聚丙烯增韧改性的方法及机理
聚丙烯化学改性方法

聚丙烯化学改性方法
聚丙烯化学改性是一种通过化学方法,使聚丙烯改性,其性能大幅改变的工艺。
改性后的聚丙烯具有更优异的力学性能,耐热性和耐化学性,并可以提高材料的分散稳定性、外观质量和耐候性等,在21世纪以来,聚丙烯改性受到越来越多的关注。
1、聚丙烯改性原理
聚丙烯是一种特殊的增韧塑料,改性原理是为了改变原材料的力学性能而引入有机活性基团。
当把有机活性基团嵌入聚丙烯链条中后,能使聚丙烯的玻璃转变温度,拉伸率,弯曲弹性模量和动态力学特性,耐化学性能以及热稳定性得到极大改善。
2、聚丙烯改性方法
(1)物化改性。
物化改性通常将无机物引入聚丙烯材料,进而改善其力学性能和
动态力学特性。
目前常用的物化改性方法有热变形、拉伸处理和磷化、氯化等。
3、聚丙烯改性应用
由于聚丙烯改性材料具有更加优异的力学和高温性能,因此它得到了广泛的应用。
如用来改性汽车部件,能使汽车耐磨性提高,使汽车更耐久;也可以用来生产建筑材料,使墙壁更耐火,更不易发霉;还可以用来生产电线电缆,使电缆更耐火、抗拉性更加优异。
同时,改性的聚丙烯还可以用于工业制品的生产,比如汽车零件、电子元器件等,而且具有耐泡和耐开裂性能。
总之,聚丙烯改性手段多样、性能优异,它的应用非常广泛,可以改变很多建筑、工业制品、汽车零部件等材料的物理性能,使其具备更优异的力学性能,耐热性和耐化学性能,有助于提高现代工业产品的性能和使用寿命,是可持续发展的重要手段。
PP增韧改性研究

一 PP增韧改性配方及成本
树 脂:PP(T30S) 增 韧 剂:POE(8200) 填 料:碳酸钙 抗 氧 剂:抗氧剂1010 100 20 12 1.3
பைடு நூலகம்
树脂:
PP(T30S)
成本大约为:12150元/t 厂家:南京春开塑胶制品有限公司
增韧剂: POE(8200) 成本大约为:17100元/t
填料:
碳酸钙 成本大约为:560元 /t 厂家:萍乡市赣碱龙轻质碳酸钙有限公司
抗氧化剂:
抗氧剂1010 成本大约为:44800元/t 厂家:上海惠今化工贸易有限公司
参考配方报价表
品种 PP(T30s)
POE (8200) 碳酸钙 抗氧剂 1010 总计
加入量 100
20
单价 本次估价 12150元/t 9113元
四 . 结束语
POE具有较小的内聚能,较高的剪切敏感性, 加工时与聚丙烯的相容性好,其表观切变粘度对温 度的依赖性与PP接近,对PP增韧效果显著。另外 POE在原料采集方面的优势,使其成为近年来比 EPDM、SBS、BR等更具发展潜力的增韧剂。 近年来,PP的增韧改性,已成为其工程化的重 要手段。PP的原材料优势,使其在塑料的开发与应 用中,始终占有相当重要的地位。可见,未来的PP 改性材料,将会得到更加广泛的应用。
厂家:上海千峰化工有限公司
POE与PP的相容性非常好,增韧效果尤其是 低温增韧效果十分明显,优于EPDM,且弯 曲模量和拉伸强度下降幅度小。POE在PP 中加入量超过15%时,增韧效果迅速提高。 POE中长支链的引入大大提高了其在PP母 体中的分散性,从而具有有利于冲击韧性的 理想形态和黏弹性。与其他弹性体相比,较 少的POE就可以使PP获得高的低温冲击强 度,减少了加入弹性体而引起的刚性和强度 的损失。
EPDM增韧聚丙烯及其脆韧转变机理的研究

变温度随着 EPDM 含量的增加而降低 。
图 3 EPDM 含量与脆韧转变温度关系图
2. 4 EPDM 含量对共聚混拉伸强度的影响 由图 4 可知 ,聚丙烯/ EPDM 共混物的拉伸强
度随着 EPDM 含量的增加而逐渐减小 。
混料用转矩流变仪。先清理好料仓 ,开启电 源 ,调节好温度。将原料放入仓中 ,保持转速为 40 r/ min ,混料时间为 8 min ,8 min 后将混好的聚丙烯 / EPDM 共混物取出 ,清理料仓 ,进行下次混料。 1. 3. 2 压片
系用平板硫化机 ,先调节控温仪 ,使压片机的 上下板保持在 185 ℃,将混好的聚丙烯/ EPDM 共 混物放入模板中 ,将模板放入硫化机预热 4 min , 加压 4 min ,压力控制在 ( 10 ±1) MPa 范围内 , 4
锯成 63 mm ×11. 5 mm ×3. 3 mm 大小的样条。将
锯好的样条整理干净 ,去除两边的毛刺。在缺口制
样机上制成 V 型[ (45 ±1) ℃,R 为 (25 ±0. 05) ]缺
口的样条。缺口深度为 2. 5 mm 左右。用游标卡
尺测量每一个样条缺口处的宽度和厚度 。
⒈4 样品性能测试
Study on PP toughened by EPDM and the mechsnism of brittle2tough transition
