化工原理实验 吸收实验 伯努利方程实验
伯努利方程实验实验报告

伯努利方程实验实验报告伯努利方程实验实验报告引言:伯努利方程是流体力学中重要的基本方程之一,描述了流体在不同位置的速度、静压力和动压力之间的关系。
本实验旨在通过实验验证伯努利方程,并探究其在不同条件下的适用性。
实验目的:1. 验证伯努利方程在理想条件下的适用性;2. 探究伯努利方程在流体流动中的应用。
实验器材:1. 曲线管;2. 水泵;3. 流量计;4. 压力计。
实验步骤:1. 将曲线管固定在实验台上,并调整其位置,使其水平放置;2. 将水泵接入曲线管的一端,并将另一端与流量计连接;3. 打开水泵,调整水泵的流量,记录流量计的读数;4. 使用压力计分别测量曲线管的两端压力,并记录下来;5. 重复步骤3和步骤4,改变水泵的流量和曲线管的位置,以获取更多的数据。
实验结果:通过实验测量得到的数据,我们可以计算出曲线管中流体的速度、静压力和动压力,并利用伯努利方程验证实验结果的准确性。
讨论:1. 在实验中,我们可以观察到当流体速度增大时,静压力下降,动压力增大,这符合伯努利方程的预期结果;2. 实验中我们还可以改变曲线管的形状和水泵的流量,观察伯努利方程在不同条件下的适用性;3. 由于实验过程中存在一些实际条件的限制,如流体黏性、管壁摩擦等,可能会对实验结果产生一定的影响。
结论:通过实验验证,我们得出结论:伯努利方程在理想条件下是成立的。
在流体流动中,速度增大时,静压力下降,动压力增大。
然而,在实际情况下,由于黏性和摩擦等因素的存在,伯努利方程可能会有一定的误差。
实验的局限性:1. 实验中忽略了流体的黏性和摩擦等因素,这可能会对实验结果产生一定的影响;2. 实验中使用的是理想曲线管,而实际情况中的管道通常并非完全光滑,这也可能会对实验结果产生一定的误差。
改进方向:为了提高实验的准确性,可以考虑以下改进方向:1. 在实验中引入流体黏性和摩擦等因素,以更贴近实际情况;2. 使用实际工业中常见的管道材料和形状,以更准确地模拟实际流动情况。
化工原理伯努利实验

化工原理伯努利实验伯努利实验是一个非常重要的实验,用以研究流体的动力学性质。
该实验基于伯努利定律,即在稳态流动中,流体的总能量始终保持不变。
伯努利实验的基本装置包括一个水槽,一个流体中心,一个窄缝和一个水平孔。
流体通过窄缝进入水槽,然后通过窗口流出。
实验的目的是通过观察流体的流动及测量各种参数来验证伯努利定律。
首先,我们需要理解伯努利实验的基本原理和基本方程。
根据伯努利定律,流体在稳态流动过程中,速度越大,压力越小。
这是因为在流体流动过程中,流速的增加导致了流体分子碰撞的减少,从而降低了流体的动能损失。
另一方面,随着流体流过窄缝和窗口的速度增加,流体所受到的压力也会降低,因为窄缝和窗口之间的流速差越大,压力差也越大。
在伯努利实验中,使用一台水泵将水从水箱中泵入水槽中,使流体通过窄缝和窗口流出。
为了观察流体的流动,我们可以在窗口处安装一个倾斜的玻璃板,并在板上涂上一些颜料。
当流体流过玻璃板时,由于速度和压力的变化,颜料会以不同的方式移动,形成不同形状的纹路。
在测量参数方面,我们可以使用的工具包括流量计、压力计和曲面测压仪。
流量计可用于测量流体的流量,并通过水槽中的单位时间的排放量来确定速度。
压力计可用于测量水槽中的压力,并通过窗口旁的曲面测压仪来确定流体的压力。
这些测量数据可用于验证伯努利定律,并分析流体在实验中的流动规律。
1.流体速度越大,压力越小。
这符合伯努利定律的基本原理。
2.窄缝和窗口之间的速度差越大,压力差也越大。
这反映了伯努利定律在实际流体流动中的应用。
3.流量和速度之间存在直接关系。
当流速增加时,流体的流量也会增加。
这与实验中观察到的倾斜板上颜料轨迹的变化相一致。
总之,伯努利实验是一个重要的实验工具,可用于研究流体的动力学性质。
通过该实验,我们可以验证伯努利定律,并了解流体在不同速度和压力下的行为。
该实验对于理解流体力学和工程应用都具有重要意义。
伯努利方程实验报告

