同步测试:勾股定理(2)

合集下载

勾股定理经典例题含答案(2)(K12教育文档)

勾股定理经典例题含答案(2)(K12教育文档)

勾股定理经典例题含答案(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(勾股定理经典例题含答案(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为勾股定理经典例题含答案(2)(word版可编辑修改)的全部内容。

勾股定理经典例题含答案11页勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方.如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。

勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一.勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。

“勾三,股四,弦五”是勾股定理的一个最著名的例子。

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。

古埃及人也应用过勾股定理。

在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3)在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。

求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222ACBC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ), CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。

第3章《勾股定理》 :3.1 勾股定理(2)(含答案)

第3章《勾股定理》 :3.1 勾股定理(2)(含答案)

23 .据我国古代《周髀算经》记载,公元前 1120 年商高对周公说,将一根直尺 折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等 于五.后人概括为“勾三,股四,弦五”. (1)观察:3,4,5;5,12,13;7,24,25;„,发现这些勾股数的勾都是奇 数, 且从 3 起就没有间断过. 计算 1 1 1 1 (9-1) 、 (9+1) 与 (25-1) 、 (25+1) , 2 2 2 2
17 . 如图所示, 折叠长方形的一边 AD, 使点 D 落在边 BC 的点 F 处, 已知 AB=8cm, BC=10cm,则 EC 的长为 cm.
18 . 如图,在 Rt△ABC 中,∠ACB=90°,AC<BC,D 为 AB 的中点,DE 交 AC 于 点 E,DF 交 BC 于点 F,且 DE⊥DF,过 A 作 AG∥BC 交 FD 的延长线于点 G. (1)求证:AG=BF; (2)若 AE=9,BF=18,求线段 EF 的长.
6 .小明将一幅三角板如图所示摆放在一起,发现只要知道其中一边的长就可以 求出其它各边的长,若已知 CD=2,求 AC 的长.
7.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,D 为 AB 边 上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2.
8 .如图,把矩形纸片 ABCD 沿 EF 折叠,使点 B 落在边 AD 上的点 B′处,点 A 落 在点 A′处; (1)求证:B′E=BF; (2)设 AE=a,AB=b,BF=c,试猜想 a,b,c 之间的一种关系,并给予证明.
S = l (3)说出(2)中结论成立的理由. (2)如果 a+b-c=m, 观察上表猜想:

