1.4 二次函数的应用 第二课时
二次函数的图象第二课时教案

二次函数的图象第二课时教案一、教学目标1. 知识与技能:(1)理解二次函数图象的开口方向、对称轴和顶点的概念;(2)学会如何通过二次函数的系数判断开口方向和对称轴的位置;(3)能够熟练运用二次函数的性质解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳二次函数图象的性质;(2)利用数形结合的方法,理解二次函数图象与系数的关系。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点1. 教学重点:(1)二次函数图象的开口方向、对称轴和顶点的判断方法;(2)运用二次函数的性质解决实际问题。
2. 教学难点:(1)开口方向与对称轴的判断;(2)二次函数图象与实际问题的结合。
三、教学过程1. 复习导入:(1)回顾一次函数图象的性质;(2)引导学生思考二次函数图象的特点。
2. 新课讲解:(1)介绍二次函数图象的开口方向、对称轴和顶点的概念;(2)讲解如何通过二次函数的系数判断开口方向和对称轴的位置;(3)举例说明二次函数图象与系数的关系。
3. 课堂练习:(1)让学生绘制几个二次函数的图象,观察开口方向、对称轴和顶点的位置;(2)引导学生分析二次函数图象与系数的关系。
四、课后作业2. 选取几个实际问题,运用二次函数的性质进行解答。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对二次函数图象的理解和运用能力。
关注学生在课堂上的参与度和思维发展,激发学生的学习兴趣。
六、课堂实践1. 案例分析:分析实际问题,将其转化为二次函数形式;利用二次函数的性质,解答实际问题。
2. 分组讨论:学生分组,讨论如何将实际问题转化为二次函数;每组选取一个实际问题,展示解题过程和答案。
七、拓展与延伸1. 探讨二次函数图象在其他领域的应用;引导学生思考二次函数在物理学、经济学等领域的应用;举例说明二次函数在其他领域的实际应用。
2. 课堂小结:强调二次函数图象在实际问题中的应用价值。
数学北师大版九年级下册《二次函数的图象与性质(第二课时)》教学设计

北师大版数学九年级下册第二章第2节《二次函数的图象与性质(第二课时)》教学设计陕西师范大学附属中学马翠一、教材分析二次函数的图象—抛物线是人们最熟悉的曲线之一,生活中的应用非常广泛。
本节课是北师大版数学九年级下册第二章二次函数第2节二次函数的图象与性质的第二课时。
该内容属于《全日制义务教育课程标准(2011版)》中的“数与代数”领域,是在已经学习了二次函数定义、探究了y=±x2图象基础上,进一步探究函数y=ax2与y=ax2+c的图象与性质,既是前面所学知识的延续,又是探究其他二次函数图象的基础,起到了承上启下的作用。
二次函数的核心内容是它的概念和图象特征,本节课开始研究a、c对函数图象的影响,对后期研究一般的二次函数从方法和内容上有着重要的铺垫和打基础作用。
对二次函数图象的研究,充分体现了数形结合思想,通过对图象的研究和分析,可以确定函数本身的性质. 在以前学习的一次函数和反比例函数中都有所体现,结合本节课的内容,可以进一步加强对数形结合思想方法的理解。
从列表、解析式、图象三方面理解函数,分析a,c的影响,反应了研究函数图象的基本方法。
因此,学好本节课,将为今后的数学学习,尤其是函数学习,奠定坚实的基础。
二、学情分析学生的知识技能基础:在此之前,学生已掌握一次函数和反比例函数的图象和性质,并刚刚学习了二次函数的基本概念,能利用描点法画抛物线的图象;对于抛物线的图象形状、开口方向、对称轴、顶点坐标有所了解;能够根据图象认识和理解二次函数的性质。
学生的图形计算器基础:学生通过培训已经初步掌握了HP Prime图形计算器的使用,对图形计算器的运用熟悉,且有浓厚的学习兴趣。
学生活动经验基础:九年级学生逻辑思维从经验型逐步向理论型发展,开始有了数学抽象思维和一定的分析、归纳内能力,具备本节课的认知心理基础。
该阶段的学生几何直观能力也有了很大发展,教学中应深入浅出地引导分析,利用HP Prime图形计算器和几何画板相结合可以使学生更清晰的观察和认识图形,充分理解与归纳。
1.4二次函数的应用第2课时二次函数的应用课件(浙教版)

求解
检验结果是否符合题意 写出答案
所以当x=13时, y最大值=-80×13²+2 080×13-12 240=1 280 (元). 答:当销售价格定为每瓶13元时,所得日均毛利润最大, 最大日均毛利润为1 280元.
