有关黄金分割比的试题
初中测试题卷子及答案

初中测试题卷子及答案一、选择题(每题2分,共20分)1. 《红楼梦》的作者是谁?A. 曹雪芹B. 罗贯中C. 施耐庵D. 吴承恩2. 以下哪个选项是数学中的“黄金分割比”?A. 1:1B. 1:1.618C. 2:3D. 3:43. 英语中,“apple”的意思是?A. 香蕉B. 苹果C. 梨D. 橙子4. 地球是太阳系中的第几颗行星?A. 第一颗B. 第二颗C. 第三颗D. 第四颗5. 化学元素周期表中,氢的原子序数是多少?A. 1B. 2C. 3D. 46. 以下哪个国家是亚洲国家?A. 巴西B. 阿根廷C. 印度D. 澳大利亚7. 世界上最大的海洋是?A. 太平洋B. 大西洋C. 印度洋D. 北冰洋8. 以下哪个是光合作用的产物?A. 水B. 氧气C. 二氧化碳D. 氮气9. 人体最大的器官是?A. 心脏B. 肝脏C. 皮肤D. 胃10. 以下哪个是著名的物理学家?A. 牛顿B. 爱因斯坦C. 霍金D. 所有选项都是二、填空题(每题2分,共20分)1. 地球的自转周期是______小时。
2. 圆周率π的近似值是______。
3. 英语中,“图书馆”的单词是______。
4. 人体中,血液的主要成分是______。
5. 世界上最大的沙漠是______。
6. 化学中,水的化学式是______。
7. 世界上最高的山峰是______。
8. 光年是天文学中用来测量______的单位。
9. 人体中,负责消化的器官是______。
10. 世界上最大的淡水湖是______。
三、简答题(每题10分,共30分)1. 请简述牛顿三大运动定律。
2. 描述一下光合作用的过程。
3. 简述一下人体循环系统的组成部分。
四、论述题(每题15分,共30分)1. 论述为什么说地球是人类的家园,并说明我们应该如何保护它。
2. 论述一下科技发展对人类社会的影响。
答案:一、选择题1. A2. B3. B4. C5. A6. C7. A8. B9. C10. D二、填空题1. 242. 3.143. library4. 血浆5. 撒哈拉沙漠6. H2O7. 珠穆朗玛峰8. 距离9. 胃10. 苏必利尔湖三、简答题1. 牛顿三大运动定律包括:第一定律(惯性定律),第二定律(力的作用与反作用定律),第三定律(作用力与反作用力定律)。
网红试题“2019高考断臂维纳斯”质疑、剖析及改编

网红试题“断臂维纳斯”质疑、剖析及改编1.(2019全国1卷文理第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A.165cmB.175cmC.185cmD.190cm【网红解法1】:维纳斯是女的,排除C,D ;维纳斯是外国的,排除A.选B.【质疑1】有人质疑这是考查常识还是考数学。
【点评1】高考突出数学的应用价值,甚至很多题目选择真实的实际背景,这样很容易导致一个问题,就是有人了解的越多,在有些题目就占据了一些优势。
比如如下设置,就会有同学直接得到答案。
2.根据相关地震知识可知,地震的里氏级数y 与地震中释放的能量x 满足对数函数关系()log 01a y x a a =>≠且.2008年5月12日汶川里氏8.0级地震释放的能量大约是1976年唐山里氏7.8级地震释放的能量的2倍.据此推算:若地震的里氏级数每增加一级,则地震中释放的能量将变为原来的()倍.A.10B.16C.32D.64如何修改,可以避免呢?改编:里氏震级M 的计算公式为:0lg lg M A A =-,其中A 是测震仪记录的地震曲线的最大振幅0A 0A 是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大的振幅是5级地震最大振幅的__________倍。
变式:(2019北京)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为(A )1010.1(B )10.1(C )lg10.1(D )10−10.11.(2019全国1卷文理第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是A.165cmB.175cmC.185cmD.190cm【网红解法2】此题还蕴含着数学与美,希望答案更符合实际,但从应考的角度来说,学生直接从美的角度会直接选B 。
2022-2023学年江苏省常州市新北区实验学校数学九年级第一学期期末质量检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列事件中为必然事件的是()A.抛一枚硬币,正面向上B.打开电视,正在播放广告C.购买一张彩票,中奖D.从三个黑球中摸出一个是黑球2.二次函数y=(x﹣1)2+2,它的图象顶点坐标是()A.(﹣2,1)B.(2,1)C.(2,﹣1)D.(1,2)3.如图,点C、D在圆O上,AB是直径,∠BOC=110°,AD∥OC,则∠AOD=()A.70°B.60°C.50°D.40°4.下列事件中是必然事件的是()A.打开电视正在播新闻B.随机抛掷一枚质地均匀的硬币,落地后正面朝上C.在等式两边同时除以同一个数(或式子),结果仍相等D.平移后的图形与原图形中的对应线段相等5.我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6(1+x)=8.5 B.6(1+2x)=8.5C.6(1+x)2=8.5 D.6+6(1+x)+6(1+x)2=8.56.下列四个几何体中,主视图与俯视图不同的几何体是()A.B.C .D .7.如图,在ABC 中,DE BC ∥,若4=AD ,6BD =,则ADE S 与ABC S 的比是( )A .2:3B .2:5C .4:9D .4:25 8.一元二次方程2(21)(21)(1)x x x +=+-的解为( )A .1x =B .112x =- ,21x =C .112x =- ,22x =- D .112x =-,22x = 9.如图直角三角板∠ABO =30°,直角项点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数的y 1=1(0)k x x >图象上,顶点B 在函数y 2=2k (x 0)x>的图象上,则12k k =( )A 3B .3C .13D .13- 10.已知点C 是线段AB 的黄金分割点,且2AB =,AC BC <,则AC 长是( )A .512B 51C .35D .352二、填空题(每小题3分,共24分)11.如图,在△ABC 中,∠BAC =50°,AC =2,AB =3,将△ABC 绕点A 逆时针旋转50°,得到△AB 1C 1,则阴影部分的面积为_______.12.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.13.已知二次函数()2(1y x m m =--+是常数),当02x ≤≤时,函数y 有最大值2-,则m 的值为_____.14.如图,P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点,ΔPEF 、ΔPDC 、ΔPAB 的面积分别为S 、S 1、S 1.若S=1,则S 1+S 1= .15.圆内接正六边形一边所对的圆周角的度数是__________.16.如图,在矩形ABCD 中,AD=2,CD=1,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连接AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,......,按此规律继续下去,则矩形AB 2019C 2019C 2018的面积为_____.17.已知153()sin a ︒=+a 01184 3.143()cosa π-⎛⎫--+= ⎪⎝⎭_____. 18.学生晓华5次数学成绩为86,87,89,88,89,则这5个数据的中位数是___________.三、解答题(共66分)19.(10分)解下列方程:(1)3(2)(2)x x x -=-(2)2430x x ++=20.(6分)已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边做正方形ADEF ,连接CF(1)如图1,当点D 在线段BC 上时.求证CF+CD=BC ;(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系; (3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变;①请直接写出CF ,BC ,CD 三条线段之间的关系;②若正方形ADEF 的边长为22,对角线AE ,DF 相交于点O ,连接OC .求OC 的长度.21.(6分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F(I )如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;(Ⅱ)如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.22.(8分)如图,平面直角坐标系xOy 中点A 的坐标为(﹣1,1),点B 的坐标为(3,3),抛物线经过A 、O 、B 三点,连接OA 、OB 、AB ,线段AB 交y 轴于点E .