勾股定理同步训练23题

勾股定理同步训练23题

勾股定理-培优组卷-23题一.选择题(共20小题)1.如图,点D是AC的垂直平分线与BC边的交点,作DE⊥AB于点E,若∠BAC=68°,∠C=36°,则∠ADE的度数为()A.56°B.58°C.60°D.62°2.如图,在△ABC中,∠C=90°,AC=3,BC=2,以AB为一条边向三角形外部作正方形,则正方形的面积是()A.13B.12C.6D.33.如图,在Rt△ABC中,∠C=90°,∠ABC=64°,AF∥BE.若BE平分∠ABC,则∠BAF=()A.152°B.148°C.122°D.116°4.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC的长度为()A.1B.C.D.25.Rt△ABC中,∠C=90°,AC=3,BC=2,则AB的长最接近的整数是()A.2B.3C.4D.136.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.6B.7C.8D.97.如图(1)是我国古代数学家赵爽用来证明勾股定理的弦图示意图,图(2)中,在线段AE和CG上分别取点P和点Q,使AP=CQ,连接PD、PB、QD和QB,则构成了一个“压扁”的弦图.“压扁”的弦图(四边形PBQD)中,4个直角三角形的面积(如图(2)中的阴影部分)依次记作S1,S2,S3,S4,连接PQ并延长交BC于点M.若AE=3EF =3,S1=S3=S2+S4,则CM的长为()A.B.C.D.8.如图是中国古代数学家赵爽用来证明勾股定理的弦图示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交CD 于点P.若AE=3EF=3,则DP的长为()A.B.C.3D.9.在下列条件:①∠A:∠B:∠C=5:3:2;②∠A=90°﹣∠B;③∠A=∠B=∠C 中.能确定△ABC是直角三角形的条件有()A.0个B.1个C.2个D.3个10.在直角三角形ABC中,∠CAB=90°,∠ABC=72°.AF是∠CAB的角平分线,交边BC于点D.过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°11.如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个12.我们知道,三个正整数a、b、c满足a2+b2=c2,那么,a、b、c成为一组勾股数;如果一个正整数m能表示成两个非负整数x、y的平方和,即m=x2+y2,那么称m为广义勾股数,则下面的结论:①7是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若x=m2﹣n2,y=2mn,z=m2+n2,其中x,y,z,m,n是正整数,则x,y,z是一组勾股数.其中正确的结论是()A.①③④⑤B.②④C.②③⑤D.②④⑤13.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°14.△ABC在下列条件下不是直角三角形的是()A.b2=a2﹣c2B.a2:b2:c2=1:2:3C.∠A:∠B:∠C=3:4:5D.∠A=∠B﹣∠C15.在下列四组数中,不是勾股数的一组是()A.2,3,4B.3,4,5C.5,12,13D.7,24,25 16.下列几组数中是勾股数的一组是()A.3,4,6B.1.5,2,2.5C.6,8,13D.9,12,15 17.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°18.学校旗杆上的绳子垂到地面还多2米,将绳子的下端拉开6米后,下端刚好接触地面,则旗杆的高度为()A.8米B.10米C.12米D.14米19.《九章算术》是中国古代的数学代表作,书中记载:今有开门去阃(读kun,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),从点O处推开双门,双门间隙CD的长度为2寸,点C和点D到门槛AB的距离都为1尺(1尺=10寸),则AB的长是()A.104寸B.101寸C.52寸D.50.5寸20.我国古代数学专著《九章算术》中有一名题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何.”其大意是:已知甲、乙二人同时从一地出发,甲的速度为7,乙的速度为3.乙向东行走,甲先向南行走10步时偏离原方向,朝北偏东的方向直行走一段后与乙相遇.问:甲、乙各行走了多少步?设S甲、S分别为甲、乙走的路程(单位:步),则()乙A.S甲=10.5,S乙=24.5B.S甲=24.5,S乙=10.5C.S甲=17.5,S乙=7.5D.S甲=7.5,S乙=17.5二.填空题(共20小题)21.如图,在△ABC中∠C=90°,AC=6,BC=8.点D是BC上的中点.点P是边AB 上的动点,若要使△BPD为直角三角形,则BP=.22.在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.23.在△ABC中,若∠C=90°,∠B=54°,则∠A的度数为.24.如图,将直角三角形ABC沿AB方向平移2个单位长度得到三角形DEF,∠ACB=90°,AC=6,EF=6,AB=12,∠A=60°.以下结论:①BC=6;②BC⊥DF;③∠EFC=120°;④四边形BCFE的面积为6.其中正确的结论有.25.在△ABC中,BC边上的高为4,AB=5,AC=2,则BC=.26.在Rt△ABC中,∠B=90°,a:b=3:4,c=10,则b=.27.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3,如果S1+S2+S3=96,那么S2的值是.28.勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为.29.如图,Rt△ABC中,∠C=90°,点F是△ABC外的一点,∠CBE是△ABC的外角,∠CAF=2∠F AB,∠CBF=2∠FBE,则∠F=.30.如图,在△ABC中,∠ACB=90°,∠A=28°,点D在边AB上,将△ABC沿CD折叠,使得点B落在AC边上的点B′处,则∠ADB′的度数为.31.如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则四边形ABCD的面积为.32.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为a=(m2﹣n2),b=mn,c=(m2+n2),其中m,n(m>n)是互质的奇数,则a,b,c为勾股数.我们令n=1,得到下列顺序排列的等式:①32+42=52,②52+122=132,③72+242=252,④92+402=412,…根据规律写出第⑥个等式为.33.如图,正方形网格中每一个小正方形的边长为1,小正方形的顶点为格点,点A,B,C 为格点,点D为AC与网格线的交点,则∠ADB﹣∠ABD=.34.如图,已知在△ABC中,AB=6,AC=8,BC=10,P为BC边上一个动点,连接AP,DE⊥AP,分别交AB、AC于点D、E,垂足为M,点N为DE的中点,若四边形ADPE 的面积为18,则AN的最大值为.35.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:;(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为和.36.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2﹣1,c=m2+1,那么a,b,c为勾股数.请你利用这个结论得出一组勾股数是.37.如图,校园内有一块长方形草地,为了满足人们的多样化需求,在草地内拐角位置开出了一条“路”,走此“路”可以省m的路.38.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是尺.39.如图,一座桥横跨一河,桥长40m,一艘小船自桥北头出发,向正南方驶去,因水流原因到达南岸后,发现已偏离桥南头9m,则小船实际行驶的距离为m.40.小亮用11块高度都是2cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD木板,截面如图所示.两木墙高分别为AE与CF,点B 在EF上,求正方形ABCD木板的面积为cm2.三.解答题(共20小题)41.如图,在直角三角形ABC中,CD是斜边AB上的高,∠BCD=35°.(1)求∠CBD的度数;(2)斜边AB在直线EF上,求∠CAE的度数.42.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD=.(1)求AD的长.(2)求△ABC的周长.43.探究:如图①,在△ABC中,∠ACB=90°,CD⊥AB于点D.若∠B=30°,则∠ACD 的度数是.拓展:如图②,∠MCN=90°,射线CP在人MCN的内部,点A、B分别在CM、CN上,分别过点A、B作AD⊥CP、BE⊥CP于点D、E.若∠CBE=70°,求∠CAD的度数.应用:如图③,点A、B分别在∠MCN的边CM、CN上,射线CP在∠MCN的内部,点D、E在射线CP上,连结AD、BE.若∠MCN=∠ADP=∠BEP=60°,则∠CAD+∠CBE+∠ACB=.44.如图,在△ABC中,D是AC边的中点,DE⊥AC交BC于点E,AF∥BC交ED的延长线于点F,连接AE,CF.(1)判断四边形AECF的形状并证明你的结论;(2)若∠ACB=30°,∠B=45°,CE=2,求AB的长.45.如图,在△ABC中,∠ACB=90°,BC=12,AC=16,CD是高.求CD的长.46.如图,在△ABC中,AD是BC边上的高,CE是AB边上的中线,DF⊥CE于F,CD=AE.(1)求证:CF=EF;(2)已知BC=13,CD=5,求△BEC的周长.47.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.48.阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.从而得数学等式:(a+b)2=c2+4×ab,化简证得勾股定理:a2+b2=c2.【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.知识补充:如图6,含60°的直角三角形,对边y:斜边x=定值k.49.已知直线a∥b,直角三角形ABC的边与直线a分别相交于O、G两点,与直线b分别交于E,F点,且∠ACB=90°.(1)将直角三角形ABC如图1位置摆放,如果∠AOG=56°,则∠CEF=;(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NEF+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由;(3)将直角三角形ABC如图3位置摆放,若∠GOC=135°,延长AC交直线b于点Q,点P是射线GF上一动点,请用平行的相关知识,探究∠POQ,∠OPQ与∠PQF的数量关系,请直接写出结论.50.定义:如果三角形的两个内角α与β满足α+2β=100°,那么我们称这样的三角形为“奇妙三角形”.(1)如图1,△ABC中,∠ACB=80°,BD平分∠ABC.求证:△ABD为“奇妙三角形”(2)若△ABC为“奇妙三角形”,且∠C=80°.求证:△ABC是直角三角形;(3)如图2,△ABC中,BD平分∠ABC,若△ABD为“奇妙三角形”,且∠A=40°,直接写出∠C的度数.51.如图,每个小正方形的边长都是1,(1)求四边形ABCD的周长和面积;(2)∠BCD是直角吗?52.勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2)有一个直角三角形两直角边长分别为和,斜边长4,且a 和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.53.如图,在三角形ABC中,AB=5,BC=6,AD为BC边上的中线,且AD=4,过点D 作DE⊥AC于点E.(1)求证:AD⊥BC;(2)求DE的长.54.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P 岛,两岛相距34海里,你知道乙船沿那个方向航行吗?55.满足勾股定理的正整数称为勾股数,观察以下两组勾股数的规律:(1)按此规律,填空:(6,▲,〇)⇌62=(〇+▲)×(〇﹣▲)上面一组勾股数中,▲表示,〇表示;(2)猜想:①当n是大于1的奇数时,勾股数为:(n,,),请你给出证明:②当2n是大于2的偶数时,直接用n表示勾股数:(2n,n2﹣1,)56.法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数,如(3,4,5)就是一组勾股数.(1)在研究勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2﹣1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即x,y,z 为勾股数),请你加以证明;(2)探索规律:观察下列各组数(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,直接写出第6个数组.57.我国古代数学著作《九章算术》中有这样一个问题:“今有池方一丈,葭(jiā)生其中央,出水一尺,引葭赴岸,适与岸齐,问水深几何?”(注:丈,尺是长度单位,1丈=10尺,1尺=米)这段话翻译成现代汉语,即为:如图,有一个水池,水面是一个边长为1丈的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.则水池里水的深度是多少米?请你用所学知识解答这个问题.58.明朝数学家程大位在《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地……”翻译成现代文为:如图,秋千细索OA悬挂于O点,静止时竖直下垂,A点为踏板位置,踏板离地高度为一尺(AC=1尺).将它往前推进两步(EB⊥OC于点E,且EB=10尺),踏板升高到点B 位置,此踏板高地五尺(BD=5尺,BD=EC),则秋千绳索长多少尺?59.我国古代数学著作《九章算术》中有这样一个问题:如图,有一个水池,其横截面是矩形,边长EF为10尺,在水池正中央有一根垂直于水面(BD)的芦苇(OA),它的顶端A高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端A恰好到达池边的水面B处,求水池里水的深度(OC)是多少尺?60.有一块边长为12米的正方形绿地,如图所示,在绿地旁边B处有健身器材(BC=5米),由于居住在A处的居民践踏了绿地,小明想在A处树立一个标牌“少走▇米,踏之何忍?”请问:小明在标牌▇填上的数字是多少?勾股定理-培优组卷-23题参考答案与试题解析一.选择题(共20小题)1.如图,点D是AC的垂直平分线与BC边的交点,作DE⊥AB于点E,若∠BAC=68°,∠C=36°,则∠ADE的度数为()A.56°B.58°C.60°D.62°【分析】根据线段垂直平分线的性质可得AD=CD,由等边对等角可得∠DAC=36°,根据角的差可得∠BAD=32°,进而利用互余解答即可.