勾股定理逆定理同步测试题含答案
(完整版)勾股定理及逆定理习题及答案

勾股定理及逆定理习题及答案1、由于0.3,0.4,0.5不是勾股数,所以0.3,0.4,0.5为边长的三角形不是直角三角形()2、由于0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数()3.下列几组数据能作为直角三角形的三边的有( )(1)9,12,15; (2)15,36,39;(3)12,35,36 ; (4)12,18,22.4.一个三角形的三边的长分别是15cm,20cm,25cm,则这个三角形的面积是()cm2 .(A)250 (B)150 (C)200 (D)不能确定5.如图,在△ABC中,AD⊥BC于D,BD=9,AD=12,AC=20,则△ABC是().(A)等腰三角形(B)锐角三角形(C)钝角三角形(D)直角三角形6.如图,在一块平地上,张大爷家屋前9 m远处有一棵大树.在一次强风中,这棵大树从离地面6 m处折断倒下,量得倒下部分的长是10 m.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答( )A.一定不会B.可能会C.一定会D.以上答案都不对7.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为 2.5 m的木梯,准备把梯子架到 2.4 m高的墙上,则梯脚与墙角的距离为( )A.0.7 m B.0.8 m C.0.9 m D.1.0 m 8.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距( )海里.9. 在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c +a =2b ,c -a = 12 b ,则△ABC 是什么特殊三角形?1x 2.x 3.(1)(2)(4) B (5)D 6.A 7.A(8)50海里9. 解:因为c +a =2b ,c -a =12b ,所以(c +a)(c -a)=2b·12b.所以c 2-a 2=b 2,即a 2+b 2=c 2.所以△ABC 是∠C =90°的直角三角形.。
2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。
人教版数学八年级下册17.2 勾股定理的逆定理同步练习(解析版)

17.2 勾股定理的逆定理1.下列命题的逆命题是真命题的是 ( )A .对顶角相等B .正方形的四个角都是直角C .两直线平行,同位角相等D .菱形的对角线互相垂直 2.下列定理有逆定理的是 ( )A .直角都相等B .同旁内角互补,两直线平行C .同位角相等D .全等三角形的对应角相等3.下列各组数是三角形的三边长,不能组成直角三角形的一组数是 ( )A .3,4,5B .6,8,10C .1.5,2,2.5D .543,,4.若一个三角形的三边长之比为8:15:17,则它为________三角形.5.如图17-2-1.以△ABC 的三边为直径分别向三角形外侧作半圆,其中两个半圆的面积和等于另一个半圆的面积,则此三角形的形状为________.6.如图17-2-2,四边形ABCD 中,∠C=90º,BD 平分∠ABC ,AD=3,E 为AB 上一点,AE=4,ED=5,求CD 的长.7.下列四组数:(1)0.6,0.8,1;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中勾股数的组数为 ( )A .1B .2C .3D .4能力提升全练1.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC是直角三角形的是 ( )A .∠A =∠C-∠B B .a:b:c=2:3:4C .a ²=b ²-c ²D .a=34,b=45,c=12.如图17-2-3,四边形ABCD 中,AB=4 cm,BC=3 cm,CD=12 cm, DA=13 cm ,且∠ABC=90º,则四边形ABCD 的面积为( )A .6 cm²B .30 cm²C .24 cm²D .36 cm² 3.阅读以下解题过程:已知a ,b ,c 为△ABC 的三边长,且满足a ²c ²-b ²c ²=a ⁴-b ⁴,试判断△ABC 的形状. 解:∵a ²c ²-b ²c ²=a ⁴-b ⁴,①∴c²(a²-b²)=(a²-b²)(a²+b²),②∴c²=a²+b².③∴△ABC为直角三角形,④(1)上述解题过程从哪一步开始出现错误?请写出该步的代号__________;(2)错误的原因是________________________________________________________;(3)本题正确的结论是____________________________________________________. 三年模拟全练一、选择题1.F列四组线段中,可以构成直角三角形的是 ( )A.1.5,2,2.5 B.4,5,6C.2,3,4 D.1,2,32.下列各组数中,是勾股数的为 ( )A.1,1,2 B.1.5,2,2.5C.7,24,25 D.6,12,133.甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m,甲客轮用15分钟到达点A.乙客轮用20分钟到达点B,若A、B两点的直线距离为1000 m,甲客轮沿着北偏东30º的方向航行,则乙客轮的航行方向可能是 ( )A.南偏东60º B.南偏西60º C.北偏西30º D.南偏西30º二、填空题4.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是_________.三、解答题5.如图17-2-4,每个小正方形的边长都为1.(1)求四边形ABCD的面积与周长;(2)∠DAB是直角吗?