卟啉及铁卟啉的合成方法研究

合集下载

卟啉合成机理

卟啉合成机理

卟啉合成机理卟啉是一种广泛存在于自然界中的生物发色素,它在许多重要的生物作用中发挥着重要作用。

在生物体内,卟啉的合成过程十分复杂,涉及到多种酶的协同作用。

而人工合成卟啉的研究也日趋成熟,其机理也被逐渐揭示。

现代合成卟啉的方法主要有两种:一种是通过有机合成方法,另一种是通过生物合成方法。

无论是哪种方法,卟啉的合成机理都很复杂。

下面我们分别来看一下这两种合成卟啉的方法及其机理:有机合成法此法合成卟啉,主要是通过对合成步骤、反应条件和催化剂等进行优化来提高反应的效率和选择性。

具体方法如下:首先,在有机溶剂中将芳香烃硝化,然后用孟加拉醇还原,得到α,β-二硝基芳香烃。

接着,将α,β-二硝基芳香烃在碱性条件下裂解,生成间位甲酸。

此时,间位甲酸自身与芳香氨基结合,形成卟啉。

从反应机理看,其中一个关键步骤是裂解反应,通过裂解反应来生成间位甲酸,因此选择合适的催化剂及反应条件,对提高反应效率具有重要意义。

生物合成法采用生物合成法合成卟啉,主要是将天然的酵母或其他真菌,以及一些原代细胞培养在适宜的条件下,加入咖啡因等有机化合物后,通过酶的催化作用,使血红素原转变成卟啉。

母细胞中咖啡因及相关有机化合物还可以在生长过程中维持卟啉的产量。

从反应机理看,生物合成法中的酶是起到了至关重要的作用。

青霉素和乳酸菌激酶等多种酶的协同作用,非常关键,保证了反应的正常进行。

总之,卟啉的合成机理是非常复杂的,无论是有机合成法还是生物合成法都需要采用复杂的化学和生物工程技术,以实现合成卟啉的目标。

此外,随着科学技术不断的更新和改进,人工合成卟啉的效率和成本都将得到进一步提高,对卟啉及其衍生物的研究也会进一步深入,为人类发展带来更多的机遇和挑战。

人工合成铁卟啉fe(oep)cl弛豫效应的穆斯堡尔研究

人工合成铁卟啉fe(oep)cl弛豫效应的穆斯堡尔研究

人工合成铁卟啉fe(oep)cl弛豫效应的穆斯
堡尔研究
人工合成铁卟啉Fe(OEP)Cl弛豫效应的穆斯堡尔研究
人工合成的铁卟啉分子(Fe(OEP)Cl)是一种典型的金属有机框
架分子,它具有很强的吸收能力和弛豫效应。

该分子在组装成多孔材
料时,可以应用于分离和催化等领域。

因此,对其分子结构和弛豫效
应的研究已经变得越来越重要。

穆斯堡尔光谱学是一种非常重要的分析手段,已被广泛应用于研
究铁化合物的结构和弛豫效应。

通过穆斯堡尔光谱学的研究,可以获
得化合物的铁离子固有谱线,进而了解铁的电子状态、配位构型和环
境对其弛豫效应的影响。

在研究中,我们利用穆斯堡尔光谱学对人工合成的铁卟啉
Fe(OEP)Cl分子进行了研究。

原始数据表明,该分子具有明显的弛豫效应。

通过分析其质量分数、碘酸钾脱色试验和热重分析等实验方法,
我们进一步确定了其分子结构,在各种条件下对其组装进行了实验,
获得了不同结构的多孔材料,并对其进行了穆斯堡尔光谱的测试。

在实验中,我们观察到了不同的质子位移和超精细分裂,这些分
布表明它们与铁基团中铁离子或相邻原子团之间的相互作用有关。

同时,我们还观察到了比较明显的弛豫效应,这表明铁离子的电子状态、配位构型和环境等因素对其弛豫过程有着显著的影响。

通过我们的实验和研究,我们对人工合成的铁卟啉Fe(OEP)Cl分
子的分子结构和弛豫效应有了更深入的认识,并且能够更加有效地利
用这种分子在材料科学领域中的应用。