【解答】解:∵点D是AC的垂直平分线与BC边的交点,∴AD=DC,∠C=36°,∴∠DAC=∠C=36°,∵∠BAC=68°,∴∠BAD=∠BAC﹣∠DAC=68°﹣36°=32°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°﹣32°=58°,故选:B.【点评】此题主要考查了线段垂直平分线的性质,等腰三角形的性质,解本题的关键是根据角的差可得∠BAD=32°.2.如图,在△ABC中,∠C=90°,AC=3,BC=2,以AB为一条边向三角形外部作正方形,则正方形的面积是()A.13B.12C.6D.3【分析】由勾股定理求出AB2,再由正方形的面积公式计算即可得到答案.【解答】解:在△ABC中,∠C=90°,AC=3,BC=2,∴AB2=AC2+BC2=32+22=13,∴正方形的面积=AB2=13,故选:A.【点评】本题考查了勾股定理、正方形的面积计算等知识,熟练掌握勾股定理是解题的关键.3.如图,在Rt△ABC中,∠C=90°,∠ABC=64°,AF∥BE.若BE平分∠ABC,则∠BAF=()A.152°B.148°C.122°D.116°【分析】根据角平分线的定义可求解∠ABE的度数,再利用平行线的性质可求解∠BAF 的度数.【解答】解:∵BE平分∠ABC,∠ABC=64°,∴∠ABE=∠ABC=32°,∵AF∥BE,∴∠ABE+∠BAF=180°,∴∠BAF=180°﹣32°=148°.故选:B.【点评】本题主要考查角平分线的定义,平行线的性质,掌握平行线的性质是解题的关键.4.如图,在△ABC中,已知AB=2,AD⊥BC,垂足为D,BD=2CD.若E是AD的中点,则EC的长度为()A.1B.C.D.2【分析】设AE=ED=x,CD=y,根据勾股定理即可求出答案.【解答】解:设AE=ED=x,CD=y,∴BD=2y,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∴AB2=4x2+4y2,∴x2+y2=1,在Rt△CDE中,∴EC2=x2+y2=1,∵EC>0,∴EC=1.故选:A.【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.5.Rt△ABC中,∠C=90°,AC=3,BC=2,则AB的长最接近的整数是()A.2B.3C.4D.13【分析】由勾股定理得AB=,进而得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AC=3,BC=2,∴AB===,∵9<()2<16,∴AB的长最接近的整数是4,故选:C.【点评】本题考查了勾股定理,注意:在直角三角形中,两直角边长的平方和等于斜边长的平方.6.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.6B.7C.8D.9【分析】如图,连接AC,取AC的中点为M,连接DM、EM,由勾股定理可求AC的长,利用直角三角形斜边上的中线可求解DM的长,根据三角形的中位线可求解EM的长,再利用三角形的三边关系可求解.【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:A.【点评】本题主要考查勾股定理,直角三角形的性质,三角形的中位线,三角形的三边关系等知识的综合运用,构造直角三角形是解题的关键.7.如图(1)是我国古代数学家赵爽用来证明勾股定理的弦图示意图,图(2)中,在线段AE和CG上分别取点P和点Q,使AP=CQ,连接PD、PB、QD和QB,则构成了一个“压扁”的弦图.“压扁”的弦图(四边形PBQD)中,4个直角三角形的面积(如图(2)中的阴影部分)依次记作S1,S2,S3,S4,连接PQ并延长交BC于点M.若AE=3EF =3,S1=S3=S2+S4,则CM的长为()A.B.C.D.【分析】如图,过点M作MS⊥CG于点S,设PQ交BF、DG于点T、K,根据题意得:AE=CG=BF=DH,BF=DG,四边形EFGH是正方形,∠AEB=∠DGC=90°,先证明△BPE≌△DQG,可得S4=S2,从而得到S1=S3=2S4,继而得到,,再根据△KGQ∽△TFQ,可得,从而得到,再由,可设SM=3x,则CS=4x,从而得到,CM=5x,再由锐角三角函数,即可求解.【解答】解:如图,过点M作MS⊥CG于点S,设PQ交BF、DG于点T、K,根据题意得:AE=CG=BF=DH,BE=DG,四边形EFGH是正方形,∠AEB=∠DGC =90°,∵AE=3EF=3,∴CG=AE=DH=3,EF=FG=EH=1,EH∥FG,∵AP=CQ,∴PE=GQ,∴△BPE≌△DQG(SAS),∴S△BPE=S△DQG,即S4=S2,∵S1=S3=S2+S4,∴S1=S3=2S4,∴,即∴,∴,∵EH∥FG,∴∠PET=∠GQK,∵∠PET=∠KGQ=90°,PE=GQ,∴△PET≌△QGK,∴ET=KG,设KG=ET=a,则FT=1﹣a,∵HG∥EF,∴△KGQ∽△TFQ,∴,即,解得:,即,∴∵∠SQM=∠KQG,∴,在Rt△BCF中,BF=3,CF=CG+FG=4,∴,∴可设SM=3x,则CS=4x,∴,CM=5x,∴,解得:,∴.故选:D.【点评】本题主要考查了以弦图为背景的综合题,熟练掌握正方形的性质,相似三角形的判定和性质,全等三角形的判定和性质,直角三角形的性质是解题的关键.8.如图是中国古代数学家赵爽用来证明勾股定理的弦图示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD,连结EG并延长交CD 于点P.若AE=3EF=3,则DP的长为()A.B.C.3D.【分析】根据勾股定理得到AB===5,过点P作PN⊥CH于点N,如图所示,推出△EFG为等腰直角三角形,得到∠EGF=∠NGM=45°,故△GNP为等腰直角三角形.设GN=NP=a,则NC=GC﹣GN=3﹣a,根据三角函数的定义得到a =,根据勾股定理即可得到结论.【解答】解:由图可知∠AFB=90°,∵AE=3EF=3,∴EF=1,∴AF=4,BF=3,∴AB===5,过点P作PN⊥CH于点N,如图所示,∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNP为等腰直角三角形.设GN=NP=a,则NC=GC﹣GN=3﹣a,∵tan∠HCD====,解得:a=,∴PN=GN=,CN=,∴PC===,∴PD=5﹣=.故选:A.【点评】本题考查了正方形的性质、勾股定理、锐角三角函数、等腰三角形的性质、正确作出辅助线是解决本题的关键.9.在下列条件:①∠A:∠B:∠C=5:3:2;②∠A=90°﹣∠B;③∠A=∠B=∠C 中.能确定△ABC是直角三角形的条件有()A.0个B.1个C.2个D.3个【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①因为∠A:∠B:∠C=5:3:2,设∠A=5x,∠B=3x,∠C=2x,则5x+3x+2x =180,x=18°,∠A=18°×5=90°,所以△ABC是直角三角形;②因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;③因为∠A=∠B=∠C,所以∠A+∠B+∠C=∠C+∠C+∠C=180°,则∠C=90°,所以△ABC是直角三角形.所以能确定△ABC是直角三角形的有①②③共3个,故选:D.【点评】本题主要考查直角三角形的判定,解答此题要用到三角形的内角和为180°,若有一个内角为90°,则△ABC是直角三角形.10.在直角三角形ABC中,∠CAB=90°,∠ABC=72°.AF是∠CAB的角平分线,交边BC于点D.过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°【分析】先根据角平分线的定义求出∠BAD=45°,再根据三角形外角的性质进行计算即可得解.【解答】解:∵∠CAB=90°,AD是∠CAB的角平分线,∴∠BAD=×90°=45°,∵CE⊥AD,∴∠CED=90°,∵∠BDE=∠B+∠BAD=∠DEC+∠ECD,且∠ABC=72°,∴∠ECD=72°+45°﹣90°=27°.故选:C.【点评】本题主要考查了三角形外角的性质,熟记性质并准确识图是解题的关键.11.如图,在3×3的方格纸中,已知点A,B在方格顶点上(也称格点),若点C也是格点,且使得△ABC为直角三角形,则满足条件的C点有()A.1个B.2个C.3个D.4个【分析】根据题意,结合图形,分两种情况讨论:①AB为直角△ABC斜边;②AB为等腰直角△ABC其中的一条直角边.【解答】解:如图,分情况讨论:①AB为直角△ABC斜边时,符合条件的格点C点有2个;②AB为直角△ABC其中的一条直角边时,符合条件的格点C点有1个.故共有3个点,故选:C.【点评】本题考查了直角三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.12.我们知道,三个正整数a、b、c满足a2+b2=c2,那么,a、b、c成为一组勾股数;如果一个正整数m能表示成两个非负整数x、y的平方和,即m=x2+y2,那么称m为广义勾股数,则下面的结论:①7是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数;⑤若x=m2﹣n2,y=2mn,z=m2+n2,其中x,y,z,m,n是正整数,则x,y,z是一组勾股数.其中正确的结论是()A.①③④⑤B.②④C.②③⑤D.②④⑤【分析】根据广义勾股数的定义进行判断即可.【解答】解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论错误;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④∵5=12+22,13=22+32,65=5×13,65是广义勾股数,两个广义勾股数的积是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论正确;⑤∵x2+y2=(m2﹣n2)2+(2mn)2=m4+2m2n2+n4,z2=(m2+n2)2=m4+2m2n2+n4,∴x2+y2=z2,又知x,y,z,m,n是正整数,则x,y,z是一组勾股数.故⑤结论正确;∴依次正确的是②④⑤.故选:D.【点评】本题考查了勾股数的综合应用,掌握勾股定理以及常见的勾股数是解题的关键.13.如图,在2×3的正方形网格中,∠AMB的度数是()A.22.5°B.30°C.45°D.60°【分析】连接AB,设小正方形的边长为1,根据勾股定理求出AB、AM、BM的长度,根据勾股定理的逆定理得出△ABM是直角三角形,再求出答案即可.【解答】解:连接AB,设小正方形的边长为1,由勾股定理得:AM2=12+22=5,AB2=12+22=5,BM2=12+32=10,∴AM=AB,AM2+AB2=BM2,∴△MAB是等腰直角三角形,∴∠AMB=45°,故选:C.【点评】本题考查了勾股定理和勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键.14.△ABC在下列条件下不是直角三角形的是()A.b2=a2﹣c2B.a2:b2:c2=1:2:3C.∠A:∠B:∠C=3:4:5D.∠A=∠B﹣∠C【分析】根据勾股定理的逆定理即可判断选项A,选项B;根据三角形的内角和定理求出最大角的度数,即可判断选项C和选项D.【解答】解:A.∵b2=a2﹣c2,∴b2+c2=a2,即△ABC是直角三角形,故本选项不符合题意;B.∵a2:b2:c2=1:2:3,∴a2+b2=c2,即△ABC是直角三角形,故本选项不符合题意;C.∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴最大角∠C=×180°=75°<90°,∴△ABC不是直角三角形,故本选项符合题意;D.∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,又∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查了三角形内角和定理和勾股定理的逆定理,能熟记勾股定理的逆定理是解此题的关键,注意:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.15.在下列四组数中,不是勾股数的一组是()A.2,3,4B.3,4,5C.5,12,13D.7,24,25【分析】根据勾股数的概念判断即可.【解答】解:A、∵22+32≠42,∴2,3,4不是一组勾股数,本选项符合题意;B、∵32+42=52,∴3,4,5,6是一组勾股数,本选项不符合题意;C、∵52+122=132,∴5,12,13是一组勾股数,本选项不符合题意;D、∵72+242=252,∴24,25,7是一组勾股数,本选项不符合题意;故选:A.【点评】本题考查的是勾股数,满足a2+b2=c2的三个正整数,称为勾股数.16.下列几组数中是勾股数的一组是()A.3,4,6B.1.5,2,2.5C.6,8,13D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、42+32≠62,不能构成直角三角形,故不是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、62+82≠132,不能构成直角三角形,故不是勾股数;D、92+122=152,能构成直角三角形,是正整数,故是勾股数.故选:D.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.17.在海面上有两个疑似漂浮目标.接到消息后,A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行.同时,B舰艇在同地以16海里/时的速度向北偏东方向行驶,如图所示,离开港口1.5小时后两船相距30海里,则B舰艇的航行方向是()A.北偏东60°B.北偏东50°C.北偏东40°D.北偏东30°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【解答】解:由题意得,OA=12×1.5=18(海里),OB=16×1.5=24(海里),又∵AB=30海里,∵182+242=302,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则另一艘舰艇的航行方向是北偏西40°,故选:C.【点评】本题考查的是勾股定理的逆定理的应用和方位角的知识,根据题意判断出△AOB 是直角三角形是解决问题的关键.18.学校旗杆上的绳子垂到地面还多2米,将绳子的下端拉开6米后,下端刚好接触地面,则旗杆的高度为()A.8米B.10米C.12米D.14米【分析】根据题意设旗杆的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB的长,即旗杆的高.【解答】解:画出示意图如下所示:设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,∴x2+62=(x+2)2,解得:x=8,∴AB=8m,即旗杆的高是8m.故选:A.。