(1)求点E 的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当四边形ABNO的面积最大时,求点N的坐标并求出四边形ABNO面积的最大值.23.(8分)如图,AC是⊙O的一条直径,AP是⊙O的切线.作BM=AB并与AP交于点M,延长MB交AC于点E,交⊙O于点D,连接AD.(1)求证:AB=BE;(2)若⊙O的半径R=5,AB=6,求AD的长.24.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.25.(10分)小明和小亮用三枚质地均匀的硬币做游戏,游戏规则是:同时抛掷这三枚硬币,出现两枚正面向上,一枚正面向下,则小明赢;出现两枚正面向下,一枚正面向上,则小亮赢.这个游戏规则对双方公平吗?请你用树状图或列表法说明理由.26.(10分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.参考答案一、选择题(每小题3分,共30分)1、D【分析】根据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】A ,B ,C 选项中,都是可能发生也可能不发生,是随机事件,不符合题意;D 是必然事件,符合题意.故选:D.【点睛】本题考查必然事件的定义,熟练掌握定义是关键.2、D【解析】二次函数的顶点式是()?y a x h k =-+,,其中 (),h k 是这个二次函数的顶点坐标,根据顶点式可直接写出顶点坐标.【详解】解:212y x =-+抛物线解析式为(),()12.∴二次函数图象的顶点坐标是,故选:D.【点睛】根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.3、D【分析】根据平角的定义求得∠AOC 的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.【详解】∵∠BOC =110°,∠BOC +∠AOC =180°∴∠AOC=70°∵AD∥OC,OD=OA∴∠D=∠A=70°∴∠AOD=180°−2∠A=40°故选:D.【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用.4、D【分析】根据事件发生的可能性大小判断相应事件,从而可得答案.【详解】解:A、打开电视正在播新闻是随机事件;B、随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件;C、在等式两边同时除以同一个数(或式子),结果仍相等是随机事件;D、平移后的图形与原图形中的对应线段相等是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.6、C【分析】根据正方体的主视图与俯视图都是正方形,圆柱横着放置时,主视图与俯视图都是长方形,球体的主视图与俯视图都是圆形,只有圆锥的主视图与俯视图不同进行分析判定.【详解】解:圆锥的主视图与俯视图分别为圆形、三角形,故选:C.【点睛】本题考查简单的几何体的三视图,注意掌握从不同方向看物体的形状所得到的图形可能不同.7、D【分析】根据平行即可证出△ADE∽△ABC,然后根据相似三角形的面积比等于相似比的平方,即可得出结论.【详解】解:∵//DE BC∴△ADE ∽△ABC ∴22444625ADEABC S AD S AB ⎛⎫⎛⎫=== ⎪ ⎪+⎝⎭⎝⎭ 故选D .【点睛】此题考查的是相似三角形的判定及性质,掌握利用平行判定两个三角形相似和相似三角形的面积比等于相似比的平方是解决此题的关键.8、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】2(21)(21)(1)0x x x +-+-= (21)(211)0x x x ++-+=∴210x +=或2110x x +-+= ∴112x =-,22x =- 故选C【点睛】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.9、D【分析】设AC =a ,则OA =2a ,OC,根据直角三角形30°角的性质和勾股定理分别计算点A 和B 的坐标,写出A 和B 两点的坐标,代入解析式求出k 1和k 2的值,即可求12k k 的值. 【详解】设AB 与x 轴交点为点C ,Rt △AOB 中,∠B =30°,∠AOB =90°,∴∠OAC =60°,∵AB ⊥OC ,∴∠ACO =90°,∴∠AOC =30°,设AC =a ,则OA =2a ,OC,∴A,a ),∵A 在函数y 1=1(0)k x x >的图象上, ∴k 1=3a ×a =3a 2,Rt △BOC 中,OB =2OC =23a , ∴BC =22OB OC -=3a ,∴B (3a ,﹣3a ),∵B 在函数y 2=2k (x 0)x>的图象上, ∴k 2=﹣3a ×3a =﹣33a 2,∴12k k =2231333a a =--, 故选:D .【点睛】此题考查反比例函数的性质,勾股定理,直角三角形的性质,设AC =a 是解题的关键,由此表示出其他的线段求出k 1与k 2的值,才能求出结果.10、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知5151251BC AB --=== ∴251)35AC AB BC =-=-=故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.二、填空题(每小题3分,共24分)11、π 【解析】试题分析:∵,∴S 阴影=1ABB S 扇形=250360AB π⋅=54π.故答案为54π. 考点:旋转的性质;扇形面积的计算.12、(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2).13、(23+或3【分析】由题意,二次函数的对称轴为x m =,且开口向下,则可分为三种情况进行分析,分别求出m 的值,即可得到答案.【详解】解:∵()21y x m =--+,∴对称轴为x m =,且开口向下,∵当02x ≤≤时,函数y 有最大值2-,①当0m ≤时,抛物线在0x =处取到最大值2-,∴()2012m --+=-, 解得:3m =3m (舍去);②当02m <<时,函数有最大值为1;不符合题意;③当2m ≥时,抛物线在2x =处取到最大值2-,∴()2212m --+=-, 解得:23m =+或23m =;∴m 的值为:(23)+或3 故答案为:(23)+或3【点睛】本题考查了二次函数的性质,以及二次函数的最值,解题的关键是掌握二次函数的性质,确定对称轴的位置,进行分类讨论.14、2.【详解】∵E、F分别为PB、PC的中点,∴EF 12BC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=12S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=12S平行四边形ABCD=8s=2.15、30°或150°【分析】求出一条边所对的圆心角的度数,再根据圆周角和圆心角的关系解答.【详解】解:圆内接正六边形的边所对的圆心角360°÷6=60°,圆内接正六边形的一条边所对的弧可能是劣弧,也可能是优弧,根据一条弧所对的圆周角等于它所对圆心角的一半,所以圆内接正六边形的一条边所对的圆周角的度数是30°或150°,故答案为30°或150°.【点睛】本题考查学生对正多边形的概念掌握和计算的能力,涉及的知识点有正多边形的中心角、圆周角与圆心角的关系,属于基础题,要注意分两种情况讨论.16、2019 4037 52【分析】利用勾股定理可求得AC的长,根据面积比等于相似比的平方可得矩形AB1C1C的面积,同理可求出矩形AB2C2C1、AB3C3C2,……的面积,从而可发现规律,根据规律即可求得第2019个矩形的面积,即可得答案.【详解】∵在矩形ABCD中,AD=2,CD=1,∴22AD CD5∵矩形ABCD与矩形AB1C1C相似,∴矩形AB1C1C与矩形ABCD5,∴矩形AB1C1C与矩形ABCD的面积比为54,∵矩形ABCD的面积为1×2=2,∴矩形AB1C1C的面积为2×54=52,同理:矩形AB2C2C1的面积为52×54=258=2352,矩形AB3C3C2的面积为258×54=12532=3552,……∴矩形AB n C n C n-1面积为2152nn -, ∴矩形AB 2019C 2019C 2018的面积为201920192152⨯-=2019403752, 故答案为:2019403752【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,根据求出的结果得出规律并熟记相似图形的面积比等于相似比的平方是解题关键..17、2【分析】根据特殊角的三角函数值,先求出a ,然后代入计算,即可得到答案.【详解】解:∵15()sin a ︒=+,a 为锐角, ∴1560a +︒=︒,∴45a =︒;0114 3.14)3(cosa π-⎛⎫--+ ⎪⎝⎭011445 3.143()cos π-⎛⎫︒--+ ⎪⎝⎭=413+=13+=2;故答案为:2.【点睛】本题考查了特殊角的三角函数值,二次根式的性质,负整数指数幂,零次幂,解题的关键是正确求出45a =︒,熟练掌握运算法则进行计算.18、1【分析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:86,87,1,89,89,则这5个数的中位数为:1.