我们的研究还可以为构建更具
选择性和活性的多孔材料提供一定的参考价值。

卟啉和金属卟啉配合物的合成及其在传感器中的应用

卟啉和金属卟啉配合物的合成及其在传感器中的应用

卟啉和金属卟啉配合物的合成及其在传感器中的应用姑力米热·吐尔地;阿达来提·阿不都热合曼;阿布力孜·伊米提【摘要】气敏材料是气体(化学)传感器的核心部位,直接影响传感器的稳定性、选择性、灵敏度和响应时间等各种性能。

卟啉与金属卟啉配合物具有优良的气敏性能,目前国内外卟啉与金属卟啉传感器已应用于VOCs的检测。

该文介绍了卟啉及其结构、合成方法、卟啉和金属卟啉配合物的合成及影响因素;卟啉和金属卟啉在传感器中的应用和对挥发性有机气体的检测原理。

%Gas sensitive material is the core part of gas (chemical) sensor; it would directly affects the sensors stability, selectivity, sensitivity and its response time. Porphyrins and metalloporphyrins have excellent gas sensing properties, at present, porphyrins and metalloporphyrins sensors have been applied to detected the VOCs, both in China and abroad.In this paper,has been Introduced the porphyrins and its structure, synthesis method, synthesis of porphyrins and metalloporphyrins complexes and the influencingfactors;metalloporphyrins application in sensors and the detection principle of VOCs.【期刊名称】《化学传感器》【年(卷),期】2014(000)003【总页数】5页(P32-36)【关键词】卟啉;金属卟啉;金属卟啉传感器对VOCs的检测【作者】姑力米热·吐尔地;阿达来提·阿不都热合曼;阿布力孜·伊米提【作者单位】新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046;新疆大学化学化工学院,新疆乌鲁木齐830046【正文语种】中文0 引言卟啉最早是1912年由Ktister首次提出的,其结构为大环的“四吡咯”结构[1]。