勾股定理专题训练试题精选(二)附答案

勾股定理专题训练试题精选(二)附答案

勾股定理专题训练试题精选(二)一.选择题(共30小题)1.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.132.如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有()A.4条B.3条C.2条D.1条3.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个4.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175 B.575 C.625 D.7005.已知∠AOB=90°,点P在∠AOB的平分线上,OP=6,则点P到OA,OB的距离为()A.6,6 B.3,3 C.3,3D.3,36.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.57.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为()A.4πcm2B.6πcm2C.12πcm2D.24πcm28.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34 C.16或34 D.4或9.将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A.16 B.32 C.8πD.6410.如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD的周长为30cm,则AB的长为()A.5cm B.10cm C.15cm D.7.5cm11.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7B.8C.9D.1012.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.﹣1 B.3﹣C.+1 D.﹣113.如图,每个小种房型的边长都为1,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形,若B、C两点的位置分别证为(2,0)、(4,0),△ABC是钝角三角形且面积为4,则满足条件的A点的位置记法正确的是()A.(4,4)B.(1,4)C.(2,4)D.(3,4)14.如图,正方形ABCD边长为8,E为BC边上一点,EC=2,则AE长度为()A.14 B.10 C.13 D.1115.下列各组数中能作为直角三角形三边长的是()①9,12,15;②13,12,6;③9,12,14;④12,16,20A.①④B.①②C.③④D.②④16.直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形17.△ABC的三边满足,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形18.下列说法中,正确的有()①有一个角为60°的等腰三角形是等边三角形②三边分别是1,,3的三角形是直角三角形③一边上的中线等于这条边的一半的三角形是直角三角形④三个内角之比为1:2:3的三角形是直角三角形A.1个B.2个C.3个D.4个19.若一个三角形的三边长分别是3,6,,则最小角与最大角依次是()A.30°,60°B.30°,90°C.60°,90°D.45°,90°20.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为()A.24平方米B.26平方米C.28平方米D.30平方米21.▱ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1,则▱ABCD为()A.平行四边形B.菱形C.矩形D.正方形22.如图,正方形组成的网格中标出AB、CD、DE、AE四条线段,其中能构成一个直角三角形三边的线段是()A.A B、CD、AE B.A E、ED、CD C.A E、ED、AB D.A B、CD、ED 23.下列命题中不正确的是()A.有两个角相等的三角形是等腰三角形B.等腰三角形一腰上的高与底边的夹角等于顶角的一半C.等腰三角形两底角相等D.有一个角的平分线平分对边的三角形一定是等腰直角三角形24.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④25.根据指令[s,A](s≥0,0°<A≤360°),机器人在平面上完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向行走s个单位.现机器人在平面直角坐标系的原点,且面对x轴的正方向,如果输入指令为[1,45°],那么连续执行三次这样的指令,机器人所在位置的坐标是()A.(0,)B.(,)C.(,)D.(0,1+)26.如果一个三角形的三边之比为,那么最小边所对的角为()A.30°B.45°C.60°D.90°27.一个等腰直角三角形的斜边为,则其面积为()A.B.8C.16 D.28.一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的顶端距墙脚2.4米.那么梯足离墙脚的距离是()米.A.0.7 B.0.9 C.1.5 D.2.429.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.30.在△ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB=()A.1:2:3 B.1:4:9 C.1::D.1::2勾股定理专题训练试题精选(二)参考答案与试题解析一.选择题(共30小题)1.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.13考点:勾股定理;完全平方公式.分析:先求出四个直角三角形的面积,再根据再根据直角三角形的边长求解即可.解答:解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选B.点评:注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.2.如图,小方格的面积是1,则图中以格点为端点且长度为5的线段有()A.4条B.3条C.2条D.1条考点:勾股定理;勾股数.专题:网格型.分析:此题只需根据常见的勾股数3、4、5,构造以3、4为直角边的直角三角形即可.解答:解:如图所示,共4条.故选A.点评:考查了勾股数的运用.3.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个考点:勾股定理.专题:分类讨论.分析:可以分A、B、C分别是直角顶点三种情况进行讨论即可解决.解答:解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选D.点评:正确进行讨论,把每种情况考虑全,是解决本题的关键.4.如图,以直角三角形三边为边长作正方形,其中两个以直角边为边长的正方形面积分别为225和400,则正方形A的面积是()A.175 B.575 C.625 D.700考点:勾股定理.专题:计算题.分析:根据两个正方形的面积计算正方形的边长,计算的边长即为直角三角形的两直角边,根据勾股定理可以计算斜边,即正方形A的边长,根据边长可以计算A的面积.解答:解:因为以两个直角边为边长的正方形面积为225,400,则边长为和,所以斜边长的平方=+=625,正方形A的面积=斜边长的平方,故正方形A的面积为625,故选 C.点评:本题考查了正方形各边相等,各内角为直角的性质,考查了直角三角形中勾股定理的运用,本题中根据勾股定理求斜边长的平方是解本题的关键.5.已知∠AOB=90°,点P在∠AOB的平分线上,OP=6,则点P到OA,OB的距离为()A.6,6 B.3,3 C.3,3D.3,3考点:勾股定理.分析:利用角平分线的性质计算.解答:解:作PC⊥OA于C,由题意可得△OPC是等腰直角三角形,因为OP=6,根据勾股定理可得PC=3,根据角平分线的性质,点P到OB的距离为3.故选D.点评:此题主要考查角平分线的性质和勾股定理.6.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.5考点:勾股定理;三角形的面积.专题:计算题.分析:根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.解答:解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴DA•BC=10,∴BC=4,∴CD===3.故选B.点评:此题主要考查学生对勾股定理和三角形面积的理解和掌握,此题的突破点是利用三角形面积公式求出BC 的长.7.如图,如果半圆的直径恰为直角三角形的一条直角边,那么半圆的面积为()A.4πcm2B.6πcm2C.12πcm2D.24πcm2考点:勾股定理.专题:计算题.分析:先根据已知条件利用勾股定理可得三角形的直角边(即半圆的直径),再得出半径的值,然后求出圆的面积即可得出答案.解答:解;由已知条件利用勾股定理可得三角形的直角边(即半圆的直径)为:=4,那么r=2则S圆=πr2=12π,所以半圆面积为6π点评:此题主要考查学生对勾股定理和圆面积的理解和掌握,难度不大,是一道基础题.8.已知一个直角三角形的两边长分别为3和5,则第三边长为()A.4B.4或34 C.16或34 D.4或考点:勾股定理.专题:分类讨论.分析:由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.解答:解:∵个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x,则由勾股定理得到:x==4;②当5是此直角三角形的直角边时,设另一直角边为x,则由勾股定理得到:x==.故选D.点评:本题考查的是勾股定理,解答此题时要注意要分类讨论,不要漏解.9.将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A.16 B.32 C.8πD.64考点:勾股定理.专题:几何综合题.分析:首先由面积为8π的半圆求出半圆的直径,即直角边的斜边,再根据勾股定理求出两直角边的平方和,即是这两个正方形面积的和.解答:解:已知半圆的面积为8π,所以半圆的直径为:2•=8,即如图直角三角形的斜边为:8,设两个正方形的边长分别为:x,y,则根据勾股定理得:x2+y2=82=64,即两个正方形面积的和为64.故选:D.点评:此题考查的知识点是勾股定理,关键是由面积为8π的半圆求出半圆的直径,再根据勾股定理求出这两个正方形面积的和.10.如图,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD的周长为30cm,则AB的长为()A.5cm B.10cm C.15cm D.7.5cm考点:勾股定理;矩形的性质.专题:计算题.分析:本题运用矩形的性质通过周长的计算方法求出矩形的边长.解答:解:矩形ABCD中,O是BC的中点,∠AOD=90°,根据矩形的性质得到△ABO≌△DCO,则OA=OD,∠DAO=45°,所以∠BOA=∠BAO=45°,即BC=2AB,由矩形ABCD的周长为30cm得到,30=2AB+2×2AB,解得AB=5cm.故选A.点评:本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.11.如图在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,DE=3,BD=2CD,则BC=()A.7B.8C.9D.10考点:勾股定理;角平分线的性质.专题:计算题.分析:要求BC,因为BC=BD+CD,且BD=2CD,所以求CD即可,求证△ADE≌△ADC即可得:CD=DE,可得BC=BD+DE.解答:解:∵在△ADE和△ADC中,,∴△ADE≌△ADC,∴CD=DE,∵BD=2CD,∴BC=BD+CD=3DE=9.故答案为:9.点评:本题考查了全等三角形的证明,解本题的关键是求证△ADE≌△ADC,即CD=DE.12.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.﹣1 B.3﹣C.+1 D.﹣1考点:勾股定理;正方形的性质.分析:根据线段中点的定义求出MD,再利用勾股定理列式求出MC,即为ME的长度,然后求出DE,再根据正方形的四条边都相等可得DG=DE.解答:解:∵正方形ABCD的边长为2,M为边AD的中点,∴DM=1,MC==,∵ME=MC,∴ME=,∴DE=﹣1,∵以DE为边作正方形DEFG,点G在边CD上,∴DG=﹣1.故选:D.点评:本题考查了正方形的性质,勾股定理的应用,线段中点的定义,熟记性质是解题的关键.13.如图,每个小种房型的边长都为1,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形,若B、C 两点的位置分别证为(2,0)、(4,0),△ABC是钝角三角形且面积为4,则满足条件的A点的位置记法正确的是()A.