故答案为:1.【点睛】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.三、解答题(共66分)19、(1)121,23x x ==;(2)121,3x x =-=- 【分析】(1)把方程右边的项作为整体移到左边,利用因式分解的方法解方程即可;(2)利用配方法把方程化为:()221,x +=再利用直接开平方法解方程即可.【详解】解:(1)原方程可化为: ()()3220,x x x ---=∴ ()()3120x x --= 解得:121,23x x == (2)∵24311x x +++=()221,x ∴+=∴ 21x +=±解得:1213x x =-=-,.【点睛】本题考查的是一元二次方程的解法,掌握因式分解与配方法解方程是本题的解题关键.20、(1)证明见解析;(1)CF ﹣CD=BC ;(3)①CD ﹣CF=BC ;②1.【分析】(1)三角形ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF=BD ,据此即可证得. (1)同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF ﹣CD=BC .(3)①同(1)相同,利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CD ﹣CB=CF .②证明△BAD ≌△CAF ,△FCD 是直角三角形,然后根据正方形的性质即可求得DF 的长,则OC 即可求得.【详解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC .∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°.∵∠BAD=90°﹣∠DAC ,∠CAF=90°﹣∠DAC ,∴∠BAD=∠CAF .∵在△BAD 和△CAF 中,AB=AC ,∠BAD=∠CAF ,AD=AF ,∴△BAD ≌△CAF (SAS ).∴BD=CF .∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;理由:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAF(SAS)∴BD=CF∴BC+CD=CF,∴CF-CD=BC;(3)①∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAF(SAS),∴BD=CF,∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.∴△FCD是直角三角形.∵正方形ADEF的边长为22且对角线AE、DF相交于点O,∴DF=2AD=4,O为DF中点.∴OC=12DF=1.21、(1)∠B=40°;(2)AB= 6.【分析】(1)连接OD,由在△ABC中, ∠C=90°,BC是切线,易得AC∥OD ,即可求得∠CAD=∠ADO ,继而求得答案; (2)首先连接OF,OD,由AC∥OD得∠OFA=∠FOD ,由点F为弧AD的中点,易得△AOF是等边三角形,继而求得答案. 【详解】解:(1)如解图①,连接OD,∵BC切⊙O于点D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解图②,连接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵点F为弧AD的中点,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF为等边三角形,∴∠FAO=60°,则∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【点睛】本题考查了切线的性质,平行线的性质,等腰三角形的性质,弧弦圆心角的关系,等边三角形的判定与性质,含30°角的直角三角形的性质.熟练掌握切线的性质是解(1)的关键,证明△AOF为等边三角形是解(2)的关键.22、(1)E点坐标为(0,32);(2)21122y x x=-;(3)四边形ABNO面积的最大值为7516,此时N点坐标为(32,38).【分析】(1)先利用待定系数法求直线AB的解析式,与y轴的交点即为点E;(2)利用待定系数法抛物线的函数解析式;(3)先设N(m,12m2−12m)(0<m<3),则G(m,m),根据面积和表示四边形ABNO的面积,利用二次函数的最大值可得结论.【详解】(1)设直线AB的解析式为y=mx+n,把A(-1,1),B(3,3)代入得133m nm n-+⎧⎨+⎩==,解得1232mn⎧⎪⎪⎨⎪⎪⎩==,所以直线AB的解析式为y=12x+32,当x=0时,y=12×0+32=32,所以E点坐标为(0,32 );(2)设抛物线解析式为y=ax2+bx+c,把A(-1,1),B(3,3),O(0,0)代入得1933a b ca b cc-+⎧⎪++⎨⎪⎩===,解得1212abc⎧⎪⎪⎨-⎪⎪=⎩==,所以抛物线解析式为y=12x2−12x;(3)如图,作NG∥y轴交OB于G,OB的解析式为y=x,设N(m,12m2−12m)(0<m<3),则G(m,m),GN=m−(12m2−12m)=−12m2+32m,S△AOB=S△AOE+S△BOE=12×32×1+12×32×3=3,S△BON=S△ONG+S BNG=12•3•(−12m2+32m)=−34m2+94m所以S四边形ABNO=S△BON+S△AOB=−34m2+94m+3=−34(m−32)2+7516当m=32时,四边形ABNO面积的最大值,最大值为7516,此时N点坐标为(32,38).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数和一次函数的性质;理解坐标与图形性质,利用面积的和差计算不规则图形的面积.23、(1)见解析;(2) AD=485.【分析】(1)由切线的性质可得∠BAE+∠MAB=90°,进而得∠AEB+∠AMB=90°,由等腰三角形的性质得∠MAB =∠AMB,继而得到∠BAE=∠AEB,根据等角对等边即可得结论;(2)连接BC,根据直径所对的圆周角是直角可得∠ABC=90°,利用勾股定理可求得BC=8,证明△ABC∽△EAM,可得∠C=∠AME,AC BCEM AM=,可求得AM=485,再由圆周角定理以及等量代换可得∠D=∠AMD,继而根据等角对等边即可求得AD=AM=48 5.【详解】(1)∵AP是⊙O的切线,∴∠EAM=90°,∴∠BAE+∠MAB=90°,∠AEB+∠AMB=90°,又∵AB=BM,∴∠MAB=∠AMB,∴∠BAE=∠AEB,∴AB=BE;(2)连接BC,∵AC是⊙O的直径,∴∠ABC=90°在Rt△ABC中,AC=10,AB=6,∴BC=22AC AB-=8,由(1)知,∠BAE=∠AEB,又∠ABC=∠EAM=90°,∴△ABC∽△EAM,∴∠C=∠AME,AC BC EM AM=,即10812AM=,∴AM=485,又∵∠D=∠C,∴∠D=∠AMD,∴AD=AM=48 5.【点睛】本题考查了切线的性质,等腰三角形的判定与性质,相似三角形的判定与性质,圆周角定理等知识,准确识图,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.24、(1)(2,﹣2);(2)(1,0);(3)1.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=1平方单位.故答案为1.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理25、此游戏对双方公平,理由见详解.【分析】用列表法或树状图将所有可能出现的情况表示出来,然后计算“两枚正面向上,一枚正面向下”和“ 出现两枚正面向下,一枚正面向上”的概率是否相等,如果相等,则说明游戏公平,反之则不公平.【详解】答:此游戏对双方公平.根据树状图或列表分析抛掷三枚硬币可出现8种情况,其中“两正一反”和“两反一正”的情况各有3种,所以“出现两枚正面向上,一枚正面向下”的概率和“出现两枚正面向下,一枚正面向上”的概率都是38.【点睛】本题主要考查用树状图或列表法求随机事件的概率,能够用树状图或列表法将所有可能出现的情况表示出来是解题的关键.26、树状图见详解,2 9【分析】画树状图展示所有9种等可能的结果数,找出两次摸出的小球所标数字之和为3的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中两次摸出的小球所标数字之和为3的结果数为2,所以两次摸出的小球所标数字之和为3的概率=29.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率。
2022年秋冀教版九年级数学上册同步练习:25.1 比例线段