L I Hai2dong1 ,2 ,CHEN G Feng2mei1 ,WAN G Yu2ming1 ,BA I Fu2chen2 ,ZHAO Xiao2wei3 ( 1. College of Chem ical Engi neeni ng , Changchu n U ni versity of Technology , Chan gchu n 130012 , Chi na ;2. Changchu n I nstit ute of A pplied Chem ist ry , Chi nese A cadem y of Sciences , Changchu n 130022 , Chi na ; 3. Pestici de chem icals Co. L t d . , Jili n Chem ical Grou p Corporation , Pet roChi na , Jili n 132021 ,
PP材料增强增韧改性研究进展

PP材料增强增韧改性研究进展PP材料是一种具有广泛应用前景的塑料材料,具有物理化学性质稳定、机械性能优良、加工性好等优点。
然而,PP材料的缺点是比较容易破裂、硬度低,抗冲击性较差,不适用于承受大力的场合。
为了从根本上解决这些问题,研究人员开展了PP材料增强增韧改性方面的研究,在增强改性方面取得了较大进展。
本文将从PP材料的增强增韧改性入手,对研究进展进行浅谈。
一、PP材料增韧方法1、增加韧性剂增加韧性剂是增加PP材料韧性的一种常见方法。
其中,硅橡胶、聚烯烃弹性体、碳纤维和玻璃纤维等都是常见的韧性剂。
硅橡胶和聚烯烃弹性体具有良好的弹性和韧性,能够有效提高PP材料的抗冲击性;碳纤维和玻璃纤维具有高强度和高模量特点,能够增加PP材料的强度和硬度。
2、添加增强剂添加增强剂是增加PP材料强度的一种方法。
其中,玻璃纤维、碳纤维等都是常见的增强剂。
这些增强剂的加入能够有效提高PP材料的抗拉强度、抗压强度等力学性能。
3、融合增韧融合增韧是将增韧和增强两种材料融合在一起,使得两种材料共同发挥作用的一种方法。
例如,将玻璃纤维和聚烯烃弹性体融合在一起形成复合材料,可以同时增加PP材料的强度和韧性。
二、PP材料增强改性技术1、制备纳米复合材料纳米复合材料是由纳米材料和基体材料组成的复合材料。
将纳米材料与PP材料复合,可以有效提高PP材料的机械性能、电学性能等。
例如,将纳米SiO2与PP材料复合可以提高PP材料的硬度和强度。
2、离子掺杂离子掺杂是将离子直接掺入PP材料中,从而使其具有特殊的化学和物理性质的一种方法。
通过离子掺杂,可以改变PP材料的分子结构和表面性质,提高其化学稳定性、抗热性等性能。
3、化学改性化学改性是通过化学反应改变PP材料的结构,从而提高其性能的一种方法。
例如,将PP材料与氧气进行氧化反应,可以提高其耐热性和抗氧化性能,使其能够适用于高温环境下使用。
三、未来研究方向虽然目前在PP材料增强增韧改性方面已经取得了较大进展,但仍存在一些问题需要进一步研究。
聚丙烯增韧改性研究进展

( Co l l e g e o f Po l y me t Sc i e nc e a nd Eng m e er l ng ’
Si c hua n U ni ve r s i t y , Ch e n g d u, S i c h u a n, 6 1 0 0 6 5 ) Abs t r a c t : The n ov e l a nd e f f e c t i v e t o ug he n i ng m o d i f i c a t i ons of po l y pr o py l e ne i n r e c e n t ye a r s a r e s y s t e ma t i c a l l y r e v i e we d . Di f f e r e nt t ou gh e ni ng s y s t e ms ha v e b e e n s u mma r i z e d f r om f o ur a s p e c t s s uc h a s t he c r y s t a l m o r ph ol o gy, t h e c r y s t a l s t r uc t ur e,t he wa y o f e x t e r — na l f o r c e d i s s i p a t i o n a nd t he a mor ph ou s s t r u c t ur e . Ba s e d o n t he c l a s s i c a l t o u ghe ni n g me c ha ni s m s,t he i n t e r na l me c ha n i s ms o f t he s e f o ur t o ug he n i n g m e t ho ds ha v e b e e n de e pl y i n v e s t i g a t e d a nd a na l y z e d. I t i s e mp ha s i z e d t ha t t he e nh a nc e me nt o f t he di s s i