五年中考模拟一、选择题1.下列长度的三条线段能组成直角三角形的是 ( )A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12 2.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米 B.15平方千米 C.75平方千米 D.750平方千米二、填空题3.如图17-2-5,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.则∠ACB 的大小为_______.核心素养全练1.王老师在一次“探究性学习”课中设计了如下数表:(1)请你分别观察a 、b 、c 与n 之间的关系,并用含自然数n (n >1)的代数式表示a 、b 、c ;(2)猜想:以a 、b 、c 为边长的三角形是不是直角三角形,请证明你的猜想.2.如图17-2-6,南北线MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私艇A 发现正东方有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇曰密切注意,反走私艇A和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里,反走私艇B 和走私艇C 的距离是12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?3.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形, 理解:①根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?________(填“是”或“不是”);②若某三角形的三边长分别为1、7、2,则该三角形________(填“是”或“不是”)奇异三角形. 探究:在Rt △ABC 中,两边长分别是a 、c ,且a ²=50,c ²=100,则这个三角形是不是奇异三角形?请说明理由, 拓展:在Rt△ABC中,∠C=90º,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a²:b²:c².17.2 勾股定理的逆定理1.C“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”,是平行线判定定理,所以逆命题是真命题.2.B“直角都相等”的逆命题是“相等的角是直角”,选项A错误;“同旁内角互补,两直线平行”的逆命题是“两直线平行,同旁内角互补”,选项B正确;“同位角相等”的逆命题是“相等的角是同位角”,选项C错误;“全等三角形的对应角相等”的逆命题是“角对应相等的三角形是全等三角形”,选项D错误,故选B.3.D ∵3²+4²=5²,∴此三角形是直角三角形,选项A不合题意;∵6²+8²=10²,∴此三角形是直角三角形,选项B不合题意;∵1.5²+2²=2.5²,∴此三角形是直角三角形,选项C不合题意;()()()222543≠+,∴此三角形不是直角三角形,选项D符合题意,故选D.4.答案直角解析设三边长分别为8k,15k,17k( k>0),则(8k)²+(15k)²=289k²=(17k)²,由勾股定理的逆定理,可判断此三角形为直角三角形.5.答案直角三角形解析由题意得S₁+S₂=S₃,即222212121212121⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛⋅+⎪⎭⎫⎝⎛ABACBCπππ,∴BC²+AC²=AB²,∴△ABC为直角三角形.6.解析∵AD=3,AE=4,ED=5,∴AD²+AE²=ED².∴∠A=90º,∴DA⊥AB.∵∠C=90º,∴DC⊥BC.∵BD平分∠A BC,∴CD=AD=3.7.B(1)中各数不全是正整数;(2)中5²+12²=13²;(3)中8²+15²=17²;(4)中4²+5²≠6².故有2组勾股数.1.B A.由条件可得∠A+∠B=∠C,且∠A+∠B+∠C=180º,可求得∠C=90º,故△ABC 为直角三角形;B.不妨设a=2,b=3,c=4,此时a²+b²=13,而c²=16,即a²+b²≠c²,故△ABC 不是直角三角形;C .由条件可得到a ²+c ²=b ²,满足勾股定理的逆定理,故△ABC 是直角三角形;D .由条件有a ²+c ²=2222451625143b =⎪⎭⎫ ⎝⎛==+⎪⎭⎫ ⎝⎛,满足勾股定理的逆定理,故△ABC 是直角三角形.故选B . 2.C 连接 AC, ∵∠A BC=90º,AB=4 cm,BC=3 cm,∴AC=5 cm,∵CD=12 cm,DA=13 cm,AC ²+CD ²=5²+12²=169=13²=DA ²,∴△ADC 为直角三角形,∴S 四边形ABCD =S △ACD - S △ABC=21AC •CD-21AB •BC =21×5×12-21×4×3=30-6=24(cm ²).故四边形ABCD 的面积为24 cm ².故选C .3.答案 (1)③ (2)不能确定a ²-b ²是不是0 (3)△ABC 是等腰三角形或直角三角形解析 ∵c ²(a ²-b ²)=(a ²-b ²)(a ²+b ²),∴(a ²-b ²)[c ²-(a ²+b ²)]=0,∴a ²-b ²=0或c ²-(a ²+b ²)=0,即a=b 或a ²+b ²=c ²,∴三角形为等腰三角形或直角三角形,故从第③步开始错误,其原因是不能确定a ²-b ²是不是0. 一、选择题1.A 根据勾股定理的逆定理判断,求出两短边的平方和与最长边的平方,判断是否相等即可.1.5²+2²=2.5².即三角形是直角三角形,故此选项正确.故选A . 2.C A ∵1²+1²≠2²,∴不是勾股数,此选项错误; B .1.5和2.5不是正整数,此选项错误;C .