高二理科数学(选修2-2、2-3)综合测试题题

合集下载

高二数学理科选修2-2、2-3综合练习题(含答案)

高二数学理科选修2-2、2-3综合练习题(含答案)

高二理科选修2-2、2-3综合练习题一、选择题1.已知|z |=3,且z +3i 是纯虚数,则z =( )A .-3iB .3iC .±3i D.4i 2.函数y=x 2cosx 的导数为( ) (A) y ′=2xcosx -x 2sinx(B) y ′=2xcosx+x 2sinx (C) y ′=x 2cosx -2xsinx(D) y ′=xcosx -x 2sinx3.若x 为自然数,且x<55,则(55-x)(56–x)…(68–x )( 69–x )= ( )A 、x x A --5569B 、1569x A -C 、1555x A -D 、1455x A -4.一边长为6的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,为使方盒的容积最大,x 应取( ) .A 、1B 、2C 、3D 、45、工人制造机器零件尺寸在正常情况下,服从正态分布2(,)N μσ.在一次正常实验中,取1000个零件时,不属于(3,3)μσμσ-+这个尺寸范围的零件个数可能为( ) A .3个 B .6个 C .7个 D .10个 6、用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角7.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法( ).A 、72种B 、36种C 、24种D 、12种8、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32B. 31C. 1D. 09.若4)31(22+-=⎰dx x a ,且naxx )1(+的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( ) A .164-B .132C .164 D .112810.给出以下命题:⑴若 ,则f(x)>0; ⑵ ; ⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则 ; 其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二、填空题11、已知函数f(x) =32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是 .12.观察下式1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,……,则可得出一般性结论:________13.已知X 的分布列如图,且,则a 的值为____14.对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________. (把你认为正确的命题序号都填上)15.设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f .则不等式)1(1)1(2-->+x f x x f 的解集为____________.20sin 4xdx =⎰π()0ba f x dx >⎰0()()aa TTf x dx f x dx +=⎰⎰三、解答题16.(12分)已知1z i a b =+,,为实数.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求a ,b 的值.17、(12分) 20()(28)(0)xF x t t dt x =+->⎰.(1)求()F x 的单调区间; (2)求函数()F x 在[13],上的最值.18、(12分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.19、(12分)某次有奖竞猜活动中,主持人准备了A 、B 两个相互独立的问题, 并且宣布:观众答对问题A 可获奖金a 元,答对问题B 可获奖金2a 元;先答哪个题由观众自由选择;只有第一个问题答对,才能再答第二个问题,否则终止答题.设某幸运观众答对问题A 、B 的概率分别为31、14.你觉得他应先回答哪个问题才能使获得奖金的期望较大?说明理由.20、(13分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

郑 2-2、2-3测试题(含答案)

郑 2-2、2-3测试题(含答案)

高二数学选修2-2、2-3测试题参考数据: P (χ2≥x 0)0.500.400.250.150.100.050.025 0.010 0.0050.001x 00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828一、选择题:(本大题共8小题,每小题5分,共40分) 1.已知f(x)=22x x +,则'(0)f =( )A . 0B . -4C . -2D . 2 2.如果复数(2m +i)(1+mi)是实数,则实数m=( ) A . 1 B . -1 C .2 D . -23. 某科研机构为了研究中年人秃发与心脏病的是否有关,随机调查了一些中年人情况,具体数据如下表:根据表中数据得到45532075025)300545020(7752⨯⨯⨯⨯-⨯⨯=k ≈15.968 因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为 .A 、0.1B 、0.05C 、0.01D 、0.001 4.曲线y=2x 与直线y-x-2=0围成图形的面积是( ) A .133 B . 136 C . 73 D . 925.在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1个红球的条件下,第二个人摸出1个白球的概率为( )A. 1019B. 519 C . 12 D. 19206.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是( ) A . 甲科总体的标准差最小 B . 乙科总体的标准差及平均数都居中 C . 丙科总体的平均数最小 D . 甲、乙、丙的总体的平均数不相同7. 从图中的9个顶点中任取3个点作为一组,其中可构成三角形的组数是( ) A .88 B .84 C .80 D .76第7题图 第6题图 8. 若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( )A .32个B .27个C .81个D .64个9.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( A ) A. 1y x =+B. 2y x =+ C.21y x =+D. 1y x =-10、某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83D.4311、若函数3()3f x x x =-在区间2(12,)a a -上有最小值,则实数a 的取值范围是( ) A .(1,11)-B .(1,4)-C .(1,2]-D .(1,2)-12.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是701.根据这位负责人的话可以推断出参加面试的人数为( ) A .21B .35C .42D .70二、填空题:(本大题共6小题,每小题5分,共30分)13.定义运算a c b d =ad-bc ,若复数x 满足 22xi 32i-=2x ,则x= . 14.已知函数f(x)=32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是15.若(2x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 5+a 3+a 1=_____1094 ________.16. 为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem ),其加密、解密原理如下图: 现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为 .心脏病 无心脏病 秃发 20 300 不秃发5450甲乙丙 解密密钥密码 加密密钥密码 明文 密文 密文 发送明文试题答题卡一、选择题:二、填空题:13.,14. ,15. , 16. ,三、解答题。