五
六
用二次函数解决实际问题的一般步骤
审题,明确数量关系 设出变量
列出函数表达式
或根据几组已知自变量与因变 量的对应值列方程组求出函数
2.还记得如何建立 二次函数模型来解
决实际问题吗?
三 某商场将进价为8元的某小商品按每件10元出售,每天可以售 出140件,该小商品每件涨1元,其销量就会减少10件.求: (1)每天的利润y元与涨价x元之间的函数关系. (2)该小商品每件涨价多少元时,每天的利润最大?
【分析】利润=(每件商品所获利润)×(销售件数)
1.4 二次函数的应用
第2课时 二次函数的应用(2)一会综合运用二次函数和其他数学知识解决有关 距离、最大利润等函数最值问题.
能够利用数学的知识对现实问题进行数学的分 析,即用数学的方式表示问题以及用数学的方 法解决问题.
二
1.求下列二次函数的最大值或最小值:
(1) y=x2-4x+7.
(2) y=-5x2+8x-1.
【分析】如果我们能建立起日均毛利润与销售价之间的函数 关系,那么就可以根据函数的性质来确定所求答案. 如果设售价为每瓶x元时,日均毛利润为y元,根据题意,知 日均销售量为 400-40[(x-12)÷0.5]=1 360-80x, 所以 y=(x-9)(1 360-80x). 这样,问题就化归为求一个二次函数何时到达最大值,最大 值是多少的问题.
y =( 10-8+x )×( 140-10x )
浙教初中数学九上《1.4 二次函数的应用》PPT课件 (3)

解:(1)点 A 的坐标为(12,4
3),OA
的解析式为
y=
3 3x
(2)∵顶点 B 的坐标是(9,12),点 O 的坐标是(0,0),∴设抛物
线的解析式为 y=a(x-9)2+12,把点 O 的坐标代入得:0=a(0
-9)2+12,解得 a=-247,∴抛物线的解析式为 y=-247(x-9)2
5.(4分)出售某种手工艺品,若每个获利x元,一天可售出(8-x)个, 则当x=____元4时,一天出售该种手工艺品的总利润y最大. 6.(15分)一列火车在A城的正北240 km处,以120 km/h的速度驶向A 城.同时,一辆汽车在A城的正东120 km处,以120 km/h速度向正西方向 行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽 车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公 路的交叉口?
解:如图设经过 x 时,火车到达 B 处,汽车到达 C 处,两车距离为 s,则 AB=
240-120x(km),AC=120-120x(km),由勾股定理得 s=
(240-120x)2+(120-120x)2=120 2x2-6x+5=120 2(x-32)2+12,
当 x=32时 s 的最小值为 120 12=60 2.即经过32h,两车之间距离最近,最近距离为
3.(4分)某广场有一喷水池,水从地面喷出,如图,以水平 地面为x轴,出水点为原点,建立平面直角坐标系,水在空中 划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷 出的最大高度是 ( A )
A.4米 B.3米 C.2米 D.1米 4.(4分)将进货单价为80元的商品按90元一个售出时,能卖 出400个,已知这种商品每涨价1元,其销售量就要减少20个, 为了获得最大利润,每个售价应定为 ( A ) A.95元 B.100元 C.105元 D.110元
1.4二次函数的应用(第2课时)(同步课件)-2024-2025学年九年级数学上册同步课堂(浙教版)

1.4 二次函数的应用第2课时 商品销售利润问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会根据销售问题中的数量关系列出二次函数关系式;2.利用列出的二次函数关系式,根据其性质解决商品销售过程中的最大利润问题;3、商品销售类二次函数问题,要注意二次函数自变量的取值范围; 导入新课目前,我国存在大量的商场,是人们平时购物、饮食、游玩等重要的场所;在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.如果你是商场经理,如何定价才能使商场获得最大利润呢?知识点一二次函数的应用——商品销售问题问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.180006000数量关系(1)销售额= 售价×销售量;(2)利润= 销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x y=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.60001.自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.2.涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即定价65元时,最大利润是6250元.降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18x y=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.60001.