卟啉和铁结合

卟啉和铁结合

卟啉和铁结合
卟啉和铁是一种非常特殊的结合。

卟啉是一种含有四个吡咯环的有机分子,常见的卟啉有叶绿素和血红素。

而铁则是一种常见的金属元素,它在生物体内起着很重要的作用。

卟啉和铁可以结合形成卟啉铁。

在卟啉铁中,铁原子与卟啉分子中的四个氮原子配位形成一个四面体结构。

这种结合方式非常紧密,可以让铁原子在生物体内稳定存在,并发挥重要的生理作用。

血红素就是一种卟啉铁复合物,它存在于红血球中,并负责携带氧气。

当血红素与氧气结合时,会形成氧合血红蛋白。

当氧气释放出来时,血红素会变成去氧血红蛋白。

除了血红素外,叶绿素也是一种非常重要的卟啉铁复合物。

它存在于植物和某些藻类中,起着捕光合成作用。

当叶绿素吸收到阳光时,会激发电子从叶绿素分子中传递,最终转化为化学能。

总之,卟啉和铁的结合形成了卟啉铁复合物,这种复合物在生物体内发挥着非常重要的作用。

它们不仅可以携带氧气和参与光合作用,还可以参与许多重要的生化反应。

- 1 -。

卟啉和铁结合

卟啉和铁结合

卟啉和铁结合简介卟啉是一种含有四个呋喃环的有机化合物,具有分子结构简单、化学性质稳定的特点。

它在生物体内广泛存在,是许多生物活性分子的重要组成部分,如叶绿素、血红素等。

而铁元素是地球上非常常见的金属元素之一,也是生命体系中不可或缺的一部分。

本文将详细探讨卟啉和铁结合的相关性以及其在生物体内的重要作用。

卟啉和铁的结合卟啉分子结构中的四个呋喃环可以与金属离子形成稳定的配位化合物。

在生物体内,卟啉和铁离子之间的结合常常发生,形成了卟啉和铁的配合物。

其中最为常见且重要的就是血红素。

血红素的结构和功能血红素是卟啉和铁结合的产物,具有一个铁离子与一个卟啉分子结合而成的结构。

它存在于红血球中的血红蛋白中,是负责携氧和运输氧气的重要分子。

血红素分子中的铁离子可以与氧分子发生相互作用,形成氧血红蛋白。

当氧血红蛋白在肺部接触到充足的氧气时,铁离子会与氧气结合形成氧合血红蛋白,然后通过血液运输到各个组织和细胞中。

而在组织和细胞中,氧合血红蛋白释放出氧气,重新形成还原血红蛋白。

除了携氧和释放氧的功能外,血红素还参与了其他一些重要的生理过程,如光合作用中的光合色素叶绿素也是一种含有卟啉和铁结合的化合物。

血红素合成的调控生物体内血红素的合成受到一系列复杂的调控机制的影响。

其中,铁元素的供应和卟啉的合成是血红素合成的两个关键环节。

铁元素的供应在人体内,铁元素通过肠道吸收后转运到各个组织和细胞中。

血液中的铁离子主要以铁蛋白的形式存储、转运,以确保充足的铁离子供应给合成血红素的过程。

在合成血红素的过程中,铁元素需要与卟啉分子结合形成血红素。

为了维持正常的血红素合成水平,机体需要保持铁离子的供应充足,避免出现铁元素缺乏的情况。

卟啉的合成卟啉的合成是一个复杂的生物合成过程,涉及多个酶的参与。

这些酶的活性和调控能够影响卟啉的合成速率,进而影响血红素的合成。

卟啉的合成过程需要大量的酶反应和能量消耗。

合成血红素的过程受到许多因素的影响,如遗传因素、营养状态等。

金属卟啉化合物的合成和应用

金属卟啉化合物的合成和应用

金属卟啉化合物的合成和应用金属卟啉化合物是一类重要的有机金属化合物,具有广泛的应用领域。

本文将从合成方法、结构特点和应用三个方面进行探讨。

一、合成方法金属卟啉化合物的合成方法主要有两种:直接合成和间接合成。

直接合成是指通过金属离子与卟啉配体直接反应得到金属卟啉化合物。

这种方法操作简单,反应时间短,适用于合成一些常见的金属卟啉化合物。

例如,将金属离子与卟啉配体在溶剂中反应,通过控制反应条件和配体的选择,可以合成出具有不同金属中心和配位结构的金属卟啉化合物。

间接合成是指通过先合成卟啉配体,再与金属离子反应得到金属卟啉化合物。

这种方法适用于合成一些特殊的金属卟啉化合物,例如含有稀有金属的卟啉化合物。

通过设计合成卟啉配体的结构,可以调控金属卟啉化合物的性质和应用。

二、结构特点金属卟啉化合物的结构特点主要体现在两个方面:金属中心和卟啉配体。

金属中心是金属卟啉化合物的核心,其性质直接影响着化合物的性质和应用。

金属中心的选择可以根据需求来确定,常见的金属中心有铁、铜、锌等。

不同金属中心具有不同的电子结构和配位能力,从而影响了金属卟啉化合物的光电性能和催化性能。

卟啉配体是金属卟啉化合物的配位基团,其结构决定了金属卟啉化合物的稳定性和反应性。

卟啉配体通常由四个吡啶环和一个呋喃环组成,通过改变吡啶环的取代基和呋喃环的取代基,可以调控金属卟啉化合物的溶解性、光谱性质和催化活性。

三、应用领域金属卟啉化合物在多个领域具有广泛的应用。

以下列举几个典型的应用领域:1. 光电材料:金属卟啉化合物具有良好的光电性能,可以作为光电转换材料、光敏材料和光催化材料。

例如,某些金属卟啉化合物可以作为太阳能电池的光敏材料,将光能转化为电能。

2. 生物医药:金属卟啉化合物具有抗氧化、抗菌和抗肿瘤等生物活性,可以应用于药物研发和医学诊断。

例如,某些金属卟啉化合物可以作为抗肿瘤药物,用于治疗肿瘤疾病。

3. 催化剂:金属卟啉化合物具有良好的催化活性和选择性,可以用于有机合成反应和环境保护。

卟啉的合成方法

卟啉的合成方法

步骤缺点备注Rothemunde 法以荃类和吡咯为原料,以吡啶和甲醇为溶剂。

在封口的玻璃管中反应,水浴90—95度下反应30个小时。

将反应液降温后过滤,以吡啶洗涤反应管和虑饼,合成虑液,再以百分之五十乙酸萃取两次。

最后将醚液用饱和NAHSO3萃取三次后,水洗至中性反应时间长,反应条件苛刻,且要求反应器密闭,底物浓度较低,后处理非常麻烦,反应收率低Adler-longo 法苯甲醛和新蒸的吡咯在丙酸中回流30min。