高二数学联考数学试题(理)(选修2-2)

高二数学联考数学试题(理)(选修2-2)

高二数学选修2-2综合测试(理科)试题第Ⅰ卷 (选择题 共55分)一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项符合题目要求)1.下列各数72+,227i ,0,85+i ,)31(-i ,618.0中,纯虚数的个数有 A .0个 B .1个 C .2个 D .3个2.复数i z +=31,i z -=12,则复数21z z ×在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a ,b 至少有一个为0”,应假设A .a ,b 没有一个为0;B .a ,b 只有一个为0;C .a ,b 至多有一个为0 ;D .a ,b 两个都为04.某个命题与正整数n 有关.如果当)(*N k k n Î=时该命题成立,那么可推得当1+=k n 时该命题也成立.现已知当5=n 时该命题不成立,那么可推得A .当6=n 时该命题不成立B .当4=n 时该命题不成立C .当6=n 时该命题成立D .当4=n 时该命题成立5.一个物体的运动方程为21t t s +-=,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是A .7米/秒B .6米/秒C .5米/秒D .8米/秒6.抛物线2x y =在点)41,21(M 处的切线的倾斜角是A .030B .045C .060D .0907.已知函数)(x f 在1=x 处的导数为3,则)(x f 的解析式可能为A .)1(3)1(3-+-x xB .2)1(2-xC .)1(2-xD .1-x 8.函数x x x f cos 21)(+=的一个单调递增区间为 A .6,67(p p - B .)65,6(p p C .3,34(p p - D .32,3(p p 9.已知函数x ax x x f 3)(23+-=,若)(x f 在R 上是增函数,则实数a 的取值范围是A .3£aB .33££-aC .3<aD .33<<-a10.求值:=-ò-dx x 2224A .p 2B .p 4C .p 8D .p 1611.已知函数23bx ax y +=,当1=x 时,有极大值3,则=-b aA .15B .6-C .3D .15-第Ⅱ卷(非选择题 共95分)二、填空题(本大题共4小题每小题5分,共20分.把答案填在题中横线上)12.复数iz -=11的共轭复数是 . 13.设O 是原点,向量,对应的复数分别为i 32-,i 23+-,那么向量对应的复数是 .14.过原点作曲线x y ln =的切线,则切线斜率为 .15.)(131211)(*N n n n f Î++++=L ,经计算得:23)2(=f ,2)4(>f ,25)8(>f ,3)16(>f ,27)32(>f ,推测当2³n 时,有 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知ABC D 的三个内角C B A ,,成等差数列,求证:c b a c b b a ++=+++311.17.(本小题满分12分) 已知函数x x x f 12)(3+-=.(1)求函数)(x f 的单调区间; (2)当]1,3[-Îx 时,求函数)(x f 的最大值与最小值.18.(本小题满分12分)用数学归纳法证明 )12)(1(63212222++=++++n n n n L (*N n Î).19.(本小题满分15分)已知函数xx ax x f +-++=11)1ln()(,其中0>a ,且),0[+¥Îx . (1)若)(x f 在1=x 处取得极值,求a 的值; (2)求)(x f 的单调区间;(3)若)(x f 的最小值为1,求a 的取值范围.20.(本小题满分10分)(2010全国)设函数2()1x f x e x ax =---(1)若0,()a f x =求的单调区间; (2)若当0()0,x f x a ³³时求的取值范围.21.(本小题满分14分)设()y f x =是二次函数,方程()0f x = 有两个相等的实根,且()22f x x ¢=+ .(1)求()y f x =的表达式;(2)若直线01()x t t =-<< 把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.。