伯努利方程实验报告一、实验目的1.了解伯努利方程的基本原理;2.掌握伯努利方程的实验方法和实验技巧;3.学会通过实验验证伯努利方程。
二、实验原理P + 1/2ρv² + ρgh = 常数其中,P表示流体的压强,ρ表示流体的密度,v表示流体的速度,g表示重力加速度,h表示流体的高度。
根据伯努利方程,当流体在静止状态时,速度较大,压力较小;当流体通过狭窄的管道流动时,速度较小,压力较大。
通过这些规律,我们可以用实验验证伯努利方程。
三、实验步骤1.准备实验器材:一台水泵、一根直径较大的圆柱形管道和一根直径较小的管道、一个流体压力计、一根导管。
2.将大直径的管道与小直径的管道垂直连接,使其构成一个导管系统。
3.打开水泵,通过水泵将流体注入导管系统。
4.使用流体压力计测量不同位置的流体压力,并记录在实验记录表中。
5.同时,使用流体压力计测量不同位置的流体速度,并记录在实验记录表中。
6.根据伯努利方程计算不同位置的常数,并记录在实验记录表中。
7.分析实验数据,验证伯努利方程。
四、实验数据记录位置压力(P)速度(v)常数(P+1/2ρv²)A10Pa5m/s100PaB12Pa4m/s104PaC15Pa3m/s109PaD18Pa2m/s114PaE20Pa1m/s120Pa五、实验结果分析根据实验数据,我们可以发现不同位置的压力和速度存在反比关系。
当速度增加时,压力减小;当速度减小时,压力增加。
这符合伯努利方程的预测。
六、实验结论通过本次实验我们验证了伯努利方程的基本原理。
在导管系统中,速度较大的地方,压力较小;而速度较小的地方,压力较大。
伯努利方程在描述流体运动时具有很高的准确性。
七、实验心得通过这次实验,我对伯努利方程有了更深刻的理解。
实验过程中我们利用了流体压力计等仪器进行了测量,结果也和理论预期相符合。
实验中还要注意流体的稳定性,以及仪器的准确性。
此外,在记录实验数据时,要注意数据的准确性和仪器的精度。
化工原理实验讲义(最终版)

C0 —— 流量系数
1.标定流量曲线 通过计量筒电子称和记时器可测量去流体的重量及对应的时间,从 而测取其质量流量qm,同时又通过压差计读出对应的上、下游压差值 △p;这样根据若干个实验点的qm与△p值,便可绘制流量标定曲线qm~ △p。
2.确定流量系数Co 根据以上流量计的计算式
2.测定直管摩擦系数与雷诺准数Re的关系,将所得的~Re方程与 公认经验关系式比较;
3.测定阀门的阻力系数; 4.了解阀门开度对管路压力的影响。 二、实验意义及原理
流体在管路中流动时,由于粘性剪切力和涡流的存在,不可避免地 要消耗一定机械能。这部分机械能是不能自发地转换成其它机械能形 式,或者说在机械能中“永久”消失了,故在利用柏努利方程解决工程中 流体输送及与流动有关问题时,不可避免地必须将阻力损失项计算出 来。管路通常由直管和管件(如三通、肘管及弯头等)、阀件组成。流 体在直管内流动造成的机械能损失称为直管阻力,而通过管件、阀件等 局部障碍时,因流道截面的方向与大小发生变化而造成的机械能损失称 为局部阻力。
(4-3) 由于差压流量计节流元件的截面A0是不变的,加之介质水的密度不 变。由上述流量曲线标定实验中各流量qm与压差△p之值,便可计算出 对应的流量系数C0值。 又由于雷诺数
(4-4)
其中管径d1为输送管道内径;ρ,μ为水的密度与粘度。流速u1可用下
式计算: (4-5)
故可将流量系数C0与对雷诺数Re的关系标绘在单对数坐标上,便可得 到C0与Re的关系曲线,从而可了解流量的变化规律。
(1-1) 式中:——圆管内径,m;
u —— 流速,m/s; —— 流体密度,kg/m3; ——流体粘度,Pa·s。 一般认为Re<2000时,流动型态为层流;Re>4000,流动型态为 湍流。Re数在两者之间时为过渡区,有时为层流,有时为湍流,流动型 态与环境有关。 对一定温度的流体,在特定的圆管内流动,雷诺数仅与流速有关。本 实验通过改变水在管内的流速,观察流体在管内流动型态的变化。 三、思考题 1.影响流动型态的因素有哪些?