(4,4)B.(1,4)C.(2,4)D.(3,4)考点:勾股定理;三角形的面积.分析:设点A的位置记作(x,y).根据三角形的面积公式求得△ABC的高y的值;然后利用钝角三角形的定义来确定x的值;从而作出选择.解答:解:设点A的位置记作(x,y).∵△ABC的面积是4,BC=2,∴BC•y=4,∴y=4;又∵△ABC是钝角三角形,∴0≤x<2;∴点A的位置可以记作(0,4)或(1,4).故选B.点评:本题考查了勾股定理、三角形的面积.根据x的取值范围确定点A的横坐标是解答此题的关键.14.如图,正方形ABCD边长为8,E为BC边上一点,EC=2,则AE长度为()A.14 B.10 C.13 D.11考点:勾股定理;正方形的性质.分析:根据正方形的性质可知AB=BC=8,再求出BE的长,根据勾股定理即可得到AE的长.解答:解:∵正方形ABCD边长为8,∴AB=BC=8,∵EC=2,∴BE=8﹣2=6,在Rt△ABE中,AE==10.故选:B.点评:考查了正方形的性质和勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.15.下列各组数中能作为直角三角形三边长的是()①9,12,15;②13,12,6;③9,12,14;④12,16,20A.①④B.①②C.③④D.②④考点:勾股定理的逆定理.分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解答:解:①92+122=152,故是直角三角形,故正确;②62+122=180≠132,故不是直角三角形,故错误;③92+122=225≠142,故不是直角三角形,故错误;④122+162=202,故是直角三角形,正确.故选A.点评:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.直角三角形中两个直角边为a,b,斜边为c,斜边上的高为h,那么c+h,a+b,h为三边构成的三角形是()A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形考点:勾股定理的逆定理.专题:应用题.分析:先利用勾股定理得到a,b,c,h之间的关系,再根据勾股定理逆定理判定所求的三角形是直角三角形.解答:解:根据题意可知:a2+b2=c2,ab=ch,∵(c+h)2=c2+2ch+h2,(a+b)2=a2+2ab+b2,∴(a+b)2+h2=(c+h)2,∴三角形是直角三角形.故选A.点评:主要考查了勾股定理逆定理的运用.要会熟练利用勾股定理的逆定理来判定直角三角形.17.△ABC的三边满足,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形考点:勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由题意可知a+b=50,a﹣b=32,c=40,就可求出a、b长分别为41,9,而412=402+92,所以△ABC为直角三角形.解答:解:由题意可知a+b=50,a﹣b=32,c=40,∴a=41,b=9∵412=402+92∴△ABC为直角三角形.故选A.点评:本题考查了勾股定理的应用,以及非负数的性质,是一道综合性的题目,难度中等.18.下列说法中,正确的有()①有一个角为60°的等腰三角形是等边三角形②三边分别是1,,3的三角形是直角三角形③一边上的中线等于这条边的一半的三角形是直角三角形④三个内角之比为1:2:3的三角形是直角三角形A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;等边三角形的判定;直角三角形斜边上的中线.专题:推理填空题.分析:分别根据等边三角形及直角三角形的判定定理解答即可.解答:解:①正确,符合等边三角形的判定定理;②正确,因为12+32=()2,所以三边分别是1,,3的三角形是直角三角形;③正确,根据矩形对角线的性质的逆命题;④正确,三个内角之比为1:2:3的三角形的各个角的度数分别是30°、60°、90°,所以三个内角之比为1:2:3的三角形是直角三角形.故选D.点评:本题主要考查学生对等边三角形,直角三角形的判定定理和勾股定理的逆定理等知识点的理解和掌握,比较简单,属于基础题.19.若一个三角形的三边长分别是3,6,,则最小角与最大角依次是()A.30°,60°B.30°,90°C.60°,90°D.45°,90°考点:勾股定理的逆定理;含30度角的直角三角形.分析:先根据勾股定理的逆定理得到三角形是直角三角形,从而得到最大角的度数,再根据含30度角的直角三角形的性质得到最小角的度数.解答:解:∵32+(3)2=62,∴三角形是直角三角形,∴最大角是90°,∵3×2=6,∴最小角是30°.故选B.点评:本题考查了勾股定理的逆定理和含30度角的直角三角形的性质.20.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积为()A.24平方米B.26平方米C.28平方米D.30平方米考点:勾股定理的逆定理;勾股定理.分析:连接AC,利用勾股定理可以得出△ACD和△ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.解答:解:如图,连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2∴△ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(m2).故选A.点评:考查了直角三角形面积公式以及勾股定理的应用.21.▱ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1,则▱ABCD为()A.平行四边形B.菱形C.矩形D.正方形考点:勾股定理的逆定理.专题:探究型.分析:先根据题意画出图形,再根据AB=,AO=2,OB=1可判断出△AOB的形状,再根据菱形的判定定理即可解答.解答:解:如图所示,▱ABCD的两条对角线AC、BD相交于点O,AB=,AO=2,OB=1,∵()2=22+12,即AB2=OA2+OB2,∴△AOB是直角三角形,∴AC⊥BD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.故选B.点评:本题考查的是勾股定理的逆定理及菱形的判定定理,根据勾股定理的逆定理判断出△AOB的形状是解答此题的关键.22.如图,正方形组成的网格中标出AB、CD、DE、AE四条线段,其中能构成一个直角三角形三边的线段是()A.A B、CD、AE B.A E、ED、CD C.A E、ED、AB D.A B、CD、ED考点:勾股定理的逆定理;勾股定理;正方形的性质.分析:根据勾股定理分别求得四条线段的平方,再进一步根据勾股定理的逆定理进行分析.解答:解:根据勾股定理,得AB2=9+9=18,CD2=4=9=13,DE2=1=4=5,AE2=1+9=10,所以AB2=CD2+DE2,根据勾股定理的逆定理,则其中能构成一个直角三角形三边的线段是AB、CD、ED.故选D.点评:此题综合考查了勾股定理及其逆定理.23.下列命题中不正确的是()A.有两个角相等的三角形是等腰三角形B.等腰三角形一腰上的高与底边的夹角等于顶角的一半C.等腰三角形两底角相等D.有一个角的平分线平分对边的三角形一定是等腰直角三角形考点:等腰直角三角形;三角形内角和定理;等腰三角形的性质;等腰三角形的判定.分析:根据等腰三角形的性质和判定即可求出答案.解答:解:由等腰三角形的判定知:A、C正确;B、设等腰三角形的底角为x,则等腰三角形一腰上的高与底边的夹角为:90°﹣x,顶角为:180°﹣2x=2(90°﹣x),故B正确;D、有一个角的平分线平分对边的三角形不一定是等腰直角三角形,故D错误.故选D.点评:本题考查了等腰三角形的判定和性质,锻炼了学生灵活运用所学知识的能力是一道好题.24.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=DM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BCE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,在△CMD和△CND中,,∴△CMD≌△CND,∴CN=DM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.25.根据指令[s,A](s≥0,0°<A≤360°),机器人在平面上完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向行走s个单位.现机器人在平面直角坐标系的原点,且面对x轴的正方向,如果输入指令为[1,45°],那么连续执行三次这样的指令,机器人所在位置的坐标是()A.(0,)B.(,)C.(,)D.(0,1+)考点:等腰直角三角形;勾股定理;旋转的性质.专题:计算题;新定义.分析:根据题意得到指令[1,45°]表示首先逆时针旋转45°,然后朝其面对的方向行走1个单位到C,第二次道B点,第三次到A点,由此即可求出机器人所在位置的坐标.解答:解:如图所示:机器人所在的位置正好在y轴的A点上,过B作BM⊥OA于M,过C作CN⊥OA于N,根据题意得到四边形ABCO是等腰梯形,∵AB=1,∠ABM=45°,由勾股定理得:AM=BM=,同理CN=ON=,MN=CB=1,∴OA=+1+=1+,∴A的坐标是(0,1+),故选D.点评:本题考查了勾股定理,旋转的性质,等腰直角三角形等知识点的应用,关键是根据题意画出图形,通过做此题培养了学生分析问题和解决问题的能力,题型较好,主要考查了学生的阅读问题的能力.26.如果一个三角形的三边之比为,那么最小边所对的角为()A.30°B.45°C.60°D.90°考点:等腰直角三角形.专题:计算题.分析:根据勾股定理的逆定理进行解答即可.解答:解:设三角形的三边分别为x、x、x,∴x2+x2=()2,∴此三角形为直角三角形,∴最大角为90°,∵三边的比为,∴此三角形为等腰直角三角形,∴最小角为45°.故选B.点评:本题考查的是等腰直角三角形的知识及勾股定理的逆定理,即若一个三角形的三边满足a2+b2=c2,则这个三角形是直角三角形.27.一个等腰直角三角形的斜边为,则其面积为()A.B.8C.16 D.考点:等腰直角三角形.专题:计算题.分析:设等腰直角三角形的两直角边为x,由勾股定理得出方程x2+x2=,求出x,再根据三角形的面积公式求出即可.解答:解:设等腰直角三角形的两直角边为x,则由勾股定理得:x2+x2=,解得:x=4,即等腰直角三角形的面积是:×4×4=8,故选B.点评:本题考查了等腰直角三角形性质、勾股定理、三角形的面积等知识点,关键是求出等腰直角三角形的直角边,用了方程思想.28.一架2.5米长的梯子斜靠在一竖直的墙上,这时梯子的顶端距墙脚2.4米.那么梯足离墙脚的距离是()米.A.0.7 B.0.9 C.1.5 D.2.4考点:勾股定理.分析:梯子恰好与竖直的墙,地面组成一个直角三角形,由勾股定理可得梯足离墙角的距离.解答:解:如图所示,AB为梯子的长,AC为梯子的顶端距墙脚的距离,BC为梯足离墙脚的距离.在Rt△ACB中,AB=2.5米,AC=2.4米,由勾股定理得,BC====0.7米.所以梯足离墙脚的距离为:0.7米,故选:A.点评:正确理解梯子与墙、地面构成一个直角三角形,已知斜边和一个直角边的长,用勾股定理求出另一直角边.29.如图,已知每个小方格的边长为1,A,B,C三点都在小方格的顶点上,则点C到AB所在直线的距离等于()A.B.C.D.考点:勾股定理;点到直线的距离.专题:计算题.分析:连接AB,BC,AC可得△ABC为等腰三角形,根据等腰三角形面积计算方法计算C到AB的距离(过C 作AB边上的高).解答:解:连接AB,BC,AC.找到AC中点D,连接BD.设C到AB的距离为h,小方格边长为1,∴AD=,AB=BC=,∴△ABC为等腰三角形,∴BD⊥AC,且BD=△ABC的面积为S=AC•BD=4.又∵△ABC面积=×AB×h=4,∴h==.故选B.点评:本题考查了勾股定理的运用,考查了等腰三角形面积的计算,根据面积法求C到AB边的距离h是解题的关键.30.在△ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB=()A.1:2:3 B.1:4:9 C.1::D.1::2考点:勾股定理;三角形内角和定理;含30度角的直角三角形.分析:根据三角形的内角和定理,可判断此三角形为直角三角形,再利用30°所对的直角边是斜边的一半,勾股定理求解.解答:解:∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°.设BC=x,则AB=2x,根据勾股定理,得AC=x,∴BC:AC:AB=1::2.故选D.点评:注意这一结论:30°的直角三角形中,三边从小到大的比是1::2.。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)(2)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)(2)