自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.综合可知,应定价65元时,才能使利润最大.2.降价多少元时,利润最大,是多少?当 时,即定价57.5元时,最大利润是6050元.即:y =-18x 2+60x +6000,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?归纳总结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.典例精析【例1】某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出30-x件,要使利润最大,每件的售价应为( )A.24元B.25元C.28元D.30元【详解】解:设利润为w,由题意可得,w=(x-20)(30-x)=-x2+50x-600=-(x-25)2+25∵-1<0,20≤x≤30,∴当x=25时w最大,故选B;【例2】已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;定价为元才能使利润最大.【详解】解:设每涨价x元,获得的总利润为y元,根据题意得:y=(6--40+x)(300-10x)=(20+x)(300-10x)==-10x2+100x+6000=-10(x-5)2+6250(0≤x≤30)∴当x=5时,y的值最大,此时定价为:60+5=65(元)故答案为:65.练一练1.“爱成都,创文明,迎大运”,卫生环境先着手,为提高工作效率,某清洁工具生产商投产一种新型垃圾夹,每件制造成本为20元,在试销过程中发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+52.(1)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式;(2)当销售单价为多少元时,生产商每月能够获得最大利润?最大利润是多少?【详解】(1)由题意得:w=y(x-20)=(-2x+52)(x-20)=-2x2+92x-1040;(2)w=-2x2+92x-1040=-2(x-23)2+18,∴当销售单价为23元时,每月能获得最大利润,最大利润是18万元;1.2022年北京冬奥会的冰墩墩受广大群众的喜爱,某超市销售冰墩墩饰品,每件成本为40元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x(元)之间满足函数关系式y=-2x+200,若要求销售单价不得低于成本.为了每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少元?( )A.80元,1800元B.70元,2000元C.70元,1800元D.80元,2000元【详解】设每月所获利润为w,由题意可知:w=(x-40)×y=(x-40)(-2x+200)=-2(x-70)2+1800∵抛物线开口向下,∴当x=70时,函数有最大值为1800.故选:C.2.某书店销售某种中考复习资料,若每本可获利x元,一天可售出(100-5x)本,则该书店出售该种中考复习资料的日利润最大为( )A.250元B.500元C.750元D.1000元【详解】解:每本可获利x元,一天可售出(100-x)本,则一天的利润为(100-5x)x=-5x2+100x,设日利润为y,∴y=-5x2+100x=-5(x-10)2+500,∴最大利润为:500元,故选:B.3.某景区旅店有30张床位,每床每天收费10元时,可全部租出,若每床每天收费提高10元,则有2张床位不能租出;若每床每天收费再提高10元,则再有2张床位不能租出;若每次按提高10元的这种方法变化下去,则该旅店每天营业收入最多为( )A.3125元B.3120元C.2950元D.1280元【详解】解:设每床每晚收费提高x个10元,旅店每天营业收入为y元,根据题意得:y=(10+10x)(30-2x)=-20x2+280x+300=-20(x-7)2+1280,∴当x=7时,y最大,最大值为1280元,∴该旅店每天营业收入最多为1280元,故选:D.4.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为150件:销售单价每上涨1元,每天的销售量就减少10件,设销售单价为x(元),每天的销售量为y(件),每天所得的销售利润为w(元).则当销售单价为元时,每天的销售利润最大,最大利润是_______元.【详解】解:由题意,得:涨了(x-25)元,销售量少10(x-25)件,现在的销售量为y=150-10(x-25)=(400-10x)件,W=(x-20)·y=(x-20)(400-10x)=-10x2+600x-8000当x=−ᵄ2ᵄ=30时,W最大,W=(30-20)×(400-300)=1000元.故当销售单价为30元时,每天的销售利润最大,最大利润是1000元.故答案为:30,1000.5.超市销售的某商品进价是10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=-5x+150,则该商品的售价定为元/件时,每天销售该商品的获利最大.【详解】设获利W元,则W=(x-10)·y∴W=(x-10)(-5x+150)=-5x2+200x-1500当x=−ᵄ2ᵄ=20时,W的值最大,∴当x=20时,每天销售该商品的获利最大.