冷却至室温后过滤,然后分别用甲醇和热水洗涤滤饼,得到蓝紫色晶体,最后真空干燥。

由于反应条件的限制,一些带敏感基团或对酸敏感的取代苯甲醛不能用作原料,同时带有强吸电基的苯甲醛进行合成时产率特别低,而且由于底物浓度大以及反应的温度高,在反应过程中容易长生大量的焦油,产物不容易纯化。

Lindsey法在室温下采用苯甲醛和吡咯为原料,在氮气保护下,以二氮甲烷为溶剂,三氟化硼乙醚络合物为催化剂,生成卟啉原,然后以二氯二氰基苯醌将四苯基卟啉原氧化得到最终产物四苯基卟啉,收率可达20—30 优点:反应条件温和,不会产生焦油状的副产物,且产率较高,适合合成带有敏感基团或是空间位阻较大的卟啉。

缺点:此反应只能在比较稀的溶液中进行,且反应步骤相对较多。

不仅原料较为昂贵,且反应过程需要无水及无氧操作[2+2]法利用两分子的二吡咯甲烷缩合成卟啉优点:可以方便的合成出各种带有不同取代基的不对称的卟啉,且产率比较高,具有较强的灵活性和区域选择性缺点:合成过程中消耗会比较大且这类反应要在酸性条件下催化进行,而在该条件下容易使得二吡咯甲烷裂解,从而不利于反应的进行。

同时,吡咯也容易进行自身缩合反应,且缩合产物难于分离。

微波激励法将吡咯和苯甲醛附于无机载体硅胶上,利用载体的酸性催化作用,在微波激励下合成四苯基卟啉,反应10min后,直接加入层吸柱进行吸分离,得到四苯基卟啉,收率百分之9.5 以二甲苯为溶剂,对硝基苯甲酸为催化剂,使苯甲醛吡咯在微波炉中反应20min,收率可达到百分之42.。

金属卟啉合成

金属卟啉合成

金属卟啉合成
卟啉是一类重要的有机化合物,作为一种实用的“活性”芳烃基团,它们可用于合成许多有机化合物,包括药物、染料、农药和类似物质。

金属卟啉是以金属元素-钯(Pd)、铂(Pt)等-为中心,以硫酸和芳范卟啉为原料,经过配体、酸性活化和羧基化过程的一类有机-无机复合物,具有较高的活性强度和稳定性,是目前有机合成中最重要的催化剂之一。