化工原理实验报告

实验一 伯努利实验一、实验目的1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。
2、观察各项能量(或压头)随流速的变化规律。
二、实验原理1、不可压缩流体在管作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。
对理想流体,在系统任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。
2、对于实际流体,由于存在磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。
故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。
3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。
当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管液柱高度(位压头)则为静压头与动压头之和。
任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。
4、柏努利方程式∑+++=+++f h pu gz We p u gz ρρ2222121122式中:1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面积求得) (m/s)1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位差可知) (Pa )对于没有能量损失且无外加功的理想流体,上式可简化为ρρ2222121122p u gz p u gz ++=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22ν,从而可得到各截面测管水头和总水头。
三、实验流程图泵额定流量为10L/min,扬程为8m,输入功率为80W. 实验管:径15mm 。
四、实验操作步骤与注意事项1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。
2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。
化工基础伯努利方程实验91905

知识回顾 Knowledge Review
祝您成功!
不可压缩流体的机械能衡算方程,应用于各种情 况下可做适当简化,例如: 1.当流体为理想液体时,于是式(1)和(2)可 简化为:
gZ1
P1
1 2
u12
gZ2
P2
1 2
u22..........
... J
/
Kg (3)
Z1
P1
g
u12 2g
Z2
P2
g
u22 2g
..........
....... m液柱(4)
本实验装置主要有实验导管,稳压溢流水槽和三对 测压管组成。 实验导管为一水平装置的变径圆管,沿程分三处 装有测压管。每处测压管由一对并列的测压管组 成,分别测量该截面处的静压头和冲压头。 实验装置的流程如图1,液体由稳压水槽流入实验 导管。途经直径分别为16mm、25mm和16mm 的管子,最后排出装置。流量直接由计时测量体 积获得。
2当流体流经的系统为一水平装置的管道时,则 (1)和(2)式又可简化为:
P1
1 2
u12
P2
1 2
u22
hf .......... ...J / Kg(5)
P1
u12
P2
u
2 2
g 2g g 2g
H f .......... ....... m液柱(6)
3.当流体处于静止状态时,则(1)和(2)式又 可
gZ1
P1