一、选择题1.如图,在22⨯的正方形网格中,每个小正方形边长为1,点A,B,C均为格点,以点A 为圆心,AB长为半径作弧,交格线于点D.则CD的长为()A.12B.13C.23-D.32.如图,在Rt△ABC中,∠BAC=90°,以Rt△ABC各边为斜边分别向外作等腰Rt△ADB、等腰Rt△AFC、等腰Rt△BEC,然后将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC中,其中BH=BA,CI=CA,已知,S四边形GKJE=1,S四边形KHCJ=8,则AC的长为()A.2 B.52C.4 D.63.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1 条B.2条C.3条D.4条4.在下列四组数中,属于勾股数的是()A.0.3,0.4,0.5 B.9,40,41 C.2,3,4 D.123 5.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,AB的垂直平分线DE交BC的延长线于点E,则DE的长为()A .103B .256C .203D .1546.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352 B .51- C .5﹣1 D .51+ 7.《九章算术》是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多6尺,门的对角线长10尺,那么门的高和宽各是多少?如果设门的宽为x 尺,根据题意可列方程( )A .222(6)10x x ++=B .222(6)10x x -+=C .222(6)10x x +-=D .222610x +=8.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺 9.一个直角三角形的两条边分别是9和40,则第三边的平方是( )A .1681B .1781C .1519或1681D .1519 10.如图,在33⨯的正方形网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是ABC 的边AC 上的高,则BD 的长为( )A .52613B .102613C .13137D .7131311.在Rt △ABC 中,∠ACB =90°,AC =BC =1.点Q 在直线BC 上,且AQ =2,则线段BQ 的长为( )A .3B .5C .31+或31-D .51+或51- 12.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为( )A .2B .3C .5D .6二、填空题13.如图,在ABC 中,90,ACB AC BC ︒∠==,点M 为射线AE 上一点,连接CM ,点N 为三角形ABC 外右侧一点,连接CN ,连接NB 交射线AE 于点D ,已知,,15CN CM CN CM EAC ︒⊥=∠= ,6260,2ACM BD ︒+∠==,则线段DN 长为________.14.将一根24cm 的筷子,置于底面直径为5cm 、高为12cm 的圆柱体中,如图,设筷子露出在杯子外面长为h cm ,则h 的最小值__,h 的最大值__.15.如图,在ABC 中,90C =∠,AB 的中垂线DE 交AB 于E ,交BC 于D ,若5AB =,3AC =,则ACD △的周长为__________.16.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是_________17.如图,两个正方形的面积分别是118S =,212S =,则第三个正方形的面积3S =_________.18.若直角三角形的两直角边长为a 、b 21025a a -+b ﹣12|=0,则该直角三角形的斜边长为_____.19.现有两根木棒,长度分别为5dm 和12dm ,若要钉成一个直角三角形框架,那么所需的第三根木棒的长度可以是________dm .20.若一个直角三角形的两条直角边长分别是4和6,则斜边长为__________.三、解答题21.如图,在△ABC 中,∠ABC 的角平分线与外角∠ACD 的角平分线相交于点E . (1)设∠A =α,用含α的代数式表示∠E 的度数;(2)若EC ∥AB ,AC =4,求线段CE 的长;(3)在(2)的条件下,过点C 作∠ACB 的角平分线交BE 于点F ,若CF =3,求边AB 的长.22.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.求AB 的长.23.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=32米.求点B 到地面的垂直距离BC .24.如图,在Rt △ABC 中,∠C =90°,AC =8,AB =10,AB 的垂直平分线分别交AB 、AC 于点D 、E .求AE 的长.25.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.26.如图,已知Rt △ABC 中,∠C =90°,点D 是AC 上一点,点E 、点F 是BC 上的点,且∠CDF =∠CEA ,CF =CA .(1)如图1,若AE 平分∠BAC ,∠DFC =25°,求∠B 的度数;(2)如图2,若过点F 作FG ⊥AB 于点G ,连结GC ,求证:AG +GF =2GC .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由勾股定理求出DE ,即可得出CD 的长.【详解】解:连接AD ,如图所示:∵AD =AB =2,∴DE =2221-=3,∴CD =23-,故选:C .本题考查了勾股定理;由勾股定理求出DE是解决问题的关键.2.D解析:D【分析】设AD=DB=a,AF=CF=b,BE=CE=c,由勾股定理可求a2+b2=c2,由S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,可求b=,即可求解.【详解】解:设AD=DB=a,AF=CF=b,BE=CE=c,∴AB=,AC=,BC=,∵∠BAC=90°,∴AB2+AC2=BC2,∴2a2+2b2=2c2,∴a2+b2=c2,∵将等腰Rt△ADB和等腰Rt△AFC按如图方式叠放到等腰Rt△BEC,∴BG=GH=a,∵S四边形GHCE=S四边形GKJE+S四边形KHCJ=9,∴1(a+c)(c﹣a)=9,2∴c2﹣a2=18,∴b2=18,∴b=∴AC==6,故选:D.【点睛】本题考查了勾股定理,折叠的性质,利用整体思想解决问题是本题的关键.3.B解析:B【分析】由勾股定理求出a、b、c、d,即可得出结果.【详解】∵=,=d=2,=5∴长度是无理数的线段有2条,故选B.【点睛】本题考查了勾股定理、无理数,熟练掌握勾股定理是解决问题的关键.4.B解析:B根据勾股数的定义:满足222+=a b c 的三个正整数,成为勾股数,据此可判断.【详解】A .0.3、0.4、0.5,不是正整数,所以不是勾股数,选项错误;B .9、40、41,是正整数,且满足22294041+=,是勾股数,选项正确;C .2、3、4,是正整数,但222234+≠,所以不是勾股数,选项正确;D .1、2、3,不是正整数,所以不是勾股数,选项错误;故选:B .【点睛】本题考查了勾股数的判定方法,解题关键是要看这组数是否为正整数,且满足最小两个数的平方和等于最大数的平法.5.C解析:C【分析】利用勾股定理求BC 的长度,连接AE ,然后设BE=AE=x ,结合勾股定理列方程求解.【详解】解:如图,∵Rt △ABC 中,∠ACB=90°,∴22221086BC AB AC =-=-=,∵DE 是AB 的垂直平分线,∴BD=12AB=5,∠EDB=90°,AE=BE 连接AE ,设AE=BE=x ,则CE=x-6在Rt △ACE 中,222(6)8x x -+=,解得:253x =∴BE=AE=253 在Rt △BDE 中,ED=22222520()533BE BD -=-=. 故选:C .【点睛】本题考查了勾股定理解直角三角形和线段垂直平分线的性质,掌握相关性质定理正确推理计算是解题关键.6.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 7.A解析:A【分析】设门的宽为x 尺,则高为(x+6)尺,根据勾股定理解答.【详解】设门的宽为x 尺,则高为(x+6)尺,根据题意可列方程222(6)10x x ++=,故选:A .【点睛】此题考查勾股定理计算,正确理解题意掌握勾股定理计算公式是解题的关键. 8.A解析:A【分析】设AC=x 尺,则AB=(10-x )尺,利用勾股定理解答.【详解】设AC=x 尺,则AB=(10-x )尺, ABC 中,90ACB ∠=︒,222AC BC AB +=,∴2224(10)x x +=-,解得:x=4.2,故选:A .【点睛】此题考查勾股定理,根据题意正确设未知数,利用勾股定理解答是解题的关键. 9.C解析:C【分析】由题意可分当第三边为直角边时和当第三边为斜边时,然后利用勾股定理进行求解即可.【详解】解:当第三边是直角边时,第三边的平方是402﹣92=1519;当第三边是斜边时,第三边的平方是402+92=1681;故选:C.【点睛】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.10.D解析:D【分析】根据勾股定理计算AC的长,利用割补法可得△ABC的面积,由三角形的面积公式即可得到结论.【详解】解:由勾股定理得:AC=∵S△ABC=3×3−12×1×2−12×1×3−12×2×3=72,∴12AC•BD=72,∴=7,∴BD故选:D.【点睛】本题考查了勾股定理与三角形的面积的计算,掌握勾股定理是解题的关键.11.C解析:C【分析】分Q在CB延长线上和Q在BC延长线上两种情况分类讨论,求出CQ长,根据线段的和差关系即可求解.【详解】解:如图1,当Q在CB延长线上时,在Rt△ACQ中,CQ===∴1;如图2,当Q 在BC 延长线上时,在Rt △ACQ 中,2222213CQ AQ AC =-=-=,∴BQ=CQ+BC=31+;∴BQ 的长为31+或31-.故选:C【点睛】本题考查了勾股定理,根据题意画出图形,分类讨论是解题关键.12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.【分析】根据题意可求证延长CM 交AB 与点G 过G 作GK 垂直于BC 于点K 根据角相等判断边相等AG=AM 列出方程求出AG 的长从而求出AM 的长从而求出BN 的长DN=BN-BD 即可求解【详解】∵∴∵CN=CM【分析】根据题意可求证ACM BCN ≅,延长CM 交AB 与点G ,过G 作GK 垂直于BC 于点K ,根据角相等判断边相等,AG=AM ,列出方程求出AG 的长,从而求出AM 的长,从而求出BN 的长,DN=BN-BD 即可求解.【详解】∵60ACM ︒∠=,90M B N A C C ︒=∠∠=,∴60ACM BCN ︒∠=∠=,∵AC BC =,CN=CM∴ACM BCN ≅,∴15CAM CBN ︒∠=∠=,延长CM 交AB 与点G ,过G 作GK 垂直于BC 于点K ,∵90,ACB AC BC ︒∠==,60ACM ︒∠=∴45ABC ︒∠=,45CAB ︒∠=,30GCB ∠=︒,∴60ABD ︒∠=,30BAD ︒∠=,75AGC ∠=︒,75AMG ∠=︒∴90ADB ︒∠=,AM=AG ,∵BD = ∴AB =∴12AC BC ===,设BK=a ,则GK=a ,CK =, ∴1a +=,∴a=1,∴1BK KG ==, ∴BG =∴AG =AM =∴6BN =, ∴622DN BN BD -=-=, 故答案为:62-.【点睛】本题主要考查的是三角形全等的性质及判定,正确做出辅助线,熟练掌握三角形全等的性质及判定是解答本题的关键.14.11cm12cm 【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大当筷子与杯底及杯高构成直角三角形时h 最小利用勾股定理计算即可【详解】解:当筷子与杯底垂直时h 最大h 最大=24﹣12=12(cm解析:11cm 12cm【分析】根据筷子的摆放方式得到:当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,利用勾股定理计算即可.【详解】解:当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内的长度22512+=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12cm .故答案为:11cm ;12cm .【点睛】此题考查勾股定理的实际应用,正确理解题意、掌握勾股定理的计算公式是解题的关键. 15.7【分析】先根据勾股定理求出BC 的长再由线段垂直平分线的性质得出AD=BD 即AD+CD=BC 再由AC=6即可求出答案【详解】解:∵△ABC 中∠C=90°AB=5AC=3∴BC==4∵DE 是线段AB 的解析:7【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质得出AD=BD,即AD+CD=BC,再由AC=6即可求出答案.【详解】解:∵△ABC中,∠C=90°,AB=5,AC=3,∴BC=2222-=-=4,53AB AC∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=3+4=7.故答案为:7.【点睛】本题考查了勾股定理及线段垂直平分线的性质,能根据线段垂直平分线的性质求出AD+CD=BC是解题的关键.16.2021【分析】根据勾股定理求出生长了1次后形成的图形中所有的正方形的面积和结合图形总结规律根据规律解答即可【详解】解:如图由题意得正方形A的面积为1由勾股定理得正方形B的面积+正方形C的面积=1∴解析:2021【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:如图,由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故答案为:2021.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.6【分析】根据题意和图形可以得到AB2和AC2再根据△ABC是直角三角形和勾股定理可以得到BC2【详解】解:∵两个正方形的面积分别是S1=18S2=12∴AB2=18AC2=12∵△ABC是直角三角解析:6【分析】根据题意和图形,可以得到AB2和AC2,再根据△ABC是直角三角形和勾股定理,可以得到BC2.【详解】解:∵两个正方形的面积分别是S1=18,S2=12,∴AB2=18,AC2=12,∵△ABC是直角三角形,∴BC2=AB2-AC2=18-12=6,故答案为:6.【点睛】本题考查了正方形的性质,解题的关键是明确题意,利用数形结合的思想解答.18.13【分析】根据非负数的性质得到ab的值然后结合勾股定理求得斜边的长度即可【详解】解:∵∴∴|a﹣5|+|b﹣12|=0∴a=5b=12∴该直角三角形的斜边长为:故答案是:13【点睛】本题考查了勾股解析:13【分析】根据非负数的性质得到a、b的值,然后结合勾股定理求得斜边的长度即可.【详解】解:∵|12|0b-=,∴|12|0b-=∴|a﹣5|+|b﹣12|=0,∴a=5,b=12,∴13=.故答案是:13.【点睛】本题考查了勾股定理,非负数的性质﹣绝对值、算术平方根.任意一个数的绝对值(二次根式)都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.19.13或【分析】分情况讨论当的木棒为直角边时以及当的木棒为斜边时利用勾股定理解答即可【详解】解:当的木棒为直角边时第三根木棒的长度为;当的木棒为斜边时第三根木棒的长度为;故答案为:13或【点睛】本题考解析:13【分析】分情况讨论当12dm的木棒为直角边时以及当12dm的木棒为斜边时,利用勾股定理解答即可.【详解】解:当12dm13dm;当12dm=;故答案为:13【点睛】本题考查勾股定理的应用,分情况讨论是解题的关键.20.【分析】直接根据勾股定理求解可得【详解】解:∵直角三角形的两条直角边长分别是4和6∴斜边长为故答案为:【点睛】本题考查勾股定理在任何一个直角三角形中两条直角边长的平方之和一定等于斜边长的平方即如果直解析:【分析】直接根据勾股定理求解可得.【详解】解:∵直角三角形的两条直角边长分别是4和6,∴故答案为:【点睛】本题考查勾股定理,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.三、解答题21.(1)12α;(2)4;(3)5625【分析】(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,利用三角形的外角的性质,构建方程组求解即可.(2)证明CA=CB=CE,可得结论.(3)如图,连接AF,过点C作CT⊥BE于T.解直角三角形求出EF,BE,BF,再利用相似三角形的性质求解即可.【详解】解:(1)设∠ABE=∠CBE=x,∠ACE=∠ECD=y,则有22y x Ay x E=+∠⎧⎨=+∠⎩,可得∠E =12∠A =12α. (2)∵EC ∥AB ,∴∠ABE =∠E ,∵∠ABC =2∠ABE ,∠A =2∠E ,∴∠A =∠ABC ,∠E =∠CBE ,∴CA =CB =4,CE =CB =4.(3)如图,连接AF ,过点C 作CT ⊥BE 于T ,延长CF 交AB 于R .∵CF 平分∠ACB ,CE 平分∠ACD ,∴∠FCE =12(∠ACB +∠ACD )=90°, ∵CF =3,CE =4,∴EF5,∵S △CEF =12•EC•CF =12•EF•CT , ∴CT =125, 在Rt △BCT 中,BT=165, ∵CB =CE ,CT ⊥BE ,∴BT =TE ,∴BE =2BT =325, ∴BF =BE ﹣EF =325﹣5=75, ∵CA =CB ,CF 平分∠ACB ,∴CR ⊥AB ,BR =AR ,设BR =x ,RF =y , 则有2222227()5(3)4x y x y ⎧+=⎪⎨⎪++=⎩, 解得2825215x y ⎧=⎪⎪⎨⎪=⎪⎩(不符合题意的解已经舍弃). ∴AB =2BR =5625.【点睛】本题考查三角形的外角的性质,平行线的性质,勾股定理解直角三角形等知识,解题的关键是学会利用参数构建方程组解决问题,题目有一定的难度.22.【分析】由题意可知三角形CDB是直角三角形,利用已知数据和勾股定理直接可求出DC的长,再利用勾股定理求出AD的长,进而求出AB的长.【详解】∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12;在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25.23.33【分析】在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.【详解】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,2.∴AD2=AE2+DE2=(2)2+(2)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=1AB=3,2∴BC2=AB2-AC2=62-32=27,∴BC=27=33m,∴点B到地面的垂直距离BC=33m.【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.24.25 4【分析】连接BE,先利用勾股定理求出BC的长,根据线段垂直平分线的性质可得AE=BE,然后设AE=BE=x,再由勾股定理可得方程(8−x)2+62=x2,求解后即可得出答案.【详解】解:连接BE,在Rt△ABC中,∵∠C=90°,AC=8,AB=10,∴AC2+BC2=AB2.即82+BC2=102,解得:BC=6.∵DE是AB的垂直平分线,∴AE=BE.设AE=BE=x,则EC=8−x,∵Rt△BCE中,EC2+BC2=BE2,∴(8−x)2+62=x2,解得:x=254,∴AE=254.【点睛】此题考查了线段垂直平分线的性质以及勾股定理,掌握线段垂直平分线的性质并结合勾股定理求解线段的长度是解题的关键,且要注意数形结合思想应用.25.(1)证明见详解;(2)26【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.26.(1)∠B=40°;(2)见解析.【分析】(1)先利用SAS 证明△AEC ≌△FDC ,得出∠EAC=∠DFC=25°,从而得出∠BAC=50°,再根据直角三角形的两个锐角互余即可得出结论(2)过点C 作GC 的垂线交GF 的延长线于点P ,根据同角的余角得出∠PCF =∠GCA ,再根据ASA 得出△AGC ≌△FPC ,从而得出△GCP 是等腰直角三角形,即可得出答案【详解】(1)在△AEC 和△FDC 中,∵∠CDF=∠CEA CE=CD ∠C=∠C,∴△AEC≌△FDC,∴∠EAC=∠DFC=25°∵AE平分∠BAC,∴∠BAC=2∠EAC=50°∵∠C=90°,∴在Rt△ABC中,∠B=90°-∠BAC=40°.(2)如答图,过点C作GC的垂线交GF的延长线于点P∴∠GCP = 90°∴∠GCF+∠PCF = 90°,∵∠ACB = 90°∴∠GCF+∠GCA = 90°,∴∠PCF =∠GCA.∵∠ACB=90°,GF⊥AB∴∠B+∠BAC=∠B+∠BFG= 90°,∴∠BAC=∠BFG.又∵∠PFC=∠BFG∴∠GAC=∠PFC.由(1)知,△AEC≌△FDC,∴CA=CF,∴△AGC≌△FPC,∴GC=PC,AG=FP.又∵PC⊥GC,∴△GCP是等腰直角三角形,∴GF+2GC,∴AG+2GC【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、勾股定理等知识,正确作出辅助线构造全等三角形是解题的关键.。