2022年秋冀教版九年级数学上册同步练习:25.1比例线段填空题已知a=0.5 m,b=25 cm,则a∶b=________.【答案】2∶1【解析】把a,b的值统一单位后代入即可求解.∵a=0.5m=50cm,b=25cm,∴a:b=50:25=2:1.故答案为2:1.填空题C是线段AB上一点,AB=2AC,则BC∶AB=________.【答案】1:2【解析】根据C是线段AB上一点,由AB=2AC,可知点C是AB 的中点,进而得出BC:AB=1:2.如图,∵C是线段AB上一点,∴AB=AC+BC,∵AB=2AC,∴2AC=AC+BC,∴AC=BC,∴AB=2AC=2BC,∴BC:AB=1:2.故答案为1:2.选择题已知四组线段的长度(单位:cm)如下,其中是成比例线段的一组是()A. 1,2,3,4B. 1,2,2,4C. 3,5,9,13D. 1,2,2,3【答案】B【解析】根据成比例线段的概念,对选项一一分析,排除错误答案.A、1×4≠2×3,故选项错误;B、1×4=2×2,故选项正确;C、3×13≠5×9,故选项错误;D、1×3≠2×2,故选项错误.故选:B.填空题已知四条线段a=0.5 m,b=25 cm,c=0.2 m,d=10 cm,则这四条线段________成比例线段.(填“是”或“不是”)【答案】是【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.∵四条线段a=0.5m=50cm,b=25cm,c=0.2m=20cm,d=10cm,50×10=5000,25×20=5000,∴四条线段能够成比例.选择题已知2x=3y(y≠0),则下面结论成立的是()A. B. C. D.【答案】A【解析】试题解析:A、两边都除以2y,得,故A符合题意;B、两边除以不同的整式,故B不符合题意;C、两边都除以2y,得,故C不符合题意;D、两边除以不同的整式,故D不符合题意;故选A.选择题已知线段a=4,b=16,线段c是线段a,b的比例中项,那么线段c的长为()A. 10B. 8C. -8D. ±8【答案】B【解析】根据线段比例中项的概念,a:c=c:b,可得c2=ab=64,故c的值可求.∵线段c是a、b的比例中项,∴c2=ab=64,解得c=±8,又∵线段是正数,∴c=8.故选:B.选择题若3y=4x,则下列式子中不正确的是()A. B. C. D.【答案】D【解析】根据比例的性质,把乘积式转化为x=y,然后代入各选项进行计算,再利用排除法求解即可.∵3y=4x,∴x=y,A、,故本选项正确;B、,故本选项正确;C、,故本选项正确;D、,故本选项错误.故选:D.填空题若,则=________.【答案】【解析】由得9m=4n,从而可求出结果.∵,∴9m=4n,∴=.故答案为:.填空题若,则=________.【答案】【解析】根据,得到n=1.5m,q=1.5p,y=1.5x,代入原式即可得到结果.∵,∴n=1.5m,q=1.5p,y=1.5x,∴==.故答案为:.选择题乐器上的一根琴弦AB=60厘米,两个端点A,B固定在乐器板面上,支撑点C是AB的黄金分割点(AC>BC),则AC的长为()A. (90-30)厘米B. (30+30)厘米C. (30-30)厘米D. (30-60)厘米【答案】C【解析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.根据黄金分割点的概念得:AC=AB=(30-30)厘米.故选:C.选择题我们把两条邻边中较短边与较长边的比值等于黄金比的矩形称为黄金矩形.若矩形的两边长分别为a,b,则下列数据能构成黄金矩形的是()A. a=4,b=+2B. a=4,b=-2C. a=2,b=+2D. a=2,b =-1【答案】D【解析】根据黄金矩形的定义判断即可.∵宽与长的比是的矩形叫做黄金矩形,∴,∴a=2,b=-1,故选:D.填空题在人体躯干和身高的比例上,肚脐是理想的黄金分割点,即比例越接近0.618越给人以美感.张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比值为0.60,那么她穿约________厘米的高跟鞋看起来会更美.(精确到十分位)【答案】7.5【解析】根据下半身与全身的比等于黄金比,列方程求解.设应选择xcm的高跟鞋,∵张女士的身高为1.60米,身体躯干(脚底到肚脐的高度)与身高的比为0.60,∴其身高为1.60米=160厘米,身体躯干高为160×0.60=96厘米,则有,解得:x≈7.5.故本题答案为:7.5.选择题已知,则的值是()A.B.C.D.【答案】D【解析】试题分析:由,得,故选:D.选择题已知a∶b∶c=2∶3∶4,则的值为()A. B. 1 C. -1 D. 或-1【答案】B【解析】试题此题考查了比例的性质.此题比较简单,解题的关键是掌握比例变形与设===k的解题方法.首先设===k,即可得a=2k,b=3k,c=4k,然后将其代入,即可求得答案.解:设===k,∴a=2k,b=3k,c=4k,∴==1.故选B.选择题如图,画线段AB的垂直平分线交AB于点O,在这条垂直平分线上截取OC=OA,以A为圆心,AC为半径画弧于AB与点P,则线段AP与AB的比是()A. B. 1: C. D.【答案】D【解析】连接AC,设AO=x,则BO=x,CO=x,故AC=AP=x,∴线段AP与AB的比是:x:2x=:2.故选:D.选择题已知a,b,c都不为0,且=k,则k的值是() A. 2 B. -1 C. 2或-1 D. 3【答案】C【解析】根据比例的性质,三等式相加,即可得出k值.=k,,分两种情况:①a+b+c≠0∴k=2.②a+b+c=0时,a+b=-c∴k=-1.故k的值为:2或-1.故选:C.填空题已知三条线段的长度分别是4,8,5,请写出另一条线段的长度:____________,使这四条线段是成比例线段.【答案】或或10【解析】设所加的线段是x,则得到:或或,即可求得.设所加的线段是x,则得到:或或,解得:x=10或或.填空题已知,则_________________.【答案】【解析】试题解析:设a=5k,b=3k,则.解答题已知线段a,b,c,且.(1)求的值;(2)若线段a,b,c满足a+b+c=27,求a,b,c的值.【答案】(1);(2)a=6,b=9,c=12.【解析】(1)根据比例的性质得出,即可得出的值;(2)首先设=k,则a=2k,b=3k,c=4k,利用a+b+c=27求出k的值即可得出答案.(1)∵,∴,∴=,(2)设=k,则a=2k,b=3k,c=4k,∵a+b+c=27,∴2k+3k+4k=27,∴k=3,∴a=6,b=9,c=12.解答题已知=2,且b+d+f≠0.(1)求的值;(2)若a-2c+3e=5,求b-2d+3f的值.【答案】(1)2;(2)2.5【解析】(1)根据合比性质求解即可;(2)用b、d、f表示出a、c、e,然后代入整理即可得解.(1)∵=2,∴;(2)∵=2,∴a=2b,c=2d,e=2f,∵a-2c+3e=5,∴2b-2(2d)+3(2f)=5,∴b-2d+3f=2.5.解答题阅读理解:如图①,点C将线段AB分成两部分,若,则点C为线段AB的黄金分割点.某研究学习小组,由黄金分割点联想到“黄金分割线”,从而给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果,那么称直线l为该图形的黄金分割线.问题解决:如图②,在△ABC中,已知D是AB的黄金分割点.(1)研究小组猜想:直线CD是△ABC的黄金分割线,你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组探究发现:过点C作直线交AB于点E,过点D作DF ∥CE,交AC于点F,连接EF(如图③),则直线EF也是△ABC的黄金分割线.请你说明理由.【答案】(1)对.理由见解析;(2)三角形的中线不是该三角形的黄金分割线.(3)直线EF也是△ABC的黄金分割线.【解析】(1)根据黄金分割的定义得,再根据三角形面积公式得到,,所以,然后根据黄金直线的定义得直线CD是△ABC的黄金分割线;(2)根据三角形中线的性质和三角形面积公式得到,而<1,由此可根据黄金直线的定义判断三角形的中线不是该三角形的黄金分割线;(3)根据两平行线之间的距离定值,得到S△FDE=S△FDC,S△DEC=S△FEC,则S△AEF=S△ADC,S四边形BEFC=S△BDC,然后由得到,则可根据黄金直线的定义判断直线EF也是△ABC 的黄金分割线.(1)直线CD是△ABC的黄金分割线.理由如下:∵点D是AB的黄金分割点,∴,∵,,∴,∴直线CD是△ABC的黄金分割线;(2)∵三角形的中线把AB分成相等的两条线段,即AD=BD,∴,,∴三角形的中线不是该三角形的黄金分割线;(3)∵DF∥CE,∴S△FDE=S△FDC,S△DEC=S△FEC,∴S△AEF=S△ADC,S四边形BEFC=S△BDC,∵,∴,∴直线EF是△ABC的黄金分割线.。
2022-2023学年第一学期九年级数学期末数学模拟试题(03)