∴7²+24²=25²,且7,24,25是正整数,∴是勾股数,此选项正确;D .∵6²+12²≠13²,∴不是勾股数,此选项错误,故选C .3.A 如图,∵甲、乙两艘客轮同时离开港口,航行的速度都是每分钟40 m ,甲客轮用15分钟到达点A ,乙客轮用20分钟到达点B ,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m).∵A 、B 两点间的直线距离为1000 m ,又∵600²+800²=1000²,∴∠A OB=90º, ∵甲客轮沿着北偏东30º的方向航行, ∴乙客轮沿着南偏东60º的方向航行,故选A .二、填空题4.答案 直角三角形解析化简(a+b )²=c ²+2ab ,得a ²+b ²=c ²,所以该三角形是直角三角形. 三、解答题5·解析(1)四边形ABCD 的面积为25-1-21×1×5-21×1×4-21×1×2-21×2×4=14.5, 周长为AB+BC+CD+AD=2617532026175++=+++.(2)∠D AB 是直角.理由如下:连接BD ,∴AB ²+AD ²=5+20=25,BD ²=25.∴AB ²+AD ²=BD ². ∴△ABD 是直角三角形,且∠D AB 是直角. 一、选择题1.A 根据勾股定理的逆定理,能组成直角三角形的三边长必须满足两条较短边的平方和等于最长边的平方.∵3²+4²=5²,∴长为3,4,5的三条线段能组成直角三角形.故选A .2.A 将里换算成以米为单位,则三角形沙田的三边长分别为2.5千米.6千米,6.5千米,因为2.5²+6²=6.5²,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S=21×6×2.5=7.5(平方千米),故选A . 二、填空题 3.答案 90º解析在网格中,由勾股定理得AC=183322=+,BC=324422=+.AB=507122=+, ∴AC ²+BC ²=AB ².∴由勾股定理的逆定理,知△ABC 为直角三角形,且∠A CB=90º. 1.解析(1)由题表可以得出: n=2时.a=2²-1,b=2×2,c=2²+1;n=3时,a=3²-1,b=2×3,c=3²+1; n=4时,a=4²-1,b=2×4,c=4²+1; ……∴a=n ²-1,b=2n ,c=n ²+1(n >1,且n 为自然数). (2)以a 、b 、c 为边长的三角形是直角三角形, 证明:∵a ²+b ²=(n ²-1)²+4n ²=n ⁴+2n ²+1, c ²=(n ²+1)²=n ⁴+2n ²+1, ∴a ²+b 2=c 2.∴以a 、b 、c 为边长的三角形是直角三角形. 2.解析 设MN 与AC 相交于E ,则∠B EC=90º, ∴AB ²+BC ²=5²+12²=13²=AC ².∴△ABC 为直角三角形,且∠A BC=90。
《勾股定理》勾股定理的逆定理(含答案)

第 3 章《勾股定理》 : 3.2 勾股定理的逆定理填空题1. 你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高 0.9m ,宽 1.2m 的栅栏门的相对角顶点间加一个加固木板,这条木板需 m号) 6.如图,有一圆锥形粮堆,其正视图是边长为 6m 的正三角形 ABC ,粮堆母线 AC 的中点 P 处有一老鼠正在偷吃粮食, 此时,小猫正在 B 处,它要沿圆锥侧面到达 P 处捕捉老鼠,则小猫所经过的最短路程是 m .(结果不取近似值) 7.如图,这是一个供滑板爱好者使用的 U 型池,该 U 型池可以看作是一个长方 体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为 4m 的半圆,其 边缘AB=CD=20,m 点E 在CD 上,CE=2m ,一滑板爱好者从 A 点滑到 E 点,则他滑 行的最短距离约为 m .(边缘部分的厚度忽略不计,结果保留整数)第 3 题) 2. 如图,将一根长 24cm 的筷子,底面直径为 5cm ,高为 12cm 的圆柱形水杯中, 设筷子露在杯子外面的长度为 h cm ,则 h 的最小值是 如图所示的一只玻璃杯,最高为 8cm ,将一根筷子插入其中,杯外最长4 厘 短 2 厘米,那么这只玻璃杯的内径是 厘米. 8 米高的路灯.当电工 B ′处,下滑后,两次梯脚间的距离为 2 cm 3. 米,最 4.如图,一架 10 米长的梯子斜靠在墙上,刚好梯顶抵达 师傅沿梯上去修路灯时,梯子下滑到了 米,则梯顶离路灯 米.第 5 题) 如图所示的圆柱体中底面圆的半径是 错误 !,高为 沿着圆柱体的侧面爬行到 C 点,则小虫爬行的最短路程是 5. .(结果保留根(第7题)(第8题)(第9题)8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面 A 点处有一只蚂蚁,它想得到上底面 B 处的食物,则蚂蚁经过的最短距离为cm .(π 取 3 )9.一只蚂蚁从长、宽都是3,高是8 的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.10.如图是一个三级台阶,它的每一级长、宽、高分别是 2 米、0.3 米、0.2米,A,B是这个台阶上两个相对的端点, A 点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到 B 点最短路程是米.第10 题)第12 题)11.在一个长为2 米,宽为 1 米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2 米的正方形,一只蚂蚁从点 A 处,到达C处需要走的最短路程是米.