故答案为:20.6.2022年,中国航天迈着大步向浩瀚宇宙不断探索.这一年,神舟十四号载人飞船成功发射.某航模专卖店向航天爱好者推出了“神舟十四号”飞船模型.每个模型的进价是80元,原计划按每个120元销售,每月能售出30个,经调查发现,这种模型每个降价1元,则每月销售量将增加2个.(降价为整元)(1)直接写出每月销售量y(个)与每个降价x(元)的函数关系式;(2)设专卖店销售这种模型每月可获利w元,当每个降价多少元时,每月获得的利润最大?最大利润是多少?【详解】(1)根据题意得:y=30+2x;(2)设每个降价x元,根据题意得,w=(120-80-x)(30+2x)=-2x2+50x+1200=-2(x-252)2+30252,当每个降价12或13元时,每月获得的利润最大,最大利润是1512元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.7.水果店新进一种水果,进价为每千克5元,每天的销售量y(kg)与销售单价x(元)之间满足一次函数关系式,其图像如图所示.(1)求y与x之间的函数关系式;(2)水果的销售单价定为多少元时,水果店卖这种水果每天获得的利润最大?最大利润是多少元?【详解】(1)解:设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图像可知:8ᵅ+ᵄ=606ᵅ+ᵄ=100,解得:ᵅ=−20ᵄ=220,∴y与x的函数关系式为y=-20x+220.(2)解:设每天销售这种水果所获的利润为w元,∵y=-20x+220,∴w=(x-5)y=(x-5)(-20x+220)=-20(x-8)2+180,∴当x=8时,w有最大值,最大值为180,∴售价定为8元/件时,每天最大利润为180元.课堂小结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.谢谢~。
《二次函数的应用》(第2课时)示范公开课教学设计【北师大版九年级数学下册】

第二章二次函数2.4二次函数的应用第2课时一、教学目标1.经历计算最大利润问题的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学是应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,增强解决问题的能力.二、教学重点及难点重点:1.探索销售中的最大利润问题.2.能分析并表示实际问题中变量之间的二次函数关系,运用二次函数的相关知识解决实际问题中的最大(小)值,提高解决实际问题的能力.难点:运用二次函数的知识解决实际问题.三、教学用具多媒体课件、直尺或三角板。
四、相关资源《生产服装》动画,,.五、教学过程【情境导入】【情景演示】生成服装,描写工厂生产服装的场景。
服装厂生产某品牌的T恤衫成本是每件10元.根据市场调查,以单价13元批发给经销商,经销商愿意经销5000件,并且表示单价每降价0.1元,愿意多经销500件.请你帮助分析,厂家批发单价是多少时可以获利最多?同学们,你们能解决这个问题吗?这就是我们今天要研究的内容——何时获得最大利润.师生活动:教师出示问题,引出本节课所学内容.设计意图:通过问题情境引出本节课要研究的内容,激发学生的学习兴趣.【探究新知】教师引导学生分析问题中的数量关系,设出未知数,将销售量、销售额、获得的利润用含未知数的式子表示出来,然后利用二次函数模型确定获得的最大利润.设厂家批发单价是x元时可以获利最多,获得的最大利润为y元.那么销售量可表示为1350005000.1x-⎛⎫+⨯⎪⎝⎭件.所以销售额为1350005000.1xx-⎛⎫+⨯⎪⎝⎭;所获利润135000500(10)0.1xy x-⎛⎫=+⨯-⎪⎝⎭.整理,得y=-5000(x-14)(x-10)=-5000(x2-24x+140)=-5000(x-12)2+20000.∵a=-5000<0,∴二次函数有最大值.当x=12时,y最大值=20000.答:厂家批发单价是12元时可以获利最多.设计意图:培养学生把文字语言转化为数学符号的能力.议一议在本章开始“种多少棵橙子树”的问题中,我们得到表示增种橙子树的数量x (棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?师生活动:教师出示问题,学生画出函数的图象并回答问题.解:(1)列表:描点、连线,如下图所示,由图象知,当0≤x≤10时,橙子的总产量随橙子树的增种而增加;当x≥10时,橙子的总产量随橙子树的增种而减少.(2)由图象知,当增种6棵、7棵、8棵、9棵、10棵、11棵、12棵、13棵或14棵时,都可以使橙子的总产量在60400个以上.设计意图:进一步用图象刻画橙子的总产量与增种橙子树之间的关系,并利用图象解决问题.通过运用函数模型让学生体会数学的实际价值,通过建模学会用函数的观点认识问题,解决问题,体会数形结合思想,激发学生的探索精神,并提高学生解决问题的自信心.【典例精析】例某旅馆有客房120间,每间房的日租金为160元时,每天都客满.经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间.不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?