2022-2023学年第一学期九年级数学期末数学模拟试题(03)(考试时间:100分钟试卷满分:120分)考生注意:1.本试卷26道试题,满分120分,考试时间100分钟.2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号码等相关信息.一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.52.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.23.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.549.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为.12.已知2a=3b,其中b≠0,则=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为cm(精确到0.1).14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=cm.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是°.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.答案与解析一.选择题(共10小题每题3分,满分30分)1.一组数据0、﹣2、3、2、1的极差是()A.2B.3C.4D.5【分析】根据极差的概念求解.【解答】解:极差为:3﹣(﹣2)=5.故选:D.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.2.Rt△ABC中,∠C=90°,AC=1,BC=2,sin A的值为()A.B.C.D.2【分析】直接利用勾股定理得出AB的长,再利用锐角三角三角函数关系得出答案.【解答】解:∵Rt△ABC中,∠C=90°,AC=1,BC=2,∴AB=,∴sin A===.故选:C.【点评】此题主要考查了锐角三角函数的定义,正确把握相关定义是解题关键.3.一元二次方程x2+2x=﹣1的根的情况是()A.没有实数根B.有一个实数根C.有两个不相等的实数根D.有两个相等的实数根【分析】先把方程化为一般式,再计算根的判别式的值,然后根据根的判别式的意义判断方程根的情况.【解答】解:方程化为x2+2x+1=0,∵Δ=22﹣4×1=0,∴方程有两个相等的实数根.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系,当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.上面的结论反过来也成立.4.下列实际问题中的y与x之间的函数表达式是二次函数的是()A.正方体集装箱的体积ym3,棱长xmB.高为14m的圆柱形储油罐的体积ym3,底面圆半径xmC.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm【分析】根据二次函数的定义逐项判断即可.【解答】解:A.正方体集装箱的体积ym3,棱长xm,则y=x3,故不是二次函数;B.高为14m的圆柱形储油罐的体积ym3,底面圆半径xm,则y=14πx2,故是二次函数;C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤,则y=,故不是二次函数;D.小莉驾车以108km/h的速度从南京出发到上海,行驶xh,距上海ykm,则y=南京与上海之间的距离﹣108x,故不是二次函数.故选:B.【点评】本题考查二次函数的实际应用,熟练掌握二次函数的定义是解题关键.5.在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=gt2.其中g取值为9.8m/s2.小莉进行自由落体实验,她从某建筑物抛下一个小球,经过4s后落地,则该建筑物的高度约为()A.98m B.78.4m C.49m D.36.2m【分析】把t=4代入可得答案.【解答】解:把t=4代入得,h=9.8×42=78.4m.故选:B.【点评】本题考查二次函数的实际应用,根据题意把t=4代入是解题关键6.如图,在△ABC中,∠BAC=45°,BD、CE分别是AC、AB边上的高,连接DE,若DE=2,则BC的长为()A.B.C.D.2【分析】根据等腰直角三角形的性质得到=,=,进而得到=,得到△ADE∽△ABC,根据相似三角形的性质列出比例式,计算即可.【解答】解:在Rt△ADB中,∠BAC=45°,则=,同理:=,∴=,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴==,∵DE=2,∴BC=2,故选:D.【点评】本题考查的是相似三角形的判定与性质、等腰直角三角形的性质,证明△ADE∽△ABC是解题的关键.7.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个【分析】由抛物线开口方向,对称轴以及抛物线与y轴的交点,即可判断①;由对称轴改善得到b=﹣2a 代入a﹣b+c<0中得3a+c<0,即可判断②;由x=﹣1时对应的函数值y<0,可得出a﹣b+c<0,得到a+c<b,x=1时,y>0,可得出a+b+c>0,得到|a+c|<|b|,即可得到(a+c)2﹣b2<0,即可判断③;由对称轴为直线x=1,即x=1时,y有最大值,即可判断④.【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,所以①正确;②当x=﹣1时,y<0,∴a﹣b+c<0,∵﹣=1,∴b=﹣2a,把b=﹣2a代入a﹣b+c<0中得3a+c<0,所以②错误;③当x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,当x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∴|a+c|<|b|∴(a+c)2<b2,即(a+c)2﹣b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最大值为a+b+c,∴a+b+c≥am2+mb+c,即a+b≥m(am+b),所以④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.8.如图,D,E分别是△ABC的边AB,AC上的点,=,DE∥BC,若△ADE的面积为6,则△ABC 的面积等于()A.12B.18C.24D.54【分析】利用DE∥BC判定△ADE∽△ABC,再利用相似三角形的面积比等于相似比的平方,列出关系式即可求得结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC.∴.∵=,∴=.∴S△ABC=9S△ADE=54.故选:D.【点评】本题主要考查了相似三角形的判定与性质,利用相似三角形的判定方法得出△ADE∽△ABC是解题的关键.9.如图,点A、B、C都在⊙O上,若∠BOC=64°,则∠BAC的度数为()A.64°B.32°C.26°D.23°【分析】利用圆周角定理求解即可.【解答】解:∵∠BAC=BOC,∠BOC=64°,∴∠BAC=32°,故选:B.【点评】本题考查圆周角定理,解题的关键是理解圆周角定理,属于中考常考题型.10.如图,△ABC的两条中线BE、CD交于点O,则下列结论不正确的是()A.=B.=C.S△DOE:S△BOC=1:2D.△ADE∽△ABC【分析】根据中线BE、CD交于点O,可得DE是△ABC的中位线,根据三角形的中位线定理得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.【解答】解:∵BE和CD是△ABC的中线,∴DE是△ABC的中位线,∴DE=BC,DE∥BC,∴=,故A选项正确;∵DE∥BC,∴=,故B选项正确;∵DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故C选项错误;∵DE∥BC,∴△ADE∽△ABC,故D选项正确;故选:C.【点评】本题主要考查了三角形中位线定理以及相似三角形的判定与性质,解题时注意:三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共8小题,每题4分,满分24分)11.如果,那么锐角A的度数为30°.【分析】根据30°角的余弦值等于解答.【解答】解:∵cos A=,∴锐角A的度数为30°.故答案为:30°.【点评】本题考查了特殊角的三角函数值,熟记30°、45°、60°的三角函数值是解题的关键.12.已知2a=3b,其中b≠0,则=.【分析】根据比例的性质等式两边都除以2b,即可得出答案.【解答】解:∵2a=3b,b≠0,∴除以2b,得=,故答案为:.【点评】本题考查了比例的性质,能选择适当的方法求解是解此题的关键,注意:如果ad=bc,那么=.13.科学家发现,蝴蝶的身体长度与它展开的双翅的长度之比是黄金比,已知蝴蝶展开的双翅的长度是4cm,则蝴蝶身体的长度约为 2.5cm(精确到0.1).【分析】设蝴蝶身体的长度为xcm,根据黄金比为列式计算即可.【解答】解:设蝴蝶身体的长度为xcm,由题意得,x:4=,解得,x=2﹣2≈2.5,故答案为:2.5.【点评】本题考查的是黄金分割的概念和性质,掌握黄金比为是解题的关键.14.抛掷一枚质地均匀的正方体骰子1次(骰子的六个面分别标有数字1,2,3,4,5,6),朝上的点数为6的概率为.【分析】让朝上一面的数字是6的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为6的只有1种,∴朝上一面的数字为6的概率为,故答案为:.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.15.如图,圆锥的母线长l为5cm,侧面积为10πcm2,则圆锥的底面圆半径r=2cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵圆锥的母线长是5cm,侧面积是10πcm2,∴圆锥的侧面展开扇形的弧长为:l===4π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===2cm,故答案为:2.