(精确到0.01 米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5 寸和3寸,A 和 B 是这个台阶的两个相对端点, A 点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= 解答题14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠ PBQ=6°0 ,且BQ=B,P 连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△ PQC的形状,并说明理由.15.如图,点O是等边△ ABC内一点.将△ BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠ AOB=11°0 .(1)求证:△ COD是等边三角形;(2)当α =150°时,试判断△ AOD的形状,并说明理由;(3)探究:当α 为多少度时,△ AOD是等腰三角形.16 .先请阅读下列题目和解答过程:“已知a、b、c 为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ ABC的形状.解:∵a2c2-b 2c2=a4-b 4①∴c2(a2-b 2)=(a2+b2)(a2-b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=9°0 ,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.18.如图,△ ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ ACE≌△ BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.19.请阅读下列解题过程:已知a、b、c 为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ ABC的形状.解:∵a2c2-b2c2=a4-b4,A∴c2(a2 -b 2)=(a2 +b2)(a2 -b 2),B ∴c2=a2+b2,C∴△ ABC为直角三角形.D问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是;(3)本题正确的结论是:.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.n2345a22-132-142-152-1b46810c22+132+142+152+11)请你分别观察a,b, c 与n 之间的关系,并用含自然n(n>1)的代数数式表示:a= ,b= ,c= ;(2)猜想:以a,b,c 为边的三角形是否为直角三角形并证明你的猜想.9 22.如图,在△ ABC 中,CD⊥AB于D,AC=4,BC=3,DB= .51)求CD,AD的值;2)判断△ ABC的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图 3 备用)24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为 3 米,DE为 1.68 米,那么这棵树大约有多高?(精确到0.1 米,3≈1.732 )25 .如图,有两棵树,一棵高10 米,另一棵高 4 米,两树相距8 米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=6°0 ,∠DAE=4°5 ,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端 B 与墙角 C 距离为 1.5 米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5 米,求梯子顶端 A 下落了多少米?28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB 上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距 A 站多少千米处?29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若 A 城受到这次台风影响,那么A城遭受这次台风影响有多长时间?30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.答案:填空题1.故答案为: 1.5 m.考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm.考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3.故答案为: 6 厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC 长,那么利用勾股定理可得内径.解:根据条件可得筷子长为12 厘米.如图AC=10厘米,BC=错误!=错误!= 6 厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt △ A′ OB′中,根据勾股定理,得:OA′ =6m.则AA′ =8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2 2 .考点:平面展开-最短路径问题.专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长, C 是边的中 点,矩形的宽即高等于圆柱的母线长.∵AB=π?错误 !=2,CB=2.∴AC= AB 2+BC 2 = 8 =2 2 , 故答案为: 2 2 .点评 :圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽 即高等于圆柱的母线长. 本题就是把圆柱的侧面展开成矩形, “化曲面为平面”, 用勾股定理解决.6. 