数学选修2-2 2-3复习题(一)

数学选修2-2 2-3复习题(一)

2-2 2-3综合试题(一)一.选择题(10小题,每小题5分,共50分)1.一个物体的位移s (米)和与时间t (秒)的关系为242s t t =-+,则该物体在4秒末的瞬时速度是 ( )A .12米/秒B .8米/秒C .6米/秒D .8米/秒2.用反证法证明命题 “自然数a 、b 、c 中恰有一个偶数”时,需假设原命题不成立,下列正确的是( )A 、a 、b 、c 都是奇数B 、a 、b 、c 都是偶数C 、a 、b 、c 中或都是奇数或至少有两个偶数D 、a 、b 、c 中至少有两个偶数 3. 测得四组),(y x 的值)2,1()3,2()4,3()5,4(则y 与x 之间的回归直线方程为( ) (A )1+=x y (B )2+=x y (C ) 12+=x y (D ) 1-=x y4.将一个各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,从这些小正方体中任取一个,其中恰好有2面涂有颜色的概率是 ( ) A .916B .2764 C .38 D .11325.下列两个变量之间的关系哪个不是函数关系( )A .角度和它的正弦值B .正方形边长和面积C .正n 边形边数和顶点角度之和D .人的年龄和身高 6.下面几种推理中是演绎推理....的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈;C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=7.从6名学生中,选出4人分别从事A 、B 、C 、D 四项不同的工作,若其中,甲、乙两人不能从事工作A ,则不同的选派方案共有 ( )A .96种B .180种C .240种D .280种8.若X 是离散型随机变量,()()1221,33P X x P X x ====,且12x x <,又已知49EX =,2DX =,则12x x +=( )(A )53 或1 (B )59 (C )179 (D )1399.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y =围成一个叶形图(阴影部分), 向正方形AOBC 内随机投一点(该点落在正方 形AOBC 内任何一点是等可能的),则所投的点 落在叶形图内部的概率是( ) (A )12 (B )13 (C )14 (D )1610.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A.在1t 时刻,甲车在乙车前面 B.1t 时刻后,甲车在乙车后面 C.在0t 时刻,两车的位置相同 D.0t 时刻后,乙车在甲车前面二.填空题(5小题,每小题5分,共25分) 11. 复数ii i )1)(1(+-在复平面中所对应的点到原点的距离是_______;____________________12.设随机变量X~N (2,4),则D (21X )的值等于 。

高二数学选修2-2与2-3综合试卷含答案

高二数学选修2-2与2-3综合试卷含答案

一选择题1:若()()22132i x x x -+++是纯虚数,则实数x 的值是 。

A. 1- B.1 C. 1± D. 以上都不对2:复数z =i1+i在复平面上对应的点位于 。

A .第一象限B .第二象限C .第三象限D .第四象限 3:若220(3)10,x k dx k +==⎰则 。

A.1B.2C.3D.4 4:函数f(x)=(x -3)e x 的单调递增区间是 。

A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 。

A.280种 B.240种 C.180种 D.96种6:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有 。

A.88A 种 B.48A 种C.44A ·44A 种D.44A 种7:从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于 。

A. 2个球都不是红球的概率B.2个球都是红球的概率 C. 至少有1个红球的概率 D.2个球中恰有1个红球的概率 8:已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 。

A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+ 9:正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为 。

A.0,8 B .0,4 C.0,2 D.0,210:已知f(x)=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c 。

A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152二:填空题11:由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是 。