pa t i o n o f e x — t e r n a l f o r c e i n t h e m a t r i x i s t he ke y p oi nt o f t ou gh e ni n g po l yp r o p yl e ne, o n wh i c h f ur t he r r e s e a r c h pr o s p e c t s a r e a l s o p r op os e d . Ke y wo r d s: i s o t a c t i c po l yp r op y 1 e ne; i mp a c t t ou g hne s s; c r y s t a l s t r uc t u r e; e l a s t o me r
pp的增韧改性-成型加工实验设计

实验设计方案一:PP的改性
一.实验目的
1.学习和掌握双螺杆挤出机的操作。
2.了解PP的共混增韧方法
二.实验原理
聚丙烯是由丙烯单体聚合而得到的热塑性加聚物,具有优良的抗冲击性、耐化学药品性、透明性、电绝缘性及加工性等性能,但是其均聚物的低温性能和耐老化性能较差,成型收缩率大,共混改性可以作为提高聚丙烯力学性能和扩大其应用的一条比较实用的途径。
利用橡胶类聚合物进行聚丙烯改性,在韧性提高的同时也可以使刚性降低、脆性增大。
采用EVA(乙烯-醋酸乙烯共聚物)改性填充聚丙烯,其共混物能够有效提高冲击性能、断裂伸长率和熔体流动速率,制品表面光泽也有所提高。
改性聚丙烯采用EVAD的VAc(乙酸乙烯)含量为14%~18%,此时EVA 为极性较低的非晶性材料,加入聚丙烯共混体系后有明显的增韧作用。
随着EVA 用量的增加,其缺口冲击性强度也提高,断裂伸长率显著增大,而弯曲强度、拉伸强度、热变形温度有所下降。
EVA的加入使共混体系中各组分的均匀分散达到较好的分散效果。
采用EVA改性聚丙烯较EPDM、SBS等改性剂的成本低。
华北工学院用EVA-15对聚丙烯增韧,使材料韧性最高值比纯聚丙烯提高12倍,而成本低于聚丙烯与弹性体或橡胶的改性材料。
调节共混物比例及加工工艺条件可制得具有不同性能特点的共混材料。
PP的加入也可以改善PP的韧性,并提高低温落球冲击强度。
PP与高密度聚乙烯共混,可改善PP的拉伸性能和韧性。
三.实验设备和原料
1.主要设备:双螺杆挤出机
2.PP/EVA/LDPE增韧体系配方:。
核壳分散相增强增韧聚丙烯机理浅析

中 图 分 类 号 : TQ325.1+4
文献标识码:A DOI:10.3969/ji.ssn.1001-9731.2019.07.006
0 引 言
聚丙烯(PP)是5 大 通 用 塑 料 之 一,用 量 仅 次 于 聚 乙烯(PE)且 需 求 持 续 增 长 。 [1] 聚 丙 烯 具 有 丙 烯 原 料 易 得 、轻 质 价 廉 、无 毒 、力 学 性 能 优 异 、加 工 性 能 好 等 优 点,因此广泛的 应 用 于 家 电、汽 车、包 装 等 行 业。 但 是 聚丙烯也有显 著 的 缺 点———低 温 韧 性 较 差,这 极 大 的 限制了其应用。 为 了 提 高 聚 丙 烯 的 适 用 范 围,需 要 对 聚丙烯进行增韧改性。
而在研究共聚合成的抗冲共聚聚丙烯 (IPC)结构-
形态-性能关系时,研究者发现IPC 基体 中 存在 核壳结 构分散相,其优 异 的 力 学 性 能 正 是 源 于 其 独 特 的 核 壳 结构分散相 。 [12-13] 因 此,本 文 采 用 便 捷 经 济 高 效 的 熔 融共混法,将 PP、POE 和 PE 3 种 聚 合 物 共 混 来 构 建 类似的核壳 结 构 分 散 相,实 现 制 备 强 韧 平 衡 的 PP 材 料 ,并 研 究 核 壳 分 散 相 增 韧 机 理 。
1 实 验
1.1 主 要 原 料 PP:T300S,上海石化有限公司。聚 乙 烯辛 烯共聚
聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。
1 无规共聚改性采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。
共聚物中乙烯的质量分数一般为1%~7%。
乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。
与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。
无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。
其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用2 嵌段共聚改性乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。