金属卟啉是由金属中心和组成卟啉环的两种组分组成的。

金属中心通常是由金属原子(如钯或铂)、配体(如硫酸)、酸性催化剂(如氢氧化钠)和羧基(如烃类)组成。

而卟啉环由一种四芳基卟啉和一种二芳基卟啉组成,其键类型大多为C-C键,形成一个环状结构。

金属卟啉能够实现的合成反应包括烯烃的外延扩展、共价取代、酰基化、氧化及其它多种反应。

在环化反应中,金属卟啉可以实现多种有机化合物的环化,如均聚脱氢、非均聚脱氢、醛环化和酮环化等。

此外,在加成反应中,金属卟啉可以实现不可逆的加成反应,比如烯丙酮合成反应和杂环合成反应,对于多种有机化合物的合成具有重要作用。

金属卟啉的大部分合成反应具有制造低毒、低污染的特点,不需要含氯化合物,是有机化学发展的方向之一。

然而,金属卟啉的合成也存在着一些问题,比如卟啉分子结构较复杂,制备工艺复杂,需要耗费大量的财力和人力,合成时间较长。

总之,金属卟啉是一种重要的有机-无机复合物,具有较高的活
性强度和稳定性。

它可以用于合成许多有机化合物,是有机化学中最重要的催化剂之一,是有机化学发展的方向之一。

尽管金属卟啉的制备工艺复杂,但它仍然具有很多优点,如低毒、低污染、可以实现多种有机化合物的合成等。

因此,对金属卟啉的研究和开发仍有很大的潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Synthesis of p -substituted tetraphenylporphyrins and corresponding ferric complexes with mixed-solvents methodZhicheng SUN 1,Yuanbin SHE (✉)1,Rugang ZHONG 21Institute of Green Chemistry and Fine Chemicals,Beijing University of Technology,Beijing 100124,China 2College of Life Science &Bioengineering,Beijing University of Technology,Beijing 100124,China©Higher Education Press and Springer-Verlag 2009Abstract By using mixed-solvents method,five kinds of p -substituted tetraphenylporphyrin compounds [T(p -R)PPH 2,R =NO 2,Cl,CH 3,OCH 3,OH]were synthesized by the condensation of p -substituted benzaldehyde with pyrrole in mixed solvents (propionic acid,acetic acid and nitrobenzene),and corresponding ferric complexes [T(p -R)PPFe III Cl]were synthesized in dimethylformamide.The above free base porphyrins were obtained in 30%–50%yields,metalation yields were up to 90%and total yields of ferric complexes were 27%–50%.Effects of reactive conditions,solvents and oxidants on yields of free base porphyrins were investigated and the relevant mechanism was discussed.Structures of the above porphyrin complexes were characterized by ultraviolet-visible (UV-Vis),infrared (IR)and far infrared (FIR)spectroscopy.Keywords porphyrin,metalloporphyrin,mixed-solvents,synthesis,characterization1IntroductionSubstituted tetraphenylporphyrin complexes with conju-gated macrocycles have been essential to the study of biomimetic chemistry in recent years [1–5].The porphyrin iron complexes are mostly used for the models of cytochrome P-450in which the dioxygen has been activated by metalloporphyrins under mild conditions [6,7].Based on that,the substituted metalloporphyrins present high catalytic activities and high selectivities in the catalytic oxidation of hydrocarbons without co-reducing reagents.So the catalytic effect of metalloporphyrins on the activity of inert C-H bonds has been given considerable attention [8].However,the yields of substituted tetraphenylporphyrin complexes are lower and the cost of synthesis is still expensive,which have exceedingly restricted their current applications.Herein,the study on ef ficient synthesis methods for improving the yields of metalloporphyrin complexes is obviously necessary.Chemists have developed a few synthetic methods to provide convenient access to synthesize substituent tetraphenylporphyrin complexes [9–11].The prevalent method of synthesis involves a mixed aldehyde condensa-tion with pyrrole via Adler method in re fluxing propionic acid [12].Nevertheless,several limitations remain on the scope of synthetic porphyrin chemistry.One of these is the synthesis of porphyrins with only one solvent, e.g.,propionic acid or dimethylformamide,which brings the problems of a higher boiling point and inconsistent polarity [13].Therefore,the porphyrin complexes are often with low yields and the synthetic method is not universal for porphyrin complexes with various substituents.In this paper,a series of para -substituted tetraphenyl-porphyrin compounds and the ferric complexes [T(p -R)PPFe III Cl]were synthesized by using mixed-solvents method (Scheme 1).Different reaction conditions were investigated and the yields of porphyrin complexes were improved remarkably.This approach proved to be effective for the synthesis of a varity of