高二数学选修2-2,2-3综合检测习题解析

高二数学选修2-2,2-3综合检测习题解析

选修2-2,2-3综合检测一、选择题(共12小题,每小题5分,共60分) 1.设复数z =1+2i ,则z 2-2z 等于( )A .-3B .3C .-3iD .3i 答案.A z2-2z =z(z -2) =(1+2i)(2i -1) =-2-1=-3.2.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)答案解析 B∵f ′(x)=2x +2=0,∴x =-1. f(-1)=(-1)2+2×(-1)-2=-3. ∴M(-1,-3).3.从1,2,3,4,5中任取2个不同的数,事件A=“取到的两个数之和为偶数”,事件B=“取到的两个数均为偶数”,则 P(B|A)等于( ) (A)18 (B)14(C)25 (D)12解析:P(B|A)=n(AB)n(A)=14,故选B.4.满足条件|z -1|=|5+12i|的复数z 在复平面上对应Z 点的轨迹是( ) A .一条直线 B .两条直线 C .圆 D .椭圆答案.C 本题中|z -1|表示点Z 到点(1,0)的距离,|5+12i|表示复数5+12i 的模长,所以|z -1|=13,表示以(1,0)为圆心,13为半径的圆.注意复数的模的定义及常见曲线的定义.5.函数f(x)=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 答案 D解析 f ′(x)=3x 2+2ax +3.∵f(x)在x =-3时取得极值, 即f ′(-3)=0,∴27-6a +3=0,∴a =5.6.函数y=ln1|x+1|的大致图象为( )答案 D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.7.甲、乙、丙3位志愿者安排在周一至周五5天中参加某项志愿活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,则不同的安排方法共有()A.20种B.30种C.40种D.60种解析分类解决.甲排周一,乙、丙只能在周二至周五这4天中选两天进行安排,有A24=12(种)方法;甲排周二,乙、丙只能在周三至周五这3天中选两天安排,有A23=6(种)方法;甲排周三,乙、丙只能安排在周四和周五,有A22=2(种)方法.由分类加法计数原理,得共有12+6+2=20(种)方法.答案 A8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名学生至少一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为()A.360B.520C.600D.720解析根据题意,分两种情况讨论:若只有甲、乙其中一人参加,有C12·C35·A44=480(种)情况;若甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙相邻的有C22·C25·A33·A22=120(种)情况.故不同的发言顺序种数为480+240-120=600.答案 C9.已知(1+x )10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 8等于( ) A.-180B.180C.45D.-45解析 本题是关于二项展开式的系数问题,注意到展开式右边的特点,可将1+x 写成x -1+2,再展开(1+x )10=(2+x -1)10=C 010210+C 11029(x -1)+C 21028(x -1)2+…+C 81022(x -1)8+C 9102(x -1)9+C 1010(x -1)10,可得a 8=22C 810=180. 答案 B10.若(1-2x )2 020=a 0+a 1x +…+a 2 020x 2 020(x ∈R ),则a 12+a 222+…+a 2 02022 020的值为( ) A.2B.0C.-1D.-2解析 令x =0,则a 0=1,令x =12,则a 0+a 12+a 222+…+a 2 02022 020=0,∴a 12+a 222+…+a 2 02022 020=-1. 故选C.11.某次数学考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的方差为( ). (A )48 (B )9.6 (C )1.92 (D )24 解析:设小王选对个数为X,得分为η=5X, 则X ~B(12,0.8),D(X)=np(1-p)=12×0.8×0.2=1.92, D(η)=D(5X)=25D(X)=25×1.92=48. 答案:4812.若函数f(x)=x 2+ax +1x 在(12,+∞)是增函数,则a 的取值范围是 ( )A .(-1,0]B .[-1,+∞)C .(0,3]D .答案 D解析 把函数在某一区间上的单调递增转化为其导函数在该区间上大于或等于零恒成立,分离参数后求新函数的最值. 由题意知f ′(x)≥0对任意的x ∈[21,+∞)恒成立,又f ′(x)=2x +a -21x , 所以2x +a -21x ≥0对任意的x ∈[21,+∞)恒成立, 分离参数得a ≥21x -2x , 若满足题意,需a ≥(21x-2x)max. 令h(x)=21x -2x ,x ∈[21,+∞) 因为h ′(x)=-31x-2, 所以当x ∈[21,+∞)时,h ′(x)<0, 即h(x)在[21,+∞)上单调递减, 所以h(x)<h(21)=3,故a ≥3. 二、填空题(每小题5分,共20分)13.现有语文、数学、英语书各1本,把它们随机发给甲、乙、丙三个人,且每人都得到1本书,则甲得不到语文书的概率为________ .解析:语文、数学、英语书各1本,随机发给甲、乙、丙三个人,每人都得到1本书,共有A 33=6种分法,甲得不到语文书的分法有C 21A 22=4种,根据古典概型概率公式可得,甲得不到语文书的概率为46=23. 