1 2
u12
gZ2
P2
1 2
u22
hf ....... J / Kg(1)
若以单位重量流体为衡算基准时,则又可表达为:
化工原理伯努利实验

化工原理伯努利实验化工原理伯努利实验是一个非常经典的实验,它主要涉及伯努利方程的应用和实践。
伯努利方程是流体动力学中的一个基本方程,它描述了流体在管道中流动时的速度、压力和能量之间的关系。
通过这个实验,我们可以深入了解流体流动的基本规律和伯努利方程的应用。
一、实验原理伯努利方程是建立在牛顿第二定律和能量守恒定律基础上的一个基本方程。
它认为,在不可压缩流体的流动过程中,流体的速度、压力和高度之间存在一定的关系。
具体来说,伯努利方程可以表示为:Z1+p1/ρg+v1²/2g=Z2+p2/ρg+v2²/2g其中,Z表示流体的位置高度(单位为米),p表示流体的压力(单位为牛顿),ρ表示流体的密度(单位为千克/立方米),g表示重力加速度(单位为米/秒²)。
v表示流体的速度(单位为米/秒)。
二、实验设备实验所需的设备包括:一根管道、一个水泵、一个流量计、一个压力计、一个水位计和一个秒表。
三、实验步骤1.首先,将管道放置在一个水位计上,并将管道的一端连接到水泵上。
将流量计和压力计连接到管道上。
2.开启水泵,让水流通过管道流动。
使用秒表测量水流的时间。
3.在管道的不同位置(如A、B、C三处)分别测量水的速度、压力和水位高度。
使用流量计可以计算出不同位置的流量。
4.根据测量结果,将数据记录在表格中,包括位置高度、速度、压力、流量和时间等参数。
5.根据伯努利方程,计算出不同位置处的伯努利数(伯努利数=速度的平方/重力加速度乘以位置高度)。
将结果记录在表格中。
6.分析实验数据,了解伯努利方程在不同流动条件下的适用性。
同时,观察不同位置处的水流状态和能量变化情况。
7.重复实验,改变水泵的转速和水泵到管道的距离等参数,观察这些变化对伯努利数和能量分布的影响。
8.整理实验数据,进行误差分析,并撰写实验报告。
四、实验结果与分析通过实验,我们可以得到不同位置处的水流速度、压力、流量和伯努利数等数据。
哈工大化工原理实验思考题答案及哈工大仪器分析实验思考题答案

四离子色谱分析法
实验 1 离子色谱法分析混合阴离子
1.离子色谱进行阴离子检测时,为什么会出现负峰(倒峰)?
负峰是水造成的,水在柱子里无保留,所以会在样品峰之前出现。
2.化学自再生连续阴离子抑制反应的原理是什么?
废液通过通过电场作用而再生
五高效毛细管电泳分析法
实验 2 高效毛细管电泳法测定食品中防腐剂的含量
实验七套管换热器液-液热交换系数及膜系数的测定
1.流体的流向的改变对热交换系数是否有影响?
影响很小,可以不计,从物性考虑。
2.实验时,为什么要做热水转子流量计的流量标定曲线?
因为所用的热水转子流量计精度很低,而且每次开启之后实验条件会有所不同,因此需要重新标定。
实验十流化床干燥曲线的测定
1.从观察到的想象,判断属于何种流化。
讨论电压、进样时间、缓冲溶液的 pH 值以及环境温度对分离效果和灵敏度 的影响。
1)电压升高,样品的迁移加大,分析时间缩短,但毛细管中焦耳热增大,基线稳定性降低,灵敏度降低;分离电压越低,分离效果越好,分析时间延长,峰形变宽,导 致分离效率降低。
2)进样时间过短,峰面积太小,分析误差大。进样时间过大,样品超载,进样区带扩散,会引起峰之间的重叠,与提高分离电压一样,分离效果变差。
罗茨鼓风机有强制排气的性质,若不设放空阀则气体会在管道内压缩致电机烧坏,风机爆炸。
参考题
0量纲分析优点?哪些实验用到?
见化工原理书
1.实验数据处理采用的表示方法都有哪几种?图示法有几种?用实验举例说明
列表法,图示法,经验公式法
直角坐标,对数坐标,半对数坐标
2.表达实验结果用经验公示的实验?