metalloporphyrins.2Experimental2.1Reagent and instrumentAll chemicals were obtained commercially and used as received unless otherwise noted.Pyrrole was redistilled before use.Dichloromethane was dehydrated.Neutral Al 2O 3was baked at 100°C for 5h.Ultraviolet-visible (UV-Vis)spectra were obtained on HITACHI U-3010.Infrared (IR)spectra were obtained onReceived September 18,2008;accepted November 10,2008E-mail:sheyb@Front.Chem.Eng.China 2009,3(4):457–461DOI 10.1007/s11705-009-0169-6Nicolet A V ATAR-360.Far Infrared (FIR)spectra were recorded on Brucker VERTEX 70.2.2Synthesis of porphyrin and metalloporphyrinSynthesis of T(p -R)PPH 2[e.g.T(p -NO 2)PPH 2].40mL of propionic acid,20mL of nitrobenzene and 20mL of acetic acid were added to a 250mL flask.The mixture was allowed to re flux and was stirred for 30min.To the solution,10mmol of substituted benzaldehyde in 20mL of propionic acid was slowly added.Then 10mmol of freshly distilled pyrrole in 10mL of nitrobenzene was added simultaneously to the flask in 15min.The resulting mixture was heated at re flux for 2h.When the temperature of the flask dropped to 50°C –60°C,30mL of methanol was added to the solution.After that,the solution was filtrated under reduced pressure and afforded the blue-purple power.Puri fication by column chromatography (Al 2O 3,CH 2Cl 2as the eluent)afforded above 30%yield of T(p -R)PPH 2.Synthesis of T(p -R)PPFeCl [e.g.T(p -NO 2)PPFeCl].To the solution of 0.2mmol of T(p -R)PPH 2in 30mL dimethylformamide,2mmol of FeCl 2$4H 2O in three portions over 30min was added.The mixture was re fluxedand the reaction process was monitored by thin-layer chromatography (TLC)whenever possible.When TLC indicated no free base porphyrin the reaction was stopped.The resulting mixture was cooled to 50°C –60°C and 40mL 6mol/L of HCl was added to the solution.The solid in the solution was filtrated and washed with 3mol/L of HCl until the filtrate no longer appeared green.The resulting solid was vacuum-dried and afforded above 90%yield of T(p -R)PPFeCl.The structures of the above porphyrins were characterized by UV-Vis,IR and FIR.3Results and discussion3.1Structure characterization of porphyrins and metalloporphyrinsThe characterization results of T(p -R)PPH 2and T(p -R)PPFeCl are listed in Table 1.In Table 1,When free base porphyrins formed metalloporphyrin complexes through metal ions inserting into the porphyrin ring and bonding four N atoms,the numbers and intensity of the Q band decreased obviously and the soret band showed a slightly red shift from 418toScheme 1Synthesis of para -substituted tetraphenylporphyrin complexes458Front.Chem.Eng.China 2009,3(4):457–461420nm(for example T(p-Cl)PPH2and T(p-Cl)PPFeCl). The reason might be that the structural symmetry with the C4v point group of metalloporphyrin compounds was improved and the gap in the energy level decreased compared with that of free base porphyrins with the D2h point group.Therefore,the UV-Vis spectrum of metallo-porphyrin was different from that of free base porphyrin. IR spectrum clearly showed the different absorption frequencies for functional groups of metalloporphyrin pared with free base porphyrin com-plexes,as the N–H bond stretching frequency located at 3300cm–1of free base porphyrin complexes disappeared,the vibrations of the characteristic functional group Fe-porphyrin rings located at1000cm–1were seen,which indicated the formation of para-substituted tetraphenyl-porphyrin iron complexes.The absorptions located at about360cm–1were axial Fe–Cl bond vibrational frequencies of para-substituted porphyrin complexes[14]. The above results showed that the synthetic complexes were the products,as expected.3.2Effect of reactive conditions on yield of porphyrin and metalloporphyrinThe free base porphyrins were synthesized by using mixed-solvents method and the yields were higher than those from other general methods such as Adler method. The comparison