答案:2314.在平面直角坐标系xoy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________ 答案 (-2,15)解析 y ′=3x 2-10=2⇒x =±2,又点P 在第二象限内,∴x =-2,得点P 的坐标为(-2,15)15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________. 【答案】0.18 ;【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63⨯0.5⨯0.5⨯2=0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4⨯0.62⨯0.52⨯2=0.072综上所述,甲队以4:1获胜的概率是q=0.108+0.072=0.1816.函数f(x)=x 3+ax 2+bx +a 2,在x =1时有极值10,那么a ,b 的值分别为________. 答案 4,-11解析 f ′(x)=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f(1)=a 2+a +b +1=10, 联立方程组,解得⎩⎨⎧a =-3b =3,或⎩⎨⎧a =4b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11.三、解答题(本大题共70分)17(10分).某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X 的分布列和期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A, 则P(A)=56×45×34=12. (2)X 的可能取值是1,2,3,则P(X=1)=16, P(X=2)=56×15=16, P(X=3)=56×45=23, 所以X 的分布列为E (X )=16 +26 +2=5218(12分).已知函数d cx bx x x f +++=23)(的图象过点P (0,2),且在点M))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.19.(本小题满分12分)为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此种元素的含量不小于18毫克时,该产品为优等品.(1)试用样品数据估计甲、乙两种产品的优等品率;(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件C,求事件C 的概率.解:(1)从甲产品抽取的10件样品中优等品有4件,优等品率为410 = 25, 从乙产品抽取的10件样品中优等品有5件,优等品率为510 = 12,故甲、乙两种产品的优等品率分别为25,12. (2)ξ的所有可能取值为0,1,2,3. P(ξ=0)=C 53C 103 = 112, P(ξ=1)=C 51C 52C 103 = 512,P(ξ=2)=C 52C 51C 103 = 512, P(ξ=3)=C 53C 103 = 112.E(ξ)=0×112+1×512+2×512+3×112= 32.(3)抽到的优等品中,甲产品恰比乙产品多2件包括两种情况:“抽到的优等品数甲产品2件且乙产品0件”“抽到的优等品数甲产品3件且乙产品1件”,分别记为事件A,B,P(A)=C 32(25)2(1-25)×C 30(12)0(1-12)3=9250, P(B)=C 33(25)3×C 31×12×(1-12)2=3125,故抽到的优等品中,甲产品恰比乙产品多2件的概率为P(C)=P(A)+ P(B)=9250+3125 =350.20、(12分)已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;(2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. 则,(),()x g x g x '的变化情况如下表当0,()x g x =有极大值3;1,()m x g x +=有极小值2m +. ………………………10分由()g x 的简图知,当且仅当(0)0,(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,m 的范围是(3,2)--.21(12分).近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是23和13.每人限抽一次,100%中奖.小张、小王、小李、小赵四个金冠买家约定零点整抽奖.(1)试求这4人中恰有1人抽到500元代金券的概率;(2)这4人中抽到200元,500元代金券的人数分别用X,Y 表示,记ξ=XY,求随机变量ξ的分布列与数学期望.解:(1)设“这4人中恰有i 人抽到500元代金券”为事件Ai,P(A1)=C 41(13)1(23)3=3281.(2)易知ξ可取0,3,4.P(ξ=0)=P(A0)+P(A4)=C 40(13)0(23)4+C 44(13)4(23)0=1681+181=1781, P(ξ=3)=P(A1)+P(A3)=C 41(13)1(23)3+C 43(13)3(23)1=3281+881=4081, P(ξ=4)=P(A2)=C 42(13)2(23)2=2481=827.E(ξ)=0×1781+3×4081+4×827=83. 22(12分).设,.(1)令,求在内的极值;(2)求证:当时,恒有.(1)解:根据求导法则有,故,于是,列表如下:极小值所以,在处取得极小值.(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调增加.所以当时,,即.故当时,恒有.。