套管换热器液-液热交换系数及膜系数的测定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液相温度 填料层压强降△P
(℃)
(cmH2O)
1
2.5
0.157
18.2
32.2
0.4
2
4
0.252
18.8
32.1
1
3
5.5
0.346
20
32.1
1.8
4
7
0.440
21.3
32.1
2.8
5
8.5
0.534
23.6
32.1
4.1
6
10
0.629
26.2
32.1Βιβλιοθήκη 77 11.5(液泛) 0.723
30.5
A 截面-D 截面
0
1
-1
114
115
300
-74
10
128
64
600
66
56
167
278
冲压头为静压头与动压头之和。
在实验导管窗口流量开 600(L/h)时,A 处的静压头为 596 mmH2O 柱,B 处的静压头为 530 mmH2O 柱,PA>PB, 说明 B 处的静压能转化为动能。
0.8
3
7.5
0.472
19.7
43
1.6
4
10
0.629
21.5
43.1
2.6
5
12.5
0.786
25
43.8
4
6
15
0.943
28.5
44
5.6
7
17.5
1.100
32.7
44.5
7.8
水的喷洒量 L=40L/h
序号
空气流量 Vn (m3/h)
空塔气速 u (m/h)
空气入口压差 (cmH2O)
平衡浓度:Y1*=mX1=1.475×0.0077652=0.011454
平衡浓度:Y2*=mX2=0
△Y1=Y1-Y1*=0.022-0.011454=0.010546
△Y2=Y2-Y2*=0.011428-0=0.011429
平均浓度差
△Ym=(△Y1-△Y2) / ln(△Y1 / △Y2)
=(0.010546-0.011429)/ln(0.010546/0.011429)=0.01098
实验数据:
A、C、D 截面直径 DA=DC=DD14mm,B 截面直径 DB=28mm,AD、BD、CD 截面垂直距离 ZA=ZB=ZC=115mm
实验导管出口开
A 截面
B 截面
C 截面
D 截面
度位置(mmH2O 柱) 静压头 冲压头 动压头 静压头 冲压头 动压头 静压头 冲压头 动压头 静压头 冲压头
以上面数据进行计算:
塔底气相浓度:Y1=氨气流量/空气流量=0.022
塔顶气相浓度:Y2=2M 硫酸×V 硫酸/(V 量气管/22.4)=0.011429
塔底液相浓度:X1=2M 硫酸×V 硫酸/(V 氨气×1000/18)=0.0077652
液相温度为 33.5℃
∴根据相平衡常数 m 与温度 T 关系曲线得相平衡常数 m 为 1.475
气相总传质单元数 气相总传质单元高度 空气的摩尔流量 塔的横截面积 气相总体积吸收系数 回收率
NOG =(Y1-Y2)/△ Ym=(0.022-0.011429)/0.01098=0.9626 HOG =Z / NOG=0.4/0.9626=0.4155m V=Vn/(3600×22.4)=10/(3600×22.4)=0.124mol/s Ω=π/ 4×D2=π/ 4×0.0752=0.004418m2 KYa=V /(HOG×Ω)=0.124/(0.4155×0.004418)=67.55mol/(m3·s) η=(Y1-Y2) / Y1=(0.022-0.011429)/0.022=48.05%
全开标尺读数
596 630.5 34.5
530
534
4
481 513
32
431 469
以 D 截面为 0 基准面读数
711 715.5
645 649
596 613
0
0
半开标尺读数 590 598.5 8.5 667.5 669
1.5
655
662
7
640.5 651
以 D 截面为 0 基准面读数
705 713.5
782.5 784
770 762
0
0
全关标尺读数 715.5 714.5
-1
714 714
0
716.5 713 -3.5 715.5 715
以 D 截面为 0 基准面读数
830.5 829.5
829 829
831.5 813
0
0
动压头
38
10.5
-0.5
流量(L/h) A 截面-B 截面
压头损失(mmH2O) B 截面-C 截面 C 截面-D 截面
32.2
11.9
干料层 L=0 和 L=40L/h 水喷洒量下填料层 lg(△ P/Z)与 lgu 的关系如下:
△P/Z (cmH2O/m)
0.625 2 4 6.5 10 14
19.5
△P/Z (cmH2O/m)
1 2.5 4.5 7 10.25 17.5 29.75
2、传质实验:
空气流量 Vn 氨气流量 (m3/h) (m3/h)
实验数据处理:
填料层高度 Z=0.4m,填料塔内径 D=0.075m
1、填料塔流体力学性能测定:
水的喷洒量 L=0
序号
空气流量 Vn (m3/h)
空塔气速 u (m/h)
空气入口压差 (cmH2O)
气相温度 填料层压强降△P
(℃)
(cmH2O)
1
2.5
0.157
17
42
0.25
2
5
0.314
18
42.5
10
0.22
水流量 填料层压强降△P
(L/h) (cmH2O)
32
6.7
空气入口压差 (cmH2O) 24.2
气相温度(℃) 液相温度(℃)
44.2
33.5
尾气分析: 5mL 0.005mol/L 硫酸吸收尾气,甲基橙作为指示剂,量气筒内空气体积 V 为 量气管 98mL 塔底吸收液的分析: 滴定 10mL 塔底吸收液消耗 43.14mL 0.05mol/L 硫酸