美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。
(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。
(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。
共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。
目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。
通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。
(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。
其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品3 接枝共聚改性PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚丙烯增韧改性的方法及机理
聚丙烯增韧改性的方法及机理
PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。
1 无规共聚改性
采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。
共聚物中乙烯的质量分数一般为1%~7%。
乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。
与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。
无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。
其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用
2 嵌段共聚改性
乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。
美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。
(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。
(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。
共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。
目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。
通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。
(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。
其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品
3 接枝共聚改性
PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。
在PP分子链上接枝弹性链段有助于提高PP的冲击强度和低温性能。
接枝共聚的方法有溶液接枝、悬浮接枝、熔融接枝和固相接枝。
PP接枝共聚物经常用作PP与其它聚合物或无机填料之间的增容剂。
单独用作PP增韧剂的例子也有报道,如Xu Gang等通过紫外线照射得到了高接枝率的PP一丙烯酰亚胺接枝共聚物,发现它对PP有很好的增韧效果。
单独用做塑料的例子几乎没有
4 改变立体结构
工业上所用的PP通常都是等规立构PP。
近年来采用间规选择性茂金属催化剂合成了间规立构PP。
与等规立构PP相比,间规立构PP具有较低的结晶度和弯曲强度、较高的熔体粘度和弯曲弹性模量、良好的透明性和热密封性、优异的抗冲击性和压延性等。
另外选用对称性好的单点茂金属催化剂可以合成具有良好弹性的高相对分子质量的无规立构PP和无规一等规立体嵌段的弹性PP。
特别是后者,由于等规链段的物理交联作用,使之具有良好的弹性和力学性能,属于一种新型的热塑性弹性体。
5 橡一塑共混改性
在PP中加橡胶或热塑性弹性体是PP最常用的增韧方法,PP增韧常用的弹性体有茂金属催化剂合成的聚烯烃弹性体(POE)、三元乙丙橡胶(EPDM)、乙丙橡胶(EPR)、(苯乙烯/丁二烯/苯乙烯)共聚物(SBS)、顺丁橡胶(BR)、异丁橡胶(IBR),目前研究得最多的是POE和EPDM增韧。
弹性体增韧PP目前广泛接受的理论是“多重银纹”理论和“银纹一剪切带”理论。
而大多数情况下这两种理论所发生的情况会同时出现,因此增韧过程可简单概括为:弹性体以分散相形式分散于基体树脂中,分散相弹性体粒子之间存在一定的