高二理科数学选修2-2综合试题(三)(含答案)

高二理科数学选修2-2综合试题(三)(含答案)

高二理科数学选修2—2综合检测题(三)一、选择题1.若c bx ax x f ++=24)(满足2)1(='f ,则=-')1(f ( ) A .4- B .2- C .2 D .42.已知曲线2212-=x y 上一点)23,1(-P ,则过点P 的切线的倾斜角为( )A .300B .450C .1350D .1650 3.函数23)(23+-=x x x f 在区间][1,1-上的最大值是( )A .2-B . 0C . 2D .44.复数z 满足i z i 34)43(+=-,则z 的虚部位( )A .i 4B .4C .i 54D .545.函数x x x y sin cos -=的导数为( )A .x x sinB .x x sin -C .x x cosD .x x cos -6.三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h ,(h 为四面体的高)7.函数()x x x f ln 22-=的递增区间是( )A.)21,0( B. ),21(),21,0(+∞ C. ),21(+∞ D.)21,0(),21,(-∞8.下列推理中属于归纳推理且结论正确的是( )A .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +> B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =9.已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )10.已知复数ii a z 2)1(++=(,a R i ∈为虚数单位)为实数,则0)a x dx ⎰的值为( )A .π+2B .22π+C .π24+D .π44+11.若函数1)(23+-=ax x x f 在)2,0(上单调递减,则实数a 的取值范围为( )A .3≥aB .3=aC .3≤aD .30<<a 12.若函数c bx ax x x f +++=23)(有极值点21,x x ,且11)(x x f =,若关于x 的方程[]0)(2)(32=++b x af x f 的不同实数根的个数是( )A .3B .4C .5D .6 二、填空题(共5个小题,25分) 13.已知函数1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是14.已知函数()f x 的导函数为()f x ',且满足关系式()()332ln f x xf x '=-,则()2f '的值等 于 15.函数2x y =)0(x >的图像在点2,(kk a a )处的切线与x 轴的交点的横坐标为1+k a (*∈N k )若161=a ,则321a a a ++=16.设函数f (x ) = xx +2 (x >0)观察:f 1(x )= f (x ) =xx +2, f 2(x ) =f ( f 1(x )) = x3x +4 , f 3(x ) =f ( f 2(x )) = x7x +8, f 4(x ) =f ( f 3(x )) =x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x ) = f ( f n -1(x )) =___________________________ 三、解答题:(共6个小题,75分)17.已知复数)()32()1(2R m i m m m m z ∈-++-= (1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二理科数学(选修
2-2、2-3)综合测试题
班级___________
姓名__________________ 得分___________
一、选择题(本大题共12小题,每小题
5分,共60分.)
1.复数
i i
4321的共轭复数为( )
A.
i 5
25
1 , B.
i 5
25
1, C.
i 5
25
1 D.
i
5
25
12.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有
2件次品的取法种数为
( )
A .233
97
C C B.
2332
397397C C +C C
C.
514100
3
97
C
-C C D.
55100
97
C
-C
3.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为
( )
A.72
B.48
C.24
D.60 4.若0()
2f x ,则0
lim
k 00()()
2f x k f x k ( )
A
.2 B.1 C. 12
D.
无法确定
5.
10
1x
x
展开式中的常数项为( )
(A )第5项(B )第6项(C )第5项或第6项(D )不存在6.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,
则第2次抽出的是白球的概率为( )
(A )37(B )
38
(C )
47
(D )12
7.曲线3sin (0
)2
y
x x
与两坐标轴所围成图形的面积为
( )
A . 1
B . 2
C .
52
D. 3
8. 4
名学生被中大、华工、华师录取,若每所大学至少要录取1名,则不同的录取方法共有( )
A .72种
B .24种
C .36种
D .12种
9.两个实习生每人加工一个零件.加工为一等品的概率分别为23

34
,两个零件是否加工为
一等品相互独立,则这两个零件中恰有一个一等品的概率为
( )
(A )
12
(B)
512
(C)
14
(D)
16
10.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= ( )。