旅馆的客房师生活动:教师出示问题,学生小组讨论,师生共同完成解题过程.解:设每间客房的日租金提高10x元,则每天客房出租数会减少6x间.设客房日租金总收入为y元,则y=(160+10x)(120-6x)=-60(x-2)2+19440.∵x≥0,且120-6x>0,∴0≤x<20.当x=2时,y最大=19440.这时每间客房的日租金为160+10×2=180(元).因此,每间客房的日租金提高到180元时,客房总收入最高,最高收入为19440元.设计意图:培养学生分析问题和解决问题的能力.【课堂练习】1.某民俗旅游村为接待游客住宿,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位每天可全部租出,若每张床位每天的收费每提高2元,则相应地每天就减少了10张床位的租出.如果每张床位每天以2元为单位提高收费,为使每天租出的床位少且总租金高,那么每张床位每天最合适的收费是().A.14元B.15元C.16元D.18元2.某产品进货单价为90元,按每个100元售出时,每周能售出500个,如果这种商品的销售单价每上涨1元,其每周的销售量就减少10个,那么为了获得最大利润,其销售单价应定为().A.130元B.120元C.110元D.100元3.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.销售单价为多少元时,半月内获得的利润最大?4.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?5.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月的销售量y(件)与销售单价x(元)之间的关系可近似地看作一次函数:y= -10x+500.(1)设李明每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?师生活动:教师先找几名学生板演,然后讲解出现的问题.参考答案1.C.2.B.3.销售单价为35元时,半月内可以获得最大利润4500元.4.解:(1)因为单价上涨x元后,每件商品的利润是(80+x-60)元,每月售出的件数为(300-10x)件,所以y与x之间的函数关系式为y=(x+20)(300-10x)=-10x2+100x+6 000.(2)将y=-10x2+100x+6 000配方,得y=-10(x-5)2+6250.因为a=-10<0,所以y有最大值.因为300-10x≥0,且x≥0,所以0≤x≤30.所以当x=5时,y有最大值,最大值为6 250.所以当单价定为85元时,每月销售该商品的利润最大,最大利润为6 250元.5.解:(1)由题意,得w=(x-20)·y=(x-20)·(-10x+500)= -10x2+700x-10 000.当x=7003522(10)ba-=-=⨯-时,w有最大值,符合题意,所以当销售单价定为35元时,每月可获得最大利润.(2)由题意,得-10x2+700x-10 000=2 000.解这个方程,得x1=30,x2=40.答:李明想要每月获得2 000元的利润,销售单价应定为30元或40元.设计意图:通过本环节的学习,让学生巩固所学知识.六、课堂小结利用二次函数解决实际问题的一般步骤:(1)根据题意,列出二次函数表达式,注意实际问题中自变量x的取值范围;(2)将二次函数表达式配方为顶点式的形式;(3)根据二次函数的图象及其性质,在自变量的取值范围内求出函数的最值.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:通过小结,使学生梳理本节课所学内容,掌握本节课的核心内容.七、板书设计2.4二次函数的应用(2)1.一般步骤。
浙教版数学九年级上册1.4 二次函数的应用.docx

1.4 二次函数的应用1.已知二次函数y =-(x -3)2+4,当-1≤x ≤4时,该函数(D) A .有最大值,最小值分别是3,0 B .只有最大值是4,无最小值 C .有最小值是-12,最大值是3 D .有最小值是-12,最大值是42.当二次函数y =(x -1)2+(x -3)2的值最小时,x 的值为(B) A .0 B .2 C .3 D .4(第3题)3. 某幢建筑物,从10 m 高的窗口A 用水管向外喷水,喷出的水呈抛物线(抛物线所在平面与墙面垂直,如图).如果抛物线的最高点M 离墙1 m ,离地面403m ,那么水流落地点B 离墙的距离O B 是(B)A . 2 mB . 3 mC . 4 mD . 5 m4. 在距离地面2 m 高的某处将一物体以初速度v 0(m /s )竖直向上抛出,在不计空气阻力的情况下,其上升高度h (m)与抛出时间t (s)满足h =v 0t -12gt 2(其中g 是常数,取10 m /s 2).若v 0=10 m /s ,则该物体在运动过程中最高点距离地面__7__ m .5. 两个正数的和为50,设其中一个为x ,它们的积为y ,则y 关于x 的函数表达式是y =-x 2+50x ,当x =__25__时,y 最大值=625.6.用长为40cm 的铁丝围成一个矩形,则矩形的最大面积可以达到__100__cm 2.7.某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个方案使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?