【点评】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为y=﹣2x2.【分析】直接利用二次函数的平移规律进而得出答案.【解答】解:将二次函数y=﹣2(x+2)2的图象向右平移2个单位得到二次函数的表达式为:y=﹣2x2.故答案为:y=﹣2x2.【点评】此题主要考查了二次函数图象与几何变换,正确掌握平移移规律是解题关键.17.二次函数y=x2+bx的图象如图所示,对称轴为x=2,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,则t的取值范围是t<﹣4或t≥12.【分析】根据抛物线的对称轴方程可求出抛物线的解析式,要使关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<6的范围内无解,只需直线y=t与抛物线y=x2+bx在﹣1<x<6的范围内没有交点,只需结合图象就可解决问题.【解答】解:∵抛物线y=x2+bx的对称轴为x=2,∴x=﹣=2,∴b=﹣4,∴抛物线的解析式为y=x2﹣4x.当x=﹣1时,y=5;当x=2时y=﹣4;当x=6时y=12.结合图象可得:当t<﹣4或t≥12时,直线y=t与抛物线y=x2﹣4x在﹣1<x<6的范围内没有交点,即关于x的一元二次方程x2﹣4x﹣t=0(t为实数)在﹣1<x<6的范围内无解.故答案为t<﹣4或t≥12.【点评】本题主要考查了抛物线的性质、抛物线上点的坐标特征等知识,运用数形结合的思想是解决本题的关键.18.如图,AB是⊙O的直径,CD是⊙O的弦,∠CAB=42°,则∠D的度数是48°.【分析】根据直径所对的圆周角是直角推出∠ACB=90°,再结合图形由直角三角形的性质得到∠B=90°﹣∠CAB=48°,进而根据同弧所对的圆周角相等推出∠D=∠B=48°.【解答】解:连接CB.∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=42°,∴∠B=90°﹣∠CAB=48°,∴∠D=∠B=48°.故答案为:48.【点评】本题考查圆周角定理,解题的关键是结合图形根据圆周角定理推出∠ACB=90°及∠D=∠B,注意运用数形结合的思想方法.三.解答题(共8小题,满分66分)19.(1)计算:tan260°+4sin30℃os45°;(2)解方程:(x+3)2=2x+14.【分析】(1)先代入三角函数值,再计算乘方和乘法即可;(2)先将方程整理成一般式,再利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)原式=()2+4××=3+;(2)整理成一般式,得:x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1.【点评】本题主要考查解一元二次方程,解一元二次方程常用的方法有:直接开平方法、因式分解法、公式法及配方法,解题的关键是根据方程的特点选择简便的方法.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【分析】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE ∽△BCA,利用相似比得到AE=x,则DE=x,从而可计算出AE:DE.【解答】(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)解:设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴=,即=,∴AE=x,∴DE=AD﹣AE=2x﹣x=x,∴AE:DE=x:x=1:3.【点评】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.在三张形状、大小、质地均相同的卡片上各写一个数字,分别为1、2、﹣1.现将三张卡片放入一只不透明的盒子中,搅匀后任意抽出一张,记下数字后放回,搅匀后再任意抽出一张记下数字.(1)第一次抽到写有负数的卡片的概率是;(2)用画树状图或列表等方法求两次抽出的卡片上数字都为正数的概率.【分析】(1)用负数的个数除以数字的总个数即可;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)第一次抽到写有负数的卡片的概率是,故答案为:;(2)画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上数字都为正数的有4种结果,所以两次抽出的卡片上数字都为正数的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.如图,某旅游景区观光路线是从山脚下的地面A处出发,沿坡度为1:的斜坡AB步行50m至山坡B处,乘直立电梯上升30m至C处,再乘缆车沿长为180m的索道CD至山顶D处,此时观测C处的俯角为19°30′,索道CD看作在一条直线上.(1)求山坡B距离山脚下地面的高度;(2)求山顶D距离山脚下地面的高度;(精确到1m)(本题可参考的数据:sin19°30′≈0.33,cos19°30′≈0.94,tan19°30′≈0.35)【分析】(1)过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,由含30°角的直角三角形的性质即可得出答案;(2)由锐角三角函数定义求出DE,即可解决问题.【解答】解:(1)如图,过点C作CE⊥DG于E,过B作BF⊥DG于F,延长CB交AG于点H,则CH⊥AG,由题意可知,∠DCE=19°30′,CD=180m,BC=EF=30m,∵i=1:=tanα=,∴α=30°,在Rt△ABH中,α=30°,AB=50m,∴BH=AB=25(m),答:山坡B距离山脚下地面的高度为25m;(2)由(1)得:FG=BH=25m,在Rt△DCE中,∠DCE=19°30′,CD=180m,∴DE=sin∠DCE•CD≈0.33×180=59.4(m),∴DG=DE+EF+FG≈59.4+30+25=114.4≈114(m),答:山顶D距离山脚下地面的的高度约为114m.【点评】本题考查了解直角三角形的应用—仰角俯角问题、坡度坡角问题,正确作出辅助线构造直角三角形是解题的关键.23.某工厂加工一种产品的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克,为增大市场占有率,在保证盈利的情况下,工厂采取降价措施,批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润y元与降价x元之间的函数关系;(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)当定价应设在什么范围之间时,可使工厂每天的利润要不低于9750元?【分析】(1)根据利润=销售量×(单价﹣成本),列出函数关系式即可;(2)根据(1)求得的函数关系式进一步利用配方法求出答案即可;(3)首先由(2)中的函数得出降价x元时,每天要获得9750元的利润,进一步利用函数的性质得出答案.【解答】解:(1)由题意得:y=(48﹣30﹣x)(500+50x)=﹣50x2+400x+9000,答:工厂每天的利润y元与降价x元之间的函数关系为y=﹣50x2+400x+9000;(2)由(1)得:y=﹣50x2+400x+9000=﹣50(x﹣4)2+9800,∵﹣50<0,∴x=4时,y最大为9800,即当降价4元时,工厂每天的利润最大,最大为9800元;(3)﹣50x2+400x+9000=9750,解得:x1=3,x2=5,48﹣3=45,48﹣5=43,∴定价应为43﹣45元之间(含43元和45元).【点评】此题考查二次函数的实际运用,解题的关键是求得函数解析式,进一步利用函数的性质解决问题.24.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.【分析】(1)如图1中,连接BC.想办法证明∠E=∠DCE即可;(2)①如图2中,根据等腰三角形的性质得到∠CFH=∠CHF,根据三角形外角的性质得到∠ACO=∠OBC,求得∠OCB=∠OBC,得到∠ACO=∠BCO=∠ACB=45°,推出AC=BC,根据全等三角形的性质即可得到结论;②连接OD交BC于G.设OG=x,则DG=2﹣x.利用勾股定理构建方程求解即可.【解答】(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.【点评】本题属于圆综合题,考查了圆周角定理,弧,圆心角,弦之间的关系,全等三角形的判定和性质,三角形的中位线,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.25.已知正方形ABCD的边长为1,点E是射线BC上的动点,以AE为直角边在直线BC的上方作等腰直角三角形AEF,∠AEF=90°,设BE=m.(1)如图1,若点E在线段BC上运动,EF交CD于点P,连结CF.①当m=时,求线段CF的长;②设CP=n,请求出n与m的关系式;(2)如图2,AF交CD于点Q,在△PQE中,设边QE上的高为h,求h的最大值.