1)a ∴-⊆-,由此可得01a <≤,即正数a 的取值范围是(]0,1.【点睛】本题给出分式不等式和含有绝对值的不等式,求两个解集并讨论它们的包含关系,着重考查了分式不等式的解法、含有绝对值的不等式的解法和集合包含关系的运算等知识,属于基础题.19.已知关于x 的不等式()24(4)0()kx k x k --->∈R 的解集为A .(1)写出集合A ;(2)若集合A 中恰有9个整数,求实数k 的取值范围. 【答案】(1)见解析;(2)34k -<-或13k -<≤-【解析】(1)就0k =、0k <、02k <<、2k =、2k >分类讨论后可得不等式的解集. (2)根据(1)可得0k <,结合解集中整数解的个数可得24650k kk ⎧+-≤<-⎪⎨⎪<⎩,从而可得k 的解.【详解】(1)若0k =,则原不等式等价于40x -<,故{}4|=<A x x .若0k <,则原不等式等价于24(4)0k x x k +⎛⎫--< ⎪⎝⎭,因为244k k +<,故24|4k A x x k ⎧⎫+=<<⎨⎬⎩⎭. 若02k <<或2k >,则原不等式等价于24(4)0k x x k +⎛⎫--> ⎪⎝⎭,因为244k k+>,故{|4A x x =<或24}k x k +>, 若2k =,则原不等式等价于2(4)0x ->,故{}|4A x x =≠.(2)由(1)可得0k <且24|4k A x x k ⎧⎫+=<<⎨⎬⎩⎭, 因为集合A 中恰有9个整数,故24650k kk ⎧+-≤<-⎪⎨⎪<⎩即225406400k k k k k ⎧++>⎪++≤⎨⎪<⎩解得34k -≤<-或13k -<≤-+【点睛】思路点睛:含参数的不等式的解,注意先考虑二次项系数的正负,再考虑两个的大小关系,结合不等式的方向可得不等式的解集.20.设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【答案】(1)1,2⎛⎫-∞- ⎪⎝⎭ (2)证明见详解(3)(),2∞--【分析】(1)根据题意分析可得()0f x <在R 上恒成立,则根据一元二次不等式在实数集上的恒成立可得20Δ40a b ac <⎧⎨=-<⎩,运算求解; (2)根据题意分析可得c 为奇数,a b +为偶数,分类讨论a b x 、、的奇偶证明; (3)根据二次方程根的分布列式求解.【详解】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立 ∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <- 综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭. (2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <- 则k 的取值范围为(),2∞--.21.已知,,a b c ∈R ,满足a b c >>.(1)求证:1110a b b c c a++>---; (2)现推广:把1c a-的分子改为另一个大于1的正整数p ,使110p a b b c c a ++>---对任意a b c >>恒成立,试写出一个p ,并证明之;(3)现换个角度推广:正整数m n P 、、满足什么条件时,不等式0m n p a b b c c a ++>---对任意a b c >>恒成立,试写出条件并证明之.【答案】(1)见解析(2)4,2p p <=或3:(3【分析】利用分析法,结合综合法,即可证明(1)(2)(3)得解.【详解】(1)由于a b c >>,所以0a b ->,0b c ->,0a c ->, 要证1110a b b c c a++>---, 只需证明111()()0a c a b b c c a-++>---. 左边111[()()]()130b c a b a b b c a b b c c a a b b c --=-+-++=++>-----,证毕. (2)欲使110p a b b c c a++>---,只需11()()0p a c a b b c c a -++>---, 左边11[()()]()24p b c a b a b b c p p a b b c c a a b b c --=-+-++=-++------, 所以只需40p ->即可,即4p <,所以可以取2p =,3代入上面过程即可.(3)欲使0m n p a b b c c a++>---, 只需()()0m n p a c a b b c c a -++>---,左边()()[()()]()m n p m b c n a b a b b c m n p a b b c c a a b b c--=-+-++=+-++-----m n p ++.只需0m n p ++>m ,n ,)p Z +∈.【点睛】本题考查不等式的证明,考查分析法与综合法的运用,考查学生分析解决问题的能力,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确山二高xx ——xx 学年度高一数学 10月份月考试题 2021年高一10月月考数学试题(缺答案) 1. 下列五个写法:①;②;③;④;⑤,其中错误..写法的个数为 ( ) A.1 B.2 C.3 D.4
2.设,若,则实数的取值范围是( )
A. B. C. D.
3.函数的图像关于( )A.轴对称 B.轴对称 C .原点对称 D .对称
4.已知函数是奇函数,当时,,则当时,=( )
A .
B .
C .
D .
5、函数的图像与直线的交点共有( )
A、 个 B、 个 C、个或个 D、可能多于个
6、集合,,若,则的值为( )
A 、0
B 、1
C 、2
D 、4
7、下列四个函数中,在上为增函数的是( )
A. B. C. D.
8、已知函数是R 上的偶函数,且,则下列各式一定成立的是( )
班
级
姓名
考
号
A. B. C. D.
9、已知函数,使函数值为5的的值是( )
A. B.或 C. D.或
10.函数的最大值,最小值分别为( )
A. B. C. D.
11、设,,,则= ( )
A、 B、 C、 D、
12. 设A是整数集的一个非空子集,对于,如果且,那么是A的一个“孤立元”,给定,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有个
A 5
B 6
C 7
D 8
第Ⅱ卷(非选择题共90分)
二、填空题(每小题5分,共20分.)
13、已知函数,若为奇函数,则___.
14、若幂函数的图象过点,则的值为.
15、已知函数,则的解析式为:__
16.已知在定义域上是减函数,且,则的取值范围是 .
三.解答题(本大题共6个小题,共70分)
17.(本小题满分10分)已知集合
x
A<
x
B
x
=
<
≤
=
<
=
<
C
x
x
10
{
|
}.
2|
},
{a
x
4|
8
},
{
(1)求
(2)若,求a的取值范围.
18.(本题满分12分)已知定义域为的函数是奇函数。
(1)求的解析式;(2)用定义证明在上为减函数;
19. (本小题满分12分))已知二次函数f(x)的二次项系数为a<0,方程f(x)+2x=0的两根是1和3,若f(x)+6a=0有两个相等的实根,求f(x)的解析式.
20 (本小题满分12分)已知函数
①当时,求函数的最大值和最小值;
②求实数的取值范围,使在区间上是单调函数
21、(本小题满分12分)已知函数,
(1)利用函数单调性的定义判断函数在区间[2,6]上的单调性;
(2)求函数在区间[2,6]上的最大值和最小值.
22.(本小题满分12分)某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数. (1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能
使每月获得最大利润?每月的最大利润是多少?S:OTh26910 691E 椞25932 654C 敌21382 5386 历TV.9 *Q。