【解】 设矩形的一边长为x (m),面积为S (m 2),则另一边长为12-2x 2=(6-x )m ,∴S =x (6-x )=-x 2+6x . ∵0<2x <12,∴0<x <6.∵S =-x 2+6x =-(x -3)2+9,∴S 有最大值,当x =3时,S 最大=9. ∴设计费最多为9×1000=9000(元).(第8题)8.如图,用长20 m 的竹篱笆,一面靠墙围成一个矩形的园子,怎样围才能使园子面积最大?最大面积是多少?【解】 设AB =x (m),矩形ABCD 的面积为y (m 2),则BC =(20-2x )m ,∴y =x (20-2x )=-2x 2+20x (0<x <10). 当x =-20-4=5时,y 最大,y 最大=-2×52+20×5=50.答:当长BC 为10 m ,宽AB 为5 m 时,园子的面积最大,最大面积为50 m 2.9.已知二次函数y =ax 2+bx +c ,且b 2=ac ,当x =0时,y =-4,则(C) A .y 最大=-4 B .y 最小=-4 C .y 最大=-3 D .y 最小=-3【解】 把x =0,y =-4代入y =ax 2+bx +c ,得c =-4. ∵b 2=ac ,∴b 2=-4a ,∴a =-14b 2<0,即y 有最大值.∴y 最大=4ac -b 24a =4ac -(-4a )4a =4ac +4a4a=c +1=-4+1=-3.(第10题)10. 如图,抛物线y =-x 2+4x +5与x 轴交于A ,B 两点,与y 轴交于点D ,抛物线的顶点为C ,求四边形ABCD 的面积.【解】 令-x 2+4x +5=0, 解得x 1=5,x 2=-1. ∴A(-1,0),B(5,0). 令x =0,则y =5, ∴D(0,5).∵y =-x 2+4x +5=-(x -2)2+9,∴C(2,9). 连结C O .S 四边形ABCD =S △A O D +S △C O D +S △B O C=12×1×5+12×5×2+12×5×9=30.(第11题)11.如图,有一座抛物线形状的拱桥,在正常水位时水面AB 的宽是20m .如果水位上升3m 时,水面CD 的宽为10m .(1)建立如图所示的平面直角坐标系,求此抛物线的函数表达式;(2)现有一辆载有救援物资的货车从甲地出发,要经过此桥开往乙地.已知甲地到此桥的距离为280km(桥长忽略不计),货车以每小时40km 的速度开往乙地.当行驶1h 时,忽然接到紧急通知,前方连降大雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处),当水位达到桥拱最高点O 时,禁止车辆通行.试问:汽车按原来的速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过多少?【解】 (1)设y =ax 2,点B 的纵坐标为k ,则B(10,k ),D(5,k +3),把B ,D 两点的坐标代入y =ax 2,得⎩⎪⎨⎪⎧100a =k ,25a =k +3,解得⎩⎪⎨⎪⎧a =-125,k =-4.∴y =-125x 2.(2)不能安全通过此桥.理由:水位由CD 处涨到点O 的时间为(4-3)÷0.25=4(h), 货车按原来的速度行驶的路程为40×1+40×4=200<280. ∴货车按原来的速度行驶不能安全通过此桥.设货车速度提高到x (km/h),当4x +40×1=280时,x =60. ∴要使货车安全通过此桥,货车的速度应超过60 km/h .(第12题)12.如图,在△ABC 中,∠A =90°,∠C =30°,AB =1.两个动点P ,Q 同时从点A 出发,但点P 沿AC 运动,点Q 沿AB ,BC 运动,两点同时到达点C .(1)点Q 的速度是点P 的速度的多少倍?(2)设A P =x ,△A PQ 的面积为y ,当点Q 在BC 上运动时,用x 表示y ,写出x 的取值范围,并求出y 的最大值.【解】 (1)∵∠A =90°,∠C =30°,AB =1,∴BC =2AB =2,AC =22-12=3. ∴AB +BC AC =33=3.即点Q 的速度是点P 的速度的3倍. (2)过点Q 作QE ⊥AC 于点E . ∵∠C =30°,∴C Q =2QE . ∵AB +B Q =3x ,∴C Q =3-3x . ∴QE =3-3x 2.∴y =12x ×3-3x 2=-34x 2+34x .∵0<3-3x ≤2,∴33≤x <3. ∵y =-34⎝ ⎛⎭⎪⎫x -322+3 316,∴当x =32(属于33≤x <3范围)时, y 有最大值,y 最大=3 316.(第13题)13.如图,某公路隧道横截面为抛物线,其最大高度为6m ,底部宽度OM 为12m .现以点O 为原点,OM 所在直线为x 轴建立平面直角坐标系.(1)直接写出点M 及抛物线顶点P 的坐标; (2)求这条抛物线的函数表达式;(3)若要搭建一个矩形“支撑架”AD -DC -CB ,使点C ,D 在抛物线上,点A ,B 在地面OM 上,则这个“支撑架”总长的最大值是多少?【解】 (1)M (12,0),P (6,6).(2)设抛物线的函数表达式为y =a (x -6)2+6.∵抛物线y =a (x -6)2+6经过点(0,0),∴0=a (0-6)2+6,解得a =-16.∴抛物线的函数表达式为y =-16(x -6)2+6,即y =-16x 2+2x .(3)设A(m ,0),则B(12-m ,0),C(12-m ,-16m 2+2m ),D(m ,-16m 2+2m ).∴AD +DC +CB =(-16m 2+2m )+(12-2m )+(-16m 2+2m )=-13m 2+2m +12=-13(m -3)2+15.∵此二次函数的图象开口向下,∴当m =3时,AD +DC +CB 有最大值,为15m .初中数学试卷。