【分析】(1)①过点F作FG⊥BC交BC的延长线于M,利用AAS证明△ABE≌△EGF,得FM=BE=,EM=AB=BC,则CM=BE,从而求出CF的长;②利用△BAE∽△CEP,得,代入即可;(2)将△ADQ绕点A顺时针旋转90°得△ABG,首先由∠ABG=∠ABE=90°,得B,G,E三点共线,再利用SAS证明△GAE≌△EAQ,得∠AEG=∠AEQ,则有∠QEP=∠CEP,可得h=CP,利用②中结论得h=﹣m2+m=﹣(m﹣)2+.【解答】解:(1)①如图,过点F作FG⊥BC交BC的延长线于M,在等腰直角三角形AEF中,∠AEF=90°,AE=FE,在正方形ABCD中,∠B=90°,∴∠BAE+∠AEB=∠FEM+∠AEB,∴∠BAE=∠FEM,又∵∠B=∠FME,∴△ABE≌△EGF(AAS),∴FM=BE=,EM=AB=BC,∴CM=BE=∴FC==;②∵∠BAE=∠FEC,∠B=∠ECP=90°,∴△BAE∽△CEP,∴,即,∴CP=m﹣m2,即n=m﹣m2;(2)如图,将△ADQ绕点A顺时针旋转90°得△ABG,则AG=AQ,∠GAB=∠QAD,GB=DQ,∵∠EAF=45°,∴∠BAE+∠QAD=∠BAE+∠GAB=90°﹣45°=45°,即∠GAE=∠EAF=45°,∵∠ABG=∠ABE=90°,∴B,G,E三点共线,又∵AE=AE,∴△GAE≌△EAQ(SAS),∴∠AEG=∠AEQ,∴∠QEP=∠CEP,∴h=CP,∴h=﹣m2+m=﹣(m﹣)2+,即当m=时,h有最大值为.【点评】本题是四边形综合题,主要考查了正方形的性质,等腰直角三角形的性质,角平分线的判定,全等三角形的判定与性质,二次函数的性质等知识,作辅助线构造全等三角形证明∠QEP=∠CEF是解题的关键.26.如图,点A在抛物线上,过A作x轴的平行线交抛物线于另一点B,点C为抛物线上的任一点.(1)若点A的横坐标为﹣4,且△ABC为直角三角形时,求C点的坐标;(2)当A点变化时,是否总存在C点,使得△ABC是直角三角形,若是总存在,请说明理由;若不是总存在,请直接写出点A纵坐标m的取值范围;(3)若△ABC为直角三角形,AB边上的高为h,①h的大小是否改变,若改变,请说明理由;不改变,请求出高的长度;②若将抛物线的关系式由换成y=ax2(a≠0),其余条件不发生改变,试猜想h与a的关系,并证明.【分析】(1)设C(t,t2),求出A、B点的坐标,利用勾股定理求t的值即可;(2)设A(﹣,m),C(t,t2),则B(,m),由勾股定理求得t2=2m﹣4,则当2m﹣4≥0时,此时△ABC是直角三角形;(3)①由(2)可得h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),由勾股定理求得t2=,可确定点A(﹣m,am2),C(t,),则h=.【解答】解:(1)∵点A的横坐标为﹣4,∴A(﹣4,8),∵AB∥x轴,∴B(4,8),设C(t,t2),∵△ABC为直角三角形,∴AB2=AC2+BC2,即(t+4)2+(t2﹣8)2+(4﹣t)2+(t2﹣8)2=64,∴t2=16(舍)或t2=12,∴C(2,6)或C(﹣2,6);(2)不是总存在,理由如下:设A(﹣,m),C(t,t2),则B(,m),∵AB2=AC2+BC2,即(t+)2+(t2﹣m)2+(﹣t)2+(t2﹣m)2=8m,∴t2=2m(舍)或t2=2m﹣4,当2m﹣4≥0时,m≥2,此时△ABC是直角三角形;(3)①h的大小不改变,理由如下:由(2)可知,C(,m﹣2)或C(﹣,m﹣2),∴C点的纵坐标为m﹣2,∵AB边上的高为h,∴h=m﹣(m﹣2)=2;②设A(﹣m,am2),C(t,at2),则B(m,am2),∵AB2=AC2+BC2,即(t+m)2+(at2﹣am2)2+(m﹣t)2+(at2﹣am2)2=4m2,∴t2=m2(舍)或t2=,∴A(﹣m,am2),C(t,),∴h=am2﹣=.【点评】本题是二次函数的综合题,熟练掌握二次函数的图象及性质,灵活应用勾股定理,准确计算是解题的关键.。
初中黄金分割试题及答案

初中黄金分割试题及答案黄金分割是指将一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比,其比值约为0.618。
这个比例在自然界和艺术设计中非常常见,被认为是一种美学上的比例。
以下是关于黄金分割的几道初中试题及答案:1. 已知线段AB的长度为10厘米,按照黄金分割点C将线段分割,求AC的长度。
答案:根据黄金分割的定义,AC的长度为10 × (√5 - 1) / 2 ≈ 6.18厘米。
2. 如果一个矩形的长宽比符合黄金分割,且长为20厘米,求宽的长度。
答案:设矩形的宽为x厘米,根据黄金分割的定义,有20 / x = (x + 20) / 20。
解这个方程,我们可以得到x = 20 × (√5 - 1) / 2 ≈ 12.36厘米。
3. 在一个正方形中,按照黄金分割点将正方形的一边分割,求分割后较小部分的长度。
答案:设正方形的边长为a厘米,按照黄金分割点分割后,较小部分的长度为a × (√5 - 1) / 2 厘米。
4. 一个等腰三角形的顶角为36°,底角为72°,求这个三角形的高与底边的比例。
答案:根据黄金分割的定义,这个等腰三角形的高与底边的比例为(√5 - 1) / 2 ≈ 0.618。
5. 已知一个五边形的边长都相等,且每个内角都为108°,求这个五边形的对角线与边长的比例。
答案:这个五边形的对角线与边长的比例符合黄金分割,即对角线长度与边长的比例为(√5 + 1) / 2 ≈ 1.618。
这些题目涵盖了黄金分割在不同几何图形中的应用,通过计算和理解黄金分割的定义,可以解决这些问题。
比例黄金分割平行线分线段成比例定理

黄金 分割及 平行线 分线段 成比例一、黄金分割黄金分割AC BC如图,点C 把线段AB 分成两条线段 AC 和BC,如果AB AC ,那么称线段AB 被点C 黄金 分割,点C 叫做线段AB 的黄金分割点.AC 与AB 的比叫做黄金比.黄金比黄金比值的求法:AH HB 、51AC 因为ABBCAC ,且 BC= AB — AC 所以AC AB AC AB AC解得AC =4AB2,或 AO 0.618AB ,AC一 5 12 或 0.6183、在AB 上截取AC= AE,所以点、5..5 1 3 .5 理由:设 AB= 1,贝U BD= 1/2,AD = 2 , AC =2, BC =2AC BC 1所以AB AC 2 ,所以点C 是线段AB 的黄金分割点. 方法二:如图1、在线段AB 上作正方形 ADCB2取AD 的中点E ,连接EB.3、延长DA 至 F ,使EF = EB.4、以线段 AF 为边作正方形 AFGH 所以点H 是线段AB 的黄金分割点.BE ^EF理由:设AB= 1,则AE = 2,所以、5 13、、5所以AB AH2 ,所以点H 是线段AB 的黄金分割点.即得黄金比AB求作黄金分割点求已知线段AB 的黄金分割点。
方法一:如图1、经过点B 作BD 丄AB 且BD=2=DB.C 是线段AB 的黄金分割点.DA 上截取DE方法三:如图1以AB为腰作等腰△ ABD使/ A= 362、作/ ADB的角平分线交AB于点C 所以,点C是线段AB的黄金分割点.理由:作图的理由在本章学完就知道,对这一基本图形我们将会非常熟悉,此等腰三角形叫做黄金三角形AB .5 1例1:如图所示,矩形CDEF得到一个小矩形ABCD是黄金矩形(即BC = 2 〜0.618 ),如果在其内作正方形ABFE试问矩形ABFE是否也是黄金矩形?例2:以长为2的线段AB为边作正方形ABCD取AB的中点P,连接PD,在BA的延长线上取点F,使PF= PD,以AF为边作正方形AMEF点M在AD上,如图所示,(1 )求AM DM的长,(2)试说明 A M=AD・ DM(3)根据(2)的结论,你能找出图中的黄金分割点吗?练习题一、请你填一填(1)如图,若点P是AB的黄金分割点,则线段A P、PB AB满足A P关系式_________ ,即AP是_________ 与 _______ 的比例中项.(2) __________________________________ 黄金矩形的宽与长的比大约为 (精确到0.001 ).(3)如果线段d是线段a、b、c的第四比例项,其中a=2 cm, b=4 cm, c=5 cm,贝Ud= ____________ cm.(4) ______________________________________________________________ 已知O点是正方形ABCD勺两条对角线的交点,则AO: AB: AO ________________________ .二、认真选一选1、有以下命题:①如果线段d是线段a, b,c的第四比例项,则有 --b d②如果点C是线段AB的中点,那么AC是AB BC的比例中项③如果点C是线段AB的黄金分割点,且AOBC那么AC是AB与BC的比例中项④如果点C是线段AB的黄金分割点,AOBC且AB=2,则AC=T5 —1 其中正确的判断有()A.1个B.2个C.3个D.4个2、已知P为线段AB的黄金分割点,且AP V PB,则()A、AP2AB PB; B AB2AP PB; C PB2AP AB; D、AP2BP2AB23、.已知点M将线段AB黄金分割(AM >BM),则下列各式中不正确的是()专题讲解专题一、平行线分线段成比例定理及其推论基本应用【例1】如图,DE // BC ,且DB AE ,若AB 5,AC 10,求AE 的长。
初中数学相似三角形之黄金分割专项练习题(附答案详解)

解:由于D为线段AB=2的黄金分割点,
且AD>BD,
则AD= ×2=( )cm
∴BD=AB−AD=2−( )=
故选D.