临界厚度,受外力作用时,弹性体粒子成为应力集中点,它在拉伸、压缩或冲击下发生变形,若两相界面粘结良好,会导致颗粒所在区域产生大量银纹和剪切带而消耗能量;同时,银纹、弹性体粒子和剪切带又可以终止银纹或剪切带进一步转化为破坏性裂纹,从而起到增韧作用PP/EPDM共混体系以及以它们为基体的填充增强体系具有优异的冲击性能及较理想的综合性能,这使其步入了工程塑料的应用领域。
国内多以PP/EPDM体系生产汽车配件专用料,且技术比较成熟。
姚亚生采用动态硫化法制备了PP/EPDM改性材料。
与简单共混PP/EPDM相比,动态硫化PP/EPDM体系的冲击性能和流动性明显提高,弯曲弹性模量基本一致,拉伸强度略有下降。
李庆国等⋯利用基本断裂功方法研究了PP/EPDM共混体系的断
裂性能,发现EPDM的加入提高了PP的比基本断裂功,且比基本断裂功随EPDM用量的增加呈先增后减的趋势。
POE是美国DOW 化学公司以茂金属为催化剂合成的具有窄相对分子质量分布和均匀的短支链分布的热塑性弹性体。
POE具有良好的增韧效果、抗老化性能和易加工性,今后有可能取代传统的EPDM成为PP的首选增韧剂。
吕英斌等”用POE对PP进行了增韧改性,发现其增韧效果要好于EPDM。
毛立新等对比了不同PP/POE共混体系,发现POE对共聚PP的增韧效果好于均聚PP。
许岳剑等研究了PP/POE共混体系中分散相粒子表面间距r和过渡层厚度与材料冲击性能之间的关系,发现存在一个临界值r 与材料的脆韧转变点相对应。
当r小于等于r 时,材料是韧性的;当r大于r 时,材料呈脆性。
在共混过程中,r随共混时间增加而逐渐减小,在共混的中后期趋于稳定;随r值的减小,材料冲击强度增加;d随POE含量的递增逐渐增大,对应材料的冲击强度增加。
丁乃秀等。
加分别采用POE和马来酸酐接枝聚乙烯(PE-g—MAH)对PP导电复合材料进行增韧改性。
结果表明,POE的增韧效果好于PE—g.MAH;两种增韧剂的加入均使复合材料的热变形温度降低,且对材料的导电性能影响不大;POE的加入改善了复合体系的流动性,而PE-g—MAH则使复合体系的流动性变差。
一些新型的PP /弹性体共混体系也有报道。
全大萍等采用新型高活性催化剂合成了新型(乙烯/丁烯)共聚弹性体(PEB)。
研究表明,在PP/PEB共混物中,两者在非晶区有良好的相互渗透性,PEB阻碍了PP球晶的生成,使其微晶尺寸变小;PEB的加入可以明显地到增韧PP的作用。
赵永仙等采用自制的负载钛催化剂体系合成了(丁烯/己烯)共聚物热塑性弹性体(PBH),并用其对PP进行了共混改性。
结果表明,随着PBH含量的增加,共混物的冲击强度、断裂伸长率、密度和熔体流动性都有增大的趋势。
而拉伸强度、弯曲强度、硬度和耐热性均有一定的下降;己烯含量高的PBH对PP的增韧改性效果更好。
6 塑一塑共混改性
目前出现的PP/塑料共混体系有PP/柔性聚合物体系、PP/刚性聚合物体系和PP/超高分子量聚乙烯(UHMWPE)体系3种。
不同体系的增韧机理不同,柔性聚合
物如(乙烯/乙酸乙烯酯)共聚物(E/VAC)、低密度聚乙烯(LDPE)、线性低密度聚乙烯(LLDPE)、HDPE、杜仲胶等,其增韧机理近似于弹性体增韧,柔性聚合物的增韧效果不如弹性体理想,但对PP强度和刚度的损害却比弹性体低得多。
刚性聚合物如聚碳酸酯(PC)、尼龙6(PA6)、PA66、交联聚苯乙烯微球等,其增韧机理主要是“冷拉”机理。
该类聚合物可在提高材料冲击性能的同时,提高其加工流动性和热变形温度而不降低其拉伸强度和刚度。
UHMWPE的增韧机理一般是,PP/U—MWPE的亚微观相态为双连续相,UHMWPE的超长分子链在PP基体中形成网络结构,从而起到增韧作用。
UHMWPE增韧不仅可提高PP的缺口冲击强度,也可以提高其拉伸强度 J。
李炳海等对乙丙共聚型PP/UHMWPE共混体系的增韧机理提出了不同的解释。
他认为,在熔体冷却过程中,UHMWPE的高分子链段与PP基体的部分聚乙烯(PE)链段形成共晶,产生一种“共晶物理交联点互穿网络结构”,从而使合金的韧性和刚性同时得以提高。
UHMWPE对均聚PP一般没有增韧作用。
周天寿等采用复合无皂乳液聚合法制得核层为交联聚丙烯酸丁酯、壳层为聚甲基丙烯酸甲酯(PMMA)的反应性核壳结构胶粒,将其与PP进行反应共混以增韧改性PP。
研究表明,当核壳胶粒在0.38—1.58 m变化时,较大尺寸的胶粒有利于增韧;核壳胶粒尺寸与核层交联度对增韧PP的影响之间存在相互作用,最适合于增韧的胶粒核层交联度随胶粒尺寸变化而改变;核壳胶粒改性PP 共混物的增韧机理是核壳胶粒的空穴化和PP基体的剪切屈服。
邬润德等 I2 用乳液聚合方法和交联技术制备了交联聚苯乙烯(XPS)微球,经SBS包覆后与PP共混。
研究发现,分散均匀的XPS微球对PP可起到增韧增强的作用,增韧的主要机理是XPS微球被拔出时,增容剂与基体界面屈服产生大形变需要大量的外界功。
9 口晶型成核剂改性
10 纳米复合改性。