浙教版初中数学九年级上册 1.4 二次函数的应用 课件

Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
• • 0
(x1,0)
x
(x2,0)
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0 Δ=0 Δ<0
(1)a确定抛物线的开口方向:
2、图象位置与a、b、c、 的 正负关系
y
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
x
0
c>0
c=0
(3)a、b确定对称轴
c<0
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
(1)a确定抛物线的开口方向:
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
3、二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点 ,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有 交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方 程ax2+bx+c=0的根.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本课结束
12.不论自变量 x 取什么实数,二次函数 y=2x2-6x+m 的函数值总是正值, 则 m 的取值范围是 .
13.某公司批发一种服装,进价 120 元/件,批发价 200 元/件,公司对大量购 买有优惠政策,凡是一次性购买 20 件以上的,每多买一件,批发价降低 1 元.设 顾客购买 x(件)时公司的利润为 y(元). (1)当一次性购买 x 件(x>20)时, ①批发价为 元/件;
8.(2017· 黄石)小明同学在一次社会实践活动中,通过对某种蔬菜在 1 月份至 7 月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价 P(单位:元/千克)与时间 x(单位:月份)满足关系: P=9- x;②该蔬菜的平均成本 y(单位:元/千克)与时间 x(单位:月份)满足二次函数关 系 y=ax2+bx+10,已知 4 月份的平均成本为 2 元/千克,6 月份的平均成本为 1 元/千克. (1)求该二次函数的解析式; (2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润 L(单位:元/ 千克)最大?最大平均利润是多少?(注:平均利润=销售价-平均成本)
2.如图所示,小强在今年的校运会跳远比赛中跳出了满意的一跳,函数 h= 3.5t-4.9t2(t 的单位:s,h 的单位:m)可以描述他跳跃时重心高度的变化,则他 起跳后到重心最高时所用的时间是( D A.0.71 s B.0.70 s ) C.0.63 s D.0.36 s
3.某拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关 1 2 系式为 y=-25x ,当水面离桥拱顶的高度 DO 是 4 m 时,这时水面宽度 AB 为 ( C ) A.-20 m B.10 m C.20 m D. -10 m
10.图 2 是图 1 中拱形大桥的示意图,桥拱与桥面的交点为 O,B,以点 O 为 原点,水平直线 OB 为 x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物 1 线 y=-400(x-80)2+16, 桥拱与桥墩 AC 的交点 C 恰好在水面, 有 AC⊥x 轴. 若 OA=10 米,则桥面离水面的高度 C 为( B )
第 1章
二次函数 1.4
第2课时
二次函数的应用
利用二次函数解决距离和利润问题
目标1 掌握一类题型—最短距离问题
目标2 掌握一类题型—最大产值和最大利润问题
目标3 会运用二次函数解决简单抛物线型问题
1.一小球被抛出后,距离地面的高度 h(米)和飞行时间 t(秒)满足函数关系式 h =-5(t-1)2+6,则小球距离地面的最大高度是( C ) A.1 米 B.5 米 C.6 米 D.7 米
9 A.1640米
17 B. 4 米
7 C.1640米
15 D. 4 米
11.(2017· 宿迁)如图,在 Rt△ ABC 中,∠C=90° ,AC=6 cm,BC=2 cm,点 P 在边 AC 上,从点 A 向点 C 移动,点 Q 在边 CB 上,从点 C 向点 B 移动.若点 P, Q 均以 1 cm/s 的速度同时出发, 且当一点移动到终点时, 另一点也随之停止, 连接 PQ,则线段 PQ 的最小值是 .
.