故答案为: 3 5 m .考点:平面展开-最短路径问题. 专题:压轴题;转化思想.分析 :求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问 题,转化为平面上两点间的距离的问题. 根据圆锥的轴截面是边长为 6cm 的等边三角形可知,展开图是半径是 6的半圆.点B 是半圆的一个端点, 而点 P 是平分 半圆的半径的中点, 根据勾股定理就可求出两点 B 和 P 在展开图中的距离, 就是∴n=180°,即圆锥侧面展开图的圆心角是 180 度. 则在圆锥侧面展开图中AP=3, AB=6,∠BAP=90度. ∴在圆锥侧面展开图中 BP= 32+62 = 45 =3 5 m .故小猫经过的最短距离是 3 5 m .故答案是: 3 5 m .点评 :正确判断小猫经过的路线, 把曲面的问题转化为平面的问题是解题的关键. 7. 故答案为: 22m .考点:平面展开-最短路径问题.专题:压轴题.分析 :要求滑行的最短距离,需将该 U 型池的侧面展开,进而根据“两点之间线 段最短”得出结果.解答 : 解:其侧面展开图如图:AD=πR=4π,AB=CD=20.mDE=CD-CE=20-2=18,m在 Rt △ADE 中,AE= AD 2+DE 2 =错误!≈21.9 ≈22m . 故他滑行的最短距离约为6π, 则 6π =n π×6180 解: 圆锥的底面周长是22m.点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20.m本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm.考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B 所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr ,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B 所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理得AB= 12 2+(3 π )2=错误!=错误!=15cm.故蚂蚁经过的最短距离为15cm.( π 取3) 点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9.故答案为:10.考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为 6 和8,故矩形对角线长AB= 62+82=10 ,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5.考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解:三级台阶平面展开图为长方形,长为2,宽为( 0.2+0.3 )× 3,则蚂蚁沿台阶面爬行到 B 点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到 B 点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3 )×3] 2=2.52,解得x=2.5 .点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60 .考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2 ×2=2.4 米;宽为 1 米.于是最短路径为: 2.4 2+12=2.60 米.故答案为: 2.60 .点评 : 本题主要考查两点之间线段最短,有一定的难度,是中档题. 12.故答案为: 25寸.考点:平面展开-最短路径问题.分析 : 根据两点之间线段最短,运用勾股定理解答.解答 : 解:将台阶展开矩形,线段 AB 恰好是直角三角形的斜边,两直角边长分 别为 24 寸,7寸, 由勾股定理得 AB= 72+242 =25 寸.点评 : 本题结合实际,运用两点之间线段最短等知识来解答问题.13 . 故答案为: b=84,c=85; 考点:勾股数. 专题:规律型.分析 :认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个 数为从 3开始连续的奇数, 第二、三个数为连续的自然数; 进一步发现第一个数在 52=12+13中, 12=5 2-1 ,13=5 2+1 ;点评 : 认真观察各式的特点,总结规律是解题的关键.解答题14.考点:等 边三角形的 性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型. 分析 : 根据等边三角形的性质利用 SAS 判定△ ABP ≌△ CBQ ,从而得到 AP=CQ ;设 PA=3a ,PB=4a ,PC=5a ,由已知可判定△ PBQ 为正三角形从而可得到 PQ=4a ,再根 据勾股定理判定△ PQC 是直角三角形.解答:解:(1)猜想: AP=CQ ,证明:∵∠ ABP+∠PBC=6°0 ,∠ QBC ∠+ PBC=6°0 ,∴∠ABP=∠QBC .又 AB=BC , BP=BQ ,∴△ABP ≌△CBQ ,∴AP=CQ ;的平方是第二、三个数的和;最后得出第 n 组数为( 2n+1), (2 n +1)2- 1 2), (2n +1)2+1232-1 ),由此规律解决问题. 2 解答: 32-1在 32 =4+5 中,4= 232+1 ,5= 2则在 13、b 、c 中, b= 132-1 2 =84,c=1322+1 =85;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4,a且∠ PBQ=6°0 ,∴△PBQ为正三角形.∴PQ=4a.