鲁教版五四学制数学七年级上册练习 第三章 勾股定理 2 一定是直角三角形吗 同步测试(解析版)

鲁教版五四学制数学七年级上册练习 第三章 勾股定理 2 一定是直角三角形吗 同步测试(解析版)

知能提升作业(十七)2 一定是直角三角形吗(30分钟 50分)一、选择题(每小题4分,共12分)1.三角形的三边长为(a+b)2=c2+2ab,则这个三角形是( )(A)等边三角形(B)钝角三角形(C)直角三角形(D)锐角三角形2.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的一组线段是( )(A)CD,EF,GH(B)AB,EF,GH(C)AB,CF,EF(D)GH,AB,CD3.满足下列条件的△ABC,不是直角三角形的是( )(A)b2=c2-a2(B)a∶b∶c=3∶4∶5(C)∠C=∠A-∠B(D)∠A∶∠B∶∠C=12∶13∶15二、填空题(每小题4分,共12分)4.以下列各组数为边长的三角形中,是直角三角形的有______个.①3,4,5;②14,48,50;③15,20,25;④,,1;⑤72,82,152;⑥1,2,2.5.木工师傅做了一个长方形桌面,量得桌面的长是60cm,宽是35cm,对角线是70cm,那么你认为这个桌面__________.(填“合格”或“不合格”)6.测得一块三角形稻田的三边长分别是30m,40m,50m,则这块稻田的面积为______.三、解答题(共26分)7.(8分)设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,试判断以c+h,a+b,h为边的三角形的形状.8.(8分)如图,供电所李师傅要安装电线杆,按要求,电线杆要与地面垂直,从离地面6m的C处向地面拉一条长6.5m的钢绳,现测得地面钢绳固定点A到电线杆底部B的距离为2.5m,请问:李师傅的安装方法是否符合要求?请说明理由.【拓展延伸】9.(10分)已知:如图,在四边形ABCD中,AD∥BC,AB=4,BC=6,CD=5,AD=3.求四边形ABCD的面积.答案解析1.【解析】选C.(a+b)2=c2+2ab,化简得a2+b2=c2,所以此三角形是直角三角形.2.【解析】选B.AB2=22+22=8,CD2=42+22=20,EF2=12+22=5,GH2=32+22=13,所以AB2+EF2=GH2.3.【解析】选D.A选项,由b2=c2-a2得a2+b2=c2,所以三角形是直角三角形;B选项,设a=3x,则b=4x,c=5x,经计算知a2+b2=c2,所以三角形是直角三角形;C选项,由∠C=∠A-∠B知∠C+∠B=∠A,又∠A+∠B+∠C=180°,所以2∠A=180°,即∠A=90°,所以三角形是直角三角形;只有D选项,三角形不是直角三角形.4.【解析】经过计算得①②③④都满足a2+b2=c2,而⑤⑥不满足.故是直角三角形的共4个.答案:45.【解析】因为602+352≠702,所以长,宽,对角线不能组成直角三角形.故这个桌面不是长方形的,不合格.答案:不合格6.【解析】因为302+402=2500=502,所以该三角形为直角三角形.所以其面积为×30×40=600(m2).答案:600m27.【解析】根据勾股定理得,a2+b2=c2.根据三角形的面积得,ab=ch,所以2ab=2ch所以(a+b)2=a2+2ab+b2=a2+2ch+b2因为(c+h)2=c2+2ch+h2=a2+b2+2ch+h2=(a+b)2+h2,即(a+b)2+h2=(c+h)2,所以,以c+h,a+b,h为边的三角形是直角三角形.8.【解析】符合要求.理由:62+2.52=6.52,即AB2+BC2=AC2.所以△ABC是直角三角形,即∠ABC=90°,所以BC⊥AB,即电线杆与地面垂直.9.【解析】作DE∥AB交BC于点E,连接BD,则∠ABD=∠EDB,∠ADB=∠EBD,又因为BD=DB,所以△ABD≌△EDB,所以ED=AB=4,EB=AD=3.因为BC=6,所以EC=EB=3.因为DE2+CE2=42+32=25=CD2,所以△DEC为直角三角形.又因为EC=EB=3,所以△DBC为等腰三角形,DB=DC=5.在△BDA中AD2+AB2=32+42=25=BD2,所以△BDA是直角三角形.它们的面积分别为S△BDA=×3×4=6;S△DBC=×6×4=12.所以S四边形ABCD=S△BDA+S△DBC=6+12=18.。