7.如图所示,抛物线 y=a(x-1)2+4 与 x 轴交于点 A,B,与 y 轴交于点 C, 过点 C 作 CD∥x 轴交抛物线的对称轴于点 D,连接 BD,已知点 A 的坐标为(- 1,0). (1)试求 a 的值; (2)求四边形 COBD 的面积.
解:(1)∵抛物线 y=a(x-1)2+4 与 x 轴交于点 A(-1,0),∴a(-1-1)2+4= 0,解得:a=-1; (2)由(1)知:a=-1,∴抛物线的解析式为:y=-(x-1)2+4,令 x=0, 则 y=-(0-1)2+4=3,∴C(0,3),故 OC=3, ∵CD∥x 轴交抛物线的对称轴于点 D,且对称轴为直线 x=1, ∴CD=1,∵A 的坐标为(-1,0),∴B(3,0),∴OB=3, 1 1 ∴四边形 COBD 的面积= (CD+OB)· OC= (1+3)× 3=6. 2 2
②求 y(元)与 x(件)之间的函数表达式. 利润 求 a 在什么范围内才能保证公司每次卖的越多, (2)设批发价为 a 元/件, 也越多.
解:(1)①220-x;②y=(220-x-120)x=-x2+100x; (3)∵y=-x2+100x=-(x-50)2+2500,∵抛物线的开口向下, ∴x=50 时,y 有最大值,在对称轴 x=50 的左侧,y 随 x 的增大而增大, ∴200-(50-20)=170,∴170≤a≤200 时,每次卖的越多,利润也越多.
28 解:(1)根据题意,若 7.5x=70,得:x= >4,不符合题意; 3 ∴5x+10=70,解得:x=12,答:工人甲第 12 天生产的产品数量为 70 件;
(2)由函数图象知,当 0≤x≤4 时,P=40,当 4<x≤14 时,设 P=kx+b, k=1, 将(4,40)、(14,50)代入,得: 解得: ∴P=x+36; 14k+b=50, b=36, 4k+b=40, ① 当 0≤x≤4 时,W=(60-40)7.5x=150x,∵W 随 x 的增大而增大, ∴当 x=4 时,W 最大=600 元;②当 4<x≤14 时,W=(60-x-36)(5x+10)=-5x2 +110x+240=-5(x-11)2+845,∴当 x=11 时,W 最大=845,∵845>600, ∴当 x=11 时,W 取得最大值,845 元, 答:第 11 天时,利润最大,最大利润是 845 元.
4.便民商店经营一种商品,在销售过程中,发现一周利润 y(元)与每件销售价 x(元)之间的关系满足 y=-2x2+80x+758,由于某种原因,价格只能 15≤x≤22, 那么一周可获得最少利润是(
B)
A.758 B.1558 C.1550 D.1508
5.某种商品每件进价为 20 元, 调查表明: 在某段时间内若以每件 x 元(20≤x≤30, 且 x 为整数)出售,可卖出(30-x)件.若使利润最大,每件的售价应为 25 1 6.当-7≤x≤a 时,二次函数 y=-2(x+3)2+5 恰好有最大值 3,则 a= -5 元.
解:(1)将 x=4、y=2 和 x=6、y=1 代入 y=ax2+bx+10, 1 a= , 16a+4b+10=2, 4 得: 解得: 36a+6b+10=1, b=-3, 1 2 ∴y= x -3x+10; 4
1 2 1 (2)根据题意,知 L=P-y=9-x-( x -3x+10)=- (x-4)2+3,∴当 x= 4 4 4 时,L 取得最大值,最大值为 3. 答:4 月份的平均利润 L 最大,最大平均利润是 3 元/千克.
14.(2017· 达州)宏兴企业接到一批产品的生产任务,按要求必须在 14 天内完 成.已知每件产品的出厂价为 60 元.工人甲第 x 天生产的产品数量为 y 件,y 与 x 7.5x(0≤x≤4), 满足如下关系:y= 5x+10(4≤x≤14). (1)工人甲第几天生产的产品数量为 70 件? (2)设第 x 天生产的产品成本为 P 元/件, P 与 x 的函数图象如图.工人甲第 x 天 创造的利润为 W 元,求 W 与 x 的函数关系式,并求出第几天时,利润最大,最 大利润是多少?
9.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季 节性产品的企业,其一年中获得的利润 y 和月份 n 之间函数关系式为 y=-n2+ 14n-24,则该企业一年中应停产的月份是( A.1 月、2 月、3 月 C.1 月、2 月、12 月
C) B.2 月、3 月、4 月
D.1 月、11 月、12 月