A.0.1588
B.0.1587
C.0.1586
D.0.1585
11.定积分
1
2
(2)x x
x dx 等于(

A24

1
2

14

12
12.在曲线
02
x
x y 上某一点A 处作一切线使之与曲线以及
x 轴所围的面积为
12
1,则这个
切线方程是( ).
A.y=-2x-1
B.y=-2x+1
C.y=2x-1
D.y=2x+1
二、填空题(本大题共4小题,每小题5分,共20分)13.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现
2枚正面向上,3枚反面向上的次数
为ξ,则ξ的数学期望是__________
14.某班从6名班干部中(其中男生4人,女生2人)选3人参加学校的义务劳动,在男生甲被
选中的情况下,女生乙也被选中的概率是___________ 15.若
2
1()
ln(2)2
f x x b x 在(-1,+)上是减函数,则b 的取值范围是
16、如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个
格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有种(用数字作答).三、解答题:(每题10分,共20分)17. 已知a 为实数,函数
2
()(1)()f x x
x a .
(1) 若(1)
0f ,求函数y
()f x 在[-
32
,1]上的极大值和极小值;
(2)若函数()f x 的图象上有与
x 轴平行的切线,求a 的取值范围.
18.在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。

现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回
箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。

求:
(1)取两次就结束的概率;
(2)正好取到2个白球的概率;
高二理科数学(选修
2-2、2-3)综合测试题答案一.选择题: BBCBB ADCBB AC 二.填空题:
13.25 14.25
15.
1
b
16.630
三.计算题:
17.解:(Ⅰ)∵(1)
0f ,∴3
21
0a ,即2a

∴2
1
()341
3()(1)3
f x x x x
x .… 2分
由()0f x ,得1x 或13x

由()
0f x ,得
11
3
x

… 4分
因此,函数()f x 的单调增区间为3(1)2
,,1(
1)3
,;单调减区间为
1(1)3
,.()f x 在1x 取得极大值为
(1)
2f ;()f x 在13
x
取得极小值为
1
50(
)
3
27
f .
(8)

(Ⅱ) ∵3
2
()
f x x
ax
x
a ,∴2
()
321f x x
ax .
∵函数()f x 的图象上有与x 轴平行的切线,∴
()
0f x 有实数解.
… 10分
∴2
44310a D
,∴2
3a
,即
33a a 或.
因此,所求实数
a 的取值范围是(
3]
[3),


… 12分18. 解:(1)取两次的概率
1
1821110
10
4142
55
25
C C P
C
C
……5分
答: 取两次的概率为425
………………..6分
(2)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,…
.7分
所以恰有两次取到白球的概率为
533
332153
3
101010
1010101000
P
答: 恰有两次取到白球的概率为
153
1000
………………….12分高二理科数学(选修
2-2、2-3)综合测试题答案
一.选择题: BBCBB ADCBB AC 二.填空题:
13.25 14.25
15.
1
b
16.630
三.计算题:
17.解:(Ⅰ)∵(1)
0f ,∴3
21
0a ,即2a

∴2
1
()341
3()(1)3
f x x x x
x .… 2分
由()
0f x ,得1x 或13x

由()
0f x ,得
11
3
x

… 4分
因此,函数()f x 的单调增区间为3(1)2
,,1(
1)3
,;单调减区间为
1(1)3,.()f x 在1x
取得极大值为
(1)
2f ;()f x 在13
x
取得极小值为
150(
)327f .
(8)

(Ⅱ) ∵3
2
()
f x x
ax
x
a ,∴2
()
321f x x
ax .
∵函数()f x 的图象上有与x 轴平行的切线,∴
()
0f x 有实数解.
… 10分
∴2
44310a D
,∴2
3a
,即
33a a 或.
因此,所求实数
a 的取值范围是(
3]
[3),


… 12分18. 解:(1)取两次的概率
1
1821110
10
4142
55
25
C C P
C
C
……5分
答: 取两次的概率为425
………………..6分
(2)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,…
.7分
所以恰有两次取到白球的概率为
533
332153
3
101010
1010101000
P
答: 恰有两次取到白球的概率为
153
1000
………………….12分。

相关文档
最新文档