于是在△ PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2 ∴△PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;定理的逆勾股定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵ CO=C,D ∠OCD=6°0 ,∴△COD是等边三角形;(3 分)(2)解:当α=150°,即∠ BOC=15°0 时,△ AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ ADC=∠BOC=15°0 ,又∵△ COD是等边三角形,∴∠ODC=6°0 ,∴∠ ADO=9°0 ,即△AOD是直角三角形;(7 分)(3)解:①要使AO=AD,需∠ AOD∠= ADO.∵∠AOD=36°0 - ∠AOB-∠COD- α =360°- 110°- 60°- α =190°- α ∠ADO=α - 60°,∴190°- α=α- 60°∴α=125°;②要使OA=O,D需∠ OAD∠= ADO.∵∠AOD=19°0 - α,∠ADO=α- 60°,∵∠OAD=18°0 - (∠AOD∠+ ADO)=50°,∴α- 60°=50°∴α=110°;③要使OD=A,D 需∠ OAD∠= AOD.∵190°- α=50°∴α=140°.综上所述:当α 的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12 分)说明:第(3)小题考生答对 1 种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型.分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“ 2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2 分)(2)等号两边不能同除a2-b 2,因为它有可能为零.(4 分)(3)(从头或直接从第③步写解答过程都行),∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),移项得:c2(a2-b2)- (a2+b2)(a2-b2)=0,得(a2-b2)(c2-a2-b2)=0,(5 分)∴a2 =b2或c2=a2+b2(6 分)∴△ABC是直角三角形或等腰三角形.(7 分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17.考点:勾股定理;勾股定理的逆定理.分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.解答:解:(1)∵AD=3,AB=4,∠BAD=9°0 ,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18.考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题.分析:(1)根据SAS判定△ ACE≌△ BCD,从而得到∠ EAC=∠DBC,根据角之间的关系可证得AF⊥BD.(2)互相垂直,只要证明∠ AFD=90°,从而转化为证明∠ EAC+∠CDB=90即可解答:(1)证明:∵△ ACB和△ ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACE=∠BCD=9°0 ,在△ACE和△BCD,∠AC =BC∠ACE =∠ BCDCE=CD∴△ ACE≌△ BCD(SAS);(2)解:直线AE与BD互相垂直,理由为:证明:∵△ ACE≌△ BCD,∴∠EAC=∠DBC,又∵∠ DBC+∠CDB=9°0 ,∴∠ EAC+∠CDB=9°0 ,∴∠AFD=90°,∴AF⊥BD,即直线AE与BD互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C步(2)等式两边同时除以a2-b2(3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状.解答:解:(1)C;(2)方程两边同除以(a2-b 2),因为(a2-b2)的值有可能是0;(3)∵c2(a2-b 2)=(a2+b2)(a2-b2)∴c2=a2+b2或a2 -b 2=0-b2=0a+b=0 或a-b=0a+b≠0c2=a2+b2或a-b=0c2=a2+b2或a=b 该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20.考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△ BDC是直角三角形,则四边形ABCD的面积=直角△ ABD的面积+直角△ BDC 的面积.解答:解:∵在△ ABD中,AB⊥AD,AB=3,AD=4,∴BD= AB2+AD 2= 32+42=5 .在△BDC中,CD=12,BC=13,BD=5.∵122+52=132,即CD2+BD2 =BC2,∴△ BDC是直角三角形,且∠ BDC=9°0 ,1 1 1 1∴S四边形ABC D=S△ABD+S△BDC =2 AB?AD2+ BD?C2D ×3×4+2×5×12=36,即四边形ABCD的面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n,n2+1;考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a,b,c 与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.解答:解:(1)由题意有:n2-1,2n,n2+1;(2)猜想为:以a,b,c 为边的三角形是直角三角形.