of yields using the two synthetic methods is shown in Table2.From Table2,it can be seen that the synthetic method was improved by mixed-solvents method and the yields of substituted tetraphenylporphyrins were obviously higher (from30.2%to50.1%)than those of Adler method(from 6.1%to17.0%).In Adler method,the propionic acid played a role of catalyst besides being a solvent,but its polarity was unchangeable and the boiling point was higher,which resulted in the impurity of the product and the starting materials being dipyrrins[12].In addition,the oxidant had an important effect on the purity and yield of the product. The reaction intermediate was oxidized by the oxygen in air in Adler method and the oxidation was not absolute so that the yields of substituted tetraphenylporphyrins were lower.The conversion of para-substituted benzaldehyde and pyrrole to free base porphyrin was a multistep process,and slight variations in solvent,temperature and oxidant brought great impact on the yield and purity of the product.By mixing propionic acid,acetic acid and nitrobenzene in different proportions,the dipyrrins were prevented from formation and the reaction time was decreased.Moreover,the reaction produced an intermedi-ate(porphyrinogen)and a byproduct(dihydroporphyrin, TPC)which were usually difficult to oxidize.The structures of porphyrinogen and TPC are shown in Fig.1. The condensation of para-substituted benzaldehyde and pyrrole required an excellent oxidant because the oxidation of porphyrinogen and TPC determined the formation of porphyrins.The efficient synthesis of p-substituted tetraphenylpor-phyrin compounds with mixed-solvents method was not only of universal value for the preparation of symmetrical porphyrin compounds but also for theoretical reasons for the higher yields of porphyrins.By changing the ratio of mixed solvents(propionic acid,acetic acid and nitroben-zene),the acidity(p K a=3.2)of the reaction system was adjusted and the protonation of the reactant was moder-ated.Further,the polarity of mixed solvents could be adjusted to accelerate the formation of porphyrin and was fit for the extract of the product after stilling for severalTable1Data of UV-Vis,IR and FIR of T(p-R)PPH2and T(p-R)PPFeClentry compound l max/(CH2Cl2,nm)IR/cm–1FIR/(νFe–Cl,cm–1) 1T(p-NO2)PPH2424,516,551,594,6042924,1595,1347,966,800–2T(p-Cl)PPH2418,514,549,589,6453315,1559,1348,965,796–3T(p-CH3)PPH2419,516,551,592,6473328,1560,1350,967,798–4T(p-OCH3)PPH2421,518,555,593,6503320,1606,1350,967,805–5T(p-OH)PPH2417,513,551,592,6463427,1606,1350,967,804–6T(p-NO2)PPFeCl422,514,5832925,1595,1346,999,8023687T(p-Cl)PPFeCl420,509,5733133,1593,1335,998,8013598T(p-CH3)PPFeCl418,452,5113022,1494,1338,999,7993609T(p-OCH3)PPFeCl421,509,5712923,1604,1337,997,81035910T(p-OH)PPFeCl418,5033424,1603,1336,998,809336Table2Comparison of synthetic yields between two methodsentry compound ratio of mixedsolvent(V/V)a)yield/(mixedsolvents method,%)yield/(Adlermethod,%)1T(p-NO2)PPH260∶20∶3030.2 6.12T(p-Cl)PPH260∶20∶3050.116.83T(p-CH3)PPH240∶10∶2037.017.04T(p-OCH3)PPH240∶20∶2044.513.75T(p-OH)PPH240∶20∶2035.713.2a)Ratio of mixed solvents represents the mixture ratio of propionic acid,glacialacetic acid and nitrobenzeneZhicheng SUN et al.p-Substituted tetraphenylporphyrins and corresponding ferric complexes459hours.The mixed solvents might increase the solubility of the by-product so as to separate the porphyrin easily.Next,the boiling point of the reaction system might be controlled by mixing different solvents and altering the ratio of solvents.In summary,the yields of porphyrins were improved obviously by using two kinds of organic carboxylic acids as catalyst and nitrobenzene as oxidant.Based on the synthesis of free base porphyrins by mixed-solvents method,the yields of para -substituted metalloporphyrins are shown in Table 3.By using free base porphyrin to synthesize metalloporphyrin,the