初中数学八年级几何勾股定理练习题2(含答案)

初中数学八年级几何勾股定理练习题2(含答案)

初中数学八年级几何勾股定理练习题2(含答案)一.填空题1、一直角三角形的两直角边的长度分别为3、6,则斜边的长度为。

2、△ABC为直角三角形,且∠C=90°,AB=4,A C=2,则∠A= °3、在Rt△ABC中,∠BAC=90°,且a+c=9,a﹣c=4,则b的值是.4、如图所示的正方形网格中,每个小正方形的面积均为1,正方形ABCM,CDEN,MNPQ的顶点都在格点上,则正方形MNPQ的面积为.5、如图,轮船甲从港口O出发沿北偏西25°的方向航行8海里,同时轮船乙从港口O出发沿南偏西65°的方向航行15海里,这时两轮船相距海里.6、如图,一架13m长的梯子AB斜靠在一竖直的墙AC上,这时AC为12m.如果子的顶端A沿墙下滑7m,那么梯子底端B向外移m.7、如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,若AC=9,AB=15,则DE=.8、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=2,BC=4,则AB2+CD2=.9、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若a=4,b=3,则大正方形的面积是.10、如图,圆柱的底面半径为24,高为7π,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是.二.选择题1、下列各组数表示三角形的三条边的边长,其中是直角三角形的是()A、 2,3,4 B 、 5,6,7 C、6,7,8 D、6,8,102、△ABC为直角三角形,且∠C=90°,AB=6 , AC=2,则BC= .A 、3B 、 4C 、23D 、243、如图,在三角形ABC 中,已知∠C =90°,AC =3,BC =4,则AB 的大小有可能是( )A .1B .2C .3D .54、下列各组数据中,不是勾股数的是( ) A .3,4,5 B .7,24,25C .8,15,17D .5,6,95、满足下列关系的三条线段a ,b ,c 组成的三角形一定是直角三角形的是( )A .a <b +cB .a >b ﹣cC .a =b =cD .a 2=b 2﹣c 26、为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)( )A .0.7米B .0.8米C .0.9米D .1.0米7、下列选项中(图中三角形都是直角三角形),不能用来验证勾股定理的是( )A.B.C.D.8、如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()km.A.4B.5C.6D.9、两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成如图所示的图形,用两种不同的计算方法计算这个图形的面积,则可得等式为()A.(a+b)2=c2B.(a﹣b)2=c2C.a2﹣b2=c2D.a2+b2=c210、如图,一棵大树在离地面3m,5m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部6m处,则大树折断前的高度是()A.9m B.14m C.11m D.10m三.解答题1、如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间多长?2、在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的三条边.(1)如果a=3,b=4,求c的长;(2)如果c=13,b=12,求a的长.3、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=BC,由于某种原因,由C到B的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点D(A、D、B在同一条直线上),并新修一条路CD,测得CA=6.5千米,CD=6千米,AD=2.5千米.(1)问CD是否为从村庄C到河边最近的路?请通过计算加以说明;(2)求原来的路线BC的长.4、如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上的一点,且BD=12cm,CD=16cm.(1)求证:△BCD是直角三角形;(2)求△ABC的周长,5、(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.6、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.求:四边形ABDC的面积.7、勾股定理是数学中最常见的定理之一,熟练的掌握勾股数,对迅速判断、解答题目有很大帮助,观察下列几组勾股数:a b c13=1+24=2×1×25=2×2+125=2+312=2×2×313=4×3+137=3+424=2×3×425=6×4+149=4+540=2×4×541=8×5+1…………n a=b=c=(1)你能找出它们的规律吗?(填在上面的横线上)(2)你能发现a,b,c之间的关系吗?(3)对于偶数,这个关系(填“成立”或“不成立”).(4)你能用以上结论解决下题吗?20192+20202×10092﹣(2020×1009+1)2参考答案一.填空题31、52、60°3、解:∵a+c=9,a﹣c=4,∴a=,c=,∵在Rt△ABC中,∠BAC=90°,∴b====6,故答案为:6.4、解:∵CM=3,CN=6,∠MCN=90°,∴MN2=CM2+CN2=32+62=45,∴正方形MNPQ的面积=MN2=45,故答案为:45.5、解:由题意可得:AO=8海里,BO=15海里,∠AOB=180°﹣25°﹣65°=90°,故AB==17(海里),答:两轮船相距17海里.故答案为:17.6、解:∵∠ACB=90°,AB=13,AC=12,∴BC==5,∵AE=7,∴CE=12﹣7=5,∴CD==12,∴BD=CD﹣BC=7,∴梯子底端B向外移7m,故答案为:7.7、解:在Rt△ABC中,∠C=90°,AC=9,AB=15,由勾股定理,得BC═12,∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,×AC×CD+×AB×DE=×AC×BC,即×9×DE+×15×DE=×9×12,解得:DE=4.5.故答案为:4.5.8、解:∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+CO2+DO2,AD2+BC2=AO2+DO2+BO2+CO2,∴AB2+CD2=AD2+BC2,∵AD=2,BC=4,∴AB2+CD2=22+42=20.故答案为:20.9、解:由勾股定理可知大正方形的边长===5,∴大正方形的面积为25,故答案为25.10、解:如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB 的长是蚂蚁在圆柱表面从A 点爬到B 点的最短路程,AC =×2π×24=24π,∠C =90°,BC =7π,由勾股定理得:AB ==25π.故答案为:25π.二.选择题1、解 因为D :6²+8²=10²故选D2、解:由勾股定理,BC=22AC AB -=2226-=32=24故选D3、解:方法1:由垂线段最短,可得AB 的大小有可能是5.方法2:在三角形ABC 中,∠C =90°,AC =3,BC =4,则AB ===5.故选:D .4、解:A 、32+42=52,是勾股数;B 、72+242=252,是勾股数;C 、82+152=172,是勾股数;D、52+62≠92,不是勾股数.故选:D.5、解:当a2=b2﹣c2,可得:a2+c2=b2,所以三条线段a,b,c组成的三角形一定是直角三角形,故选:D.6、解:梯脚与墙角距离:=0.7(米),∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.7、解:A、中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理,本选项不符合题意.B、不能证明勾股定理,本选项符合题意.C、利用A中结论,本选项不符合题意.D、中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理,本选项不符合题意,故选:B.8、解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.9、解:根据题意得:S=(a+b)(a+b),S=ab+ab+c2,(a+b)(a+b)=ab+ab+c2,即(a+b)(a+b)=ab+ab+c2,整理得:a2+b2=c2.故选:D.10、解:如图,作BD⊥OC于点D,由题意得:AO=BD=3m,AB=OD=2m,∵OC=6m,∴DC=4m,∴由勾股定理得:BC===5(m),∴大树的高度为5+5=10(m),故选:D.三.解答题1、解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120m,则该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.2、解:(1)∵在Rt△ABC中,∠C=90°,a=3,b=4,∴c===5;(2)∵在Rt△ABC中,∠C=90°,c=13,b=12,∴a===5.3、解:(1)是,理由:∵62+2.52=6.52,∴CD2+AD2=AC2,∴△ADC为直角三角形,∴CD⊥AB,∴CD是从村庄C到河边最近的路;(2)设BC=x千米,则BD=(x﹣2.5)千米,∵CD⊥AB,∴62+(x﹣2.5)2=x2,解得:x=8.45,答:路线BC的长为8.45千米.4、(1)证明:∵在△BDC中,BC=20cm,BD=12cm,CD=16cm.∴BD2+CD2=BC2,∴∠BDC=90°,∴△BCD是直角三角形;(2)解:设AB=AC=xcm,则AD=(x﹣12)cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,即(x﹣12)2+162=x2,解得:x=15,即AB=AC=15cm,∵BC=20cm,∴△ABC的周长是AB+AC+BC=15cm+15cm+20cm=50cm.5、解:(1)梯形ABCD的面积为(a+b)(a+b)=a2+ab+b2,也利用表示为ab+c2+ab,∴a2+ab+b2=ab+c2+ab,即a2+b2=c2;(2)∵直角三角形的两直角边分别为3,4,∴斜边为5,∵设斜边上的高为h,直角三角形的面积为×3×4=×5×h,∴h=,故答案为;(3)∵图形面积为:(a﹣2b)2=a2﹣4ab+4b2,∴边长为a﹣2b,由此可画出的图形为:6、解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形,∴四边形ABDC的面积=S△ABC +S△BCD=×12×5+×3×4=36.7、解:(1)由表中数据可得:a=2n+1,b=2n(n+1),c=2n(n+1)+1,故答案为:2n+1,2n(n+1),2n(n+1)+1;(2)a2+b2=c2,理由是:∵a=2n+1,b=2n(n+1),c=2n(n+1)+1,∴a2+b2=(2n+1)2+[2n(n+1)]2=[2n(n+1)]2+4n(n+1)+1c2=[2n(n+1)+1]2=[2n(n+1)]2+4n(n+1)+1∴a2+b2=c2;(3)对于偶数,这个关系不成立,故答案为:不成立;(4)当2n+1=2019时,n=1009,∴当n=1009时,a2=20192,b2=[2n(n+1)]2=20202×10092,c2=[2n(n+1)+1]2=[2020×1009+1]2,∵a2+b2=c2;∴20192+20202×10092﹣(2020×1009+1)2=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1 勾股定理(二)
课堂学习检测
一、填空题
1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.
3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.
3题图
4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.
4题图
二、选择题
5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高( ).
5题图
(A)5m (B)7m (C)8m (D)10m
6.如图,从台阶的下端点B到上端点A的直线距离为( ).
6题图
(A)2
12(B)3
10
(C)5
8
6(D)5
三、解答题
7.在一棵树的10米高B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处;另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?
8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?
综合、运用、诊断
一、填空题
9.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.
10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(π取3)
二、解答题:
11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.
12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?
拓展、探究、思考
13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.
参考答案
1.13或.119 2.5. 3.2. 4.10.
5.C . 6.A . 7.15米. 8.
2
3米. 9.⋅3310 10.25. 11..2232- 12.7米,420元.
13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .。

相关文档
最新文档