证明:∵ a=n2-1 ,b=2n;c=n2 +1∴a2+b2=(n2-1 )2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2 而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c 为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22.考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ ABC 是直角三角形.9 解答:解:(1)∵CD⊥AB且CB=3,BD= ,故△ CDB为直角三角形,5理由:∵ AD=156 ,BD=59 , 55 9 ∴ AB=AD+BD= +=5 , 16 ∴AC 2+BC 2=42+32=25=52=AB 2,∴根据勾股定理的逆定理,△ ABC 为直角三角形.点评 : 本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目. 23. 80 故答案为: 32m 或( 20+4 5 )m 或 3 m .勾股定理的应用; 分类讨论. 等腰三角形的性质.考点 专题分析 :根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的 性质利用勾股定理解答.解答:解:在 Rt △ABC 中,∠ ACB=9°0 , AC=8,BC=6 由勾股定理有: AB=10,应分以下三种情况: ①如图 1,当 AB=AD=10时,∵AC ⊥BD ,∴CD=CB=6,m∴△ ABD 的周长=10+10+2×6=32m .②如图 2,当 AB=BD=10时,∵BC=6m ,∴CD=10-6=4m ,∴AD=4 5 m ,∴△ABD 的周长=10+10+4 5 = ( 20+4 5 )m .③如图 3,当AB 为底时,设AD=BD=,x 则CD=x-6,由勾股定理得: AD= 82+(x-6)2 =x25解得, x= 3 ,80∴△ ABD 的周长为: AD+BD+AB 3=m .2)△ ABC 为直角三角形. 2 2- 12 2 - CD 2 = 42 - ( )2 5 16 5 在 Rt △CAD 中, AD= AC 2 ∴在 Rt △CDB 中, CD= CB 2 (95 -BD 2 = -BD = 32 - )2 (5 12 5点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为∠ CAD=3°0 ,则AC=2C,D再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ACD中,∠ CAD=3°0 ,AD=3,设CD=x,则AC=2x,由AD2+CD2 =AC2,得,32+x2=4x2,x= 3 =1.732 ,所以大树高 1.732+1.68 ≈3.4 (米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过 C 点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6,m 在Rt△AEC中,AC= AE 2+EC 2=错误!=10m,故小鸟至少飞行10m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考点:勾股定理的应用.分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△DAE中,∵∠ DAE=4°5 ,∴∠ADE=∠DAE=4°5 ,AE=DE= 8 ,∴AD2=AE2+DE2=36m( 8 ) 2+( 8 ) 2=16,∴AD=4,即梯子的总长为 4 米.∴AB=AD4=.在Rt △ ABC中,∵∠ BAC=6°0 ,∴∠ ABC=3°0 ,1∴AC=2 AB=2,∴BC2=AB2-AC2=42-22=12,∴BC= 12 =2 3 m ;∴点B到地面的垂直距离BC=2 3 m .点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解答:解:在Rt△ACB中,AC2=AB2-BC2=2.52-1.5 2=4,∴AC=2,∵BD=0.5,∴CD=2.在Rt△ECD中,EC2=ED2-CD2=2.52 -2 2=2.25,∴EC=1.5,∴AE=AC-EC=2-1.5=0.5 .答:梯子顶端下滑了0.5 米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C, D 两村到 E 站的距离相等,需要证明DE=CE,再根据△DAE≌△ EBC,得出AE=BC=10k;m解答:解:∵使得C,D两村到E站的距离相等.∴DE=C,E∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∴AE2+AD2=DE2,BE2+BC2=EC2,∴AE2+AD2 =BE2 +BC2,设AE=x,则BE=AB-AE(= 25-x ),∵ DA=15km,CB=10km,∴x2+152=(25-x )2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:( 1)点到直线的线段中垂线段最短,故应由 A 点向 BF 作垂线,垂足为 C , 若 AC > 200则 A 城不受影响,否则受影响;(2)点A 到直线 BF 的长为 200千米的点有两点,分别设为 D 、G ,则△ ADG 是等 腰三角形,由于 AC ⊥BF ,则 C 是 DG 的中点,在 Rt △ADC 中,解出 CD 的长, 则可求 DG 长,在 DG 长的范围内都是受台风影响, 再根据速度与距离的关系则可求时间.