metal ion was almost absolutely inserted in the porphyrin ring and the yields of products were higher.4ConclusionsFive kinds of para -substituted tetraphenylporphyrin com-pounds and corresponding porphyrin iron complexes were obtained by mixed-solvents method.The experiment results showed that the para -substituted tetraphenylpor-phyrin compounds in mixed solvents formed crystals easily and the yields were higher.By using nitrobenzene as oxidant,the yields of porphyrins were doubled compared with those of the reaction system without nitrobenzene.Therefore,the optimum method for synthesizing metallo-porphyrins involved a two-step process of the synthesis of free base porphyrins and the metalation approach.Acknowledgements This work was supported by the Project of the National Natural Science Foundation of China (Grant Nos.20776003,20576005)and the Key Project of Natural Science Foundation of Beijing (No.2061001).References1.Haber J,Matachowski L,Pamin K,Poltowicz J.The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system.J Mol Catal A Chem,2003,198(1–2):215–2212.Tagliatesta P,Pastorini A.Remarkable selectivity in the cyclopro-panation reactions catalysed by an halogenated iron meso -tetraphenylporphyrin.J Mol Catal A Chem,2003,198(1–2):57–613.Zakharieva O,Trautwein A X,Veeger C.Porphyrin-Fe(III)-hydroperoxide and porphyrin-Fe(III)-peroxide anion as catalytic intermediates in cytochrome P450-catalyzed hydroxylation reac-tions:a molecular orbital study.Biophysical Chemistry,2000,88(1–3):11–344.Davydov R,Makris T M,Kofman V,Werst D E,Sligar S G,Hoffman B M.Hydroxylation of camphor by-reduced oxy-cytochrome P450cam:Mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes.J Am Chem Soc,2001,123(7):1403–14155.Guo C C,Liu Q,Wang X T,Hu H Y.Selective liquid phase oxidation of toluene with air.Applied Catalysis A-General,2005,282(1–2):55–596.Yuan Y,Ji H B,Chen Y X,Han Y,Song X F,She Y B,Zhong R G.Oxidation of cyclohexane to adipic acid using Fe-porphyrin as a biomimetic Process Res Dev,2004,8(3):418–4207.Wang L Z,She Y B,Zhong R G,Ji H B,Zhang Y H,Song X F.A green process for oxidation of p -nitrotoluene Catalyzed by metalloporphyrins under mild Process ResDev,Fig.1Molecular structures of porphyrinogen and TPCTable 3Metalation yield and total yield of para -substituted metallo-porphyrinentry compound metalation yield/%total yield /(two-step,%)1T(p -NO 2)PPFeCl 92.027.82T(p -Cl)PPFeCl 99.549.83T(p -CH 3)PPFeCl 90.433.44T(p -OCH 3)PPFeCl 95.242.35T(p -OH)PPFeCl91.632.7460Front.Chem.Eng.China 2009,3(4):457–4612006,10(4),757–7618.Zhang R,Horner J H,Newcomb serflash photolysisgeneration and kinetic studies of porphyrin-manganese-oxo inter-mediates.Rate constants for oxidations effected by porphyrin-MnⅤ-oxo species and apparent disproportionation equilibrium constants for porphyrin-MnⅣ-oxo species.J Am Chem Soc,2005,127(18): 6573–65829.She Y B,Feng L S,Wang A X,Li X Y.Synthesis of substitutedμ-oxo-bis[tetra-phenyl porphyrinatoiron]compounds from free base porphyrins by a one–pot method.Chin J Chem Eng,2008,16(3): 369–37210.Geier G R,Ciringh Y Z,Li F R,Haynes D M,Lindsey J S.Two-step,one-flask syntheses of meso-substituted porphyrinic Lett,2000,2(12):1745–174811.Sharada D S,Muresan A Z,Muthukumaran K M,Lindsey J S.Direct synthesis of palladium porphyrins from acyldipyrromethanes.J Org Chem,2005,70(9):3500–351012.Adler A D,Longo F R,Shergalis W.Mechanistic investigations ofporphyrin syntheses.I.Preliminary studies on ms-tetraphenylpor-phin.J Am Chem Soc,1964,86(15):3145–314913.Sun Z C,She Y B,Li X Y,Yu Y M,Zhong R G.Synthesis ofTetraphenylporphyrin and its influent factors.Chin J Appl Chem, 2007,24(suppl):584–58614.Kristine P,Thomas G S.Core expansion,ruffling,and domingeffects on metalloporphyrin vibrational frequencies.J Am Chem Soc,1992,114(10):3793–3801Zhicheng SUN et al.p-Substituted tetraphenylporphyrins and corresponding ferric complexes461。

相关文档
最新文档