【点睛】
本题考查了黄金分割.应该识记黄金分割的公式:较短的线段=原线段的 ,较长的线段=原线段的 .
2.B
【解析】
【分析】
由AP>BP知PA是较长线段,根据黄金分割点的定义,则AP2=BP•AB.
5.已知线段AB的长为4,点P是线段AB的黄金分割点(AP>BP),则PA的长为()
A.2 ﹣2B.6﹣2√5C. D.4﹣2
6.已知点C是线段AB上的一个点,且满足AC2=BC•AB,则下列式子成立的是()
A. B. C. D.
7.已知如图,点C是线段AB的黄金分割点(AC>BC),则下列结论中正确的是()
【详解】
解:∵P为线段AB的黄金分割点,且AP>BP,
∴AP2=BP•AB.
故选:B.
【点睛】
本题考查了黄金分割,理解黄金分割点的概念,找出黄金分割中成比例的对应线段即可.
3.D
【解析】
【分析】
分AC<BC、AC>BC两种情况,根据黄金比值计算即可.
【详解】
解:当AC<BC时,BC= AB= ,
当AC>BC时,BC= = ,
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点,如图2所示,则直线CD是△ABC的黄金分割线,你认为对吗?说说你的理由;
(2)请你说明:三角形的中线是否是该三角形的黄金分割线.
21.把宽与长之比为 的矩形叫做黄金矩形,黄金矩形令人赏心悦目,它给我们以协调、匀称的美感,如图,四边形 是黄金矩形,如果在这个黄金矩形里画一个正方形,那么剩下的矩形(矩形: )还是黄金矩形吗?请证明你的结论.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关“黄金分割比”的试题
1、所有的黄金矩形都是________________________________.
2、宽与长的比等于黄金比的矩形也称为黄金矩形,若一黄金矩形的长为2cm ,则其宽为________________cm .
3、黄金比的近似值为_________________,准确值为______________________.
4、如图所示,顶角为36°的等腰三角形,其底边与腰之比等于k ,这样的三
角形叫黄金三角形,已知腰长AB=1,△ABC 为第一个黄金三角形,△BCD
为第二个黄金三角形,△CDE 为第三个黄金三角形,以此类推,第2007个黄
金三角形的周长为( )
A .k 2006
B .k 2007
C .k
k +22006
D .k 2006(2+k ) 5、(2005•嘉兴)顶角为36°的等腰三角形称为黄金三角形.如图,△ABC 、△BDC 、△DEC 都是黄金三角形,已知AB=1,则DE=____________________.
6、顶角为36°的等腰三角形称为黄金三角形,如图,五边形ABCDE 的5条边相等,5个内角相等,则图中共有黄金三角形的个数是( )
A .25
B .10
C .15
D .20
7、(2004•安徽)如图,扇子的圆心角为x °,余下的扇形的圆心角为
y °,x 与y 的比通常按黄金比为设计,这样的扇子外形较美观,若取
黄金比为0.6,则x 为( )
A .216
B .135
C .120
D .108
8、(2009•枣庄)宽与长的比是2
15-的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在
数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):
第一步:作一个正方形ABCD ;
第二步:分别取AD ,BC 的中点M ,N ,连接MN ;
第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线
于E ;
第四步:过E 作EF ⊥AD ,交AD 的延长线于F .
请你根据以上作法,证明矩形DCEF 为黄金矩形.
9、(如图1),点P 将线段AB 分成一条较小线段AP 和一条较大线段BP ,如果AB BP BP AP =,那么称点P 为线段AB 的黄金分割点,设AB
BP BP AP ==k ,则k 就是黄金比,并且k ≈0.618. (1)以图1中的AP 为底,BP 为腰得到等腰△APB (如图2),等腰△APB 即为黄金三角形,黄金三角形的定义为:满足腰
底腰=腰底+≈0.618的等腰三角形是黄金三角形;类似地,请你给出黄金矩形的定义:__________________________________________________;
(2)如图1,设AB=1,请你说明为什么k 约为0.618;
(3)由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成面积为S 1和面积为S 2的两部分(设S 1<S 2),如果S
S S S 221=,那么称直线l 为该图形的黄金分割线.(如图3),点P 是线段AB 的黄金分割点,那么直线CP 是△ABC 的黄金分割线吗?请说明理由;
(4)图3中的△ABC 的黄金分割线有几条?
10、(2011•六盘水)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm ,下身长约93.00cm ,她要穿约___________cm 的
11、如果三条线段的长a 、b 、c 满足2
15-==b c a b ,那么(a ,b ,c )叫做“黄金线段组”.黄金线段组中的三条线段( )
A .必构成锐角三角形
B .必构成直角三角形
C .必构成钝角三角形
D .不能构成三角形
12、如图,在△ABC 中,点D 在边AB 上,且DB=DC=AC ,已知∠ACE=108°,BC=2.
(1)求∠B 的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比215-. ①写出图中所有的黄金三角形,选一个说明理由;
②求AD 的长;
③在直线AB 或BC 上是否存在点P (点A 、B 除外),使△PDC 是黄金三角形?若存在,在备用图中画出点P ,简要说明画出点P 的方法(不要求证明);若不存在,说明理由.
13、(2007•连云港)如图1,点C 将线段AB 分成两部分,如果AC
BC AB AC =,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果1
21S S S S =,那么称直线l 为该图形的黄金分割线. (1)研究小组猜想:在△ABC 中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是△ABC 的黄金分割线.你认为对吗?为什么?
(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?
(3)研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF ∥CE ,交AC 于点F ,连接EF (如图3),则直线EF 也是△ABC 的黄金分割线.请你说明理由.
(4)如图4,点E 是平行四边形ABCD 的边AB 的黄金分割点,过点E 作EF ∥AD ,交DC 于点F ,显然直线EF 是平行四边形ABCD 的黄金分割线.请你画一条平行四边形ABCD 的黄金分割线,使它不经过平行四边形ABCD 各边黄金分割点.
14、(2011•南平)定义:对于抛物线y=ax 2+bx+c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y=2x 2-2x+2是黄金抛物线.
(1)请再写出一个与上例不同的黄金抛物线的解析式;
(2)若抛物线y=ax 2+bx+c (a 、b 、c 是常数,a ≠0)是黄金抛物线,请探究该黄金抛物线与x 轴的公共点个数的情况(要求说明理由);
(3)将黄金抛物线y=2x 2-2x+2沿对称轴向下平移3个单位
①直接写出平移后的新抛物线的解析式;
②设①中的新抛物线与y 轴交于点A ,对称轴与x 轴交于点B ,动点Q 在对称轴上,问新抛物线上是否存在点P ,使以点P 、Q 、B 为顶点的三角形与△AOB 全等?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由[注:第小题可根据解题需要在备用图中画出新抛物线的示意图(画图不计分)]
【提示:抛物线y=ax 2+bx+c (a ≠0)的对称轴是a b x 2-=,顶点坐标是(a
b 2-,a b a
c 442-)】.。