解答:解:(1)由 A 点向 BF 作垂线,垂足为 C , 在Rt △ABC 中,∠ABC=3°0 , AB=320km ,则 AC=160km , 因为 160< 200,所以 A 城要受台风影响;因为 DA=AG ,所以△ ADG 是等腰三角形,因为 AC ⊥BF ,所以 AC 是 BF 的垂直平分线, CD=G ,C 在 Rt △ADC 中,DA=200千米, AC=160千米,由勾股定理得, CD= DA 2- AC 2 = 2002 -160 2 =120 千米,则 DG=2DC=24千0 米,遭受台风影响的时间是: t=240 ÷40=6(小时).点评 :此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.30.考点:勾 股定理的应 用.分析 : 连接 AC ,根据已知条件运用勾股定理逆定理可证△ ABC 和△ACD 为直角三 角形,然后代入三角形面积公式将两直角三角形的面积求出来, 两者面积相加即 为四边形 ABCD 的面积.AG=200千米. 则还有一点 G ,有∵∠B=90°,∴△ABC 为直角三角形,∵AC 2=AB 2+BC 2=82+62=102, ∵AC >0,∴AC=10,在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676, ∴AC 2+CD 2=AD 2,∴△ ACD 为直角三角形,且∠ ACD=9°0 ,点评 :通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过 程变得简单.∴S1 ×6×8+12 ×10×24=144. 四 边 形 A B C ACD 1 2。
勾股定理及其逆定理(含答案)

勾股定理及其逆定理1.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A. 1B. 2C. 3D. 42.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( )A. 5cmB. 10cmC. 14cmD. 20cm3.如图:图形A的面积是()A.225B.B. 144C.C. 81D.D. 无法确定4.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A. 6B. 8C. 10D. 125.如图,两个正方形的面积分别为64和49,则AC等于()A. 15B. 17C. 23D. 1136. 如图,小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间6.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为()A.B. 3C.D. 58. 直角三角形的两条直角边的长分别为4和5,则斜边长是()A. 3B. 41C.D. 97.如图,图中直角三角形共有()A. 1个B. 2个C. 3个D. 4个8.如图,AD⊥CD,CD=4,AD=3,∠ACB=90°,AB=13,则BC的长是()A. 8B. 10C. 12D. 169.若等腰三角形的腰长为10,底边长为12,则底边上的高为()A. 6B. 7C. 8D. 910.如图,字母B所代表的正方形的面积是()A. 12 cm2B. 15 cm2C. 144 cm2D. 306 cm213. 已知直角三角形的两边长分别为2、3,则第三边长可以为()A. B. 3 C. D.14. 如图,在平面直角坐标系中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A. (5,4)B. (4,5)C. (4,4)D. (5,3)11.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为( )A.3B.4C.5D.612.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()A. 5B.6C.7D.2513.如图,菱形中,,这个菱形的周长是()A. B. C. D.18. 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 8014.如图,E为正方形ABCD内部一点,且,,,则阴影部分的面积为()A. 25B. 12C. 13D. 1915.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AC=10km,BC=24km,则M、C两点之间的距离为( )A. 13kmB. 12kmC. 11kmD. 10km16.Rt△ABC中,∠C=90°,AC=8,BC=15,则AB=()A. 17B.C. 289D. 18117.直角三角形两直角边长为5和12,则此直角三角形斜边上的中线的长是()A. 5B. 6C. 6.5D. 1318.如图,在矩形ABCD中,AC与BD交于点O,E是CD的中点,已知,,则AC的长为( )A. 10B. 11C. 12D. 1319.在下列四组数中,不是勾股数的一组数是()A. a=15,b=8,c=17B. a=9,b=12,c=15C. a=7,b=24,c=25D. a=3,b=5,c=720.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.21.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A. 10 mB. 15 mC. 18 mD. 20 m22.下列长度的三条线段能组成直角三角形的是()A. 3,4,5B. 2,3,4C. 4,6,7D. 5,11,1223.在以下列三个数为边长的三角形中,不能组成直角三角形的是()A. 4、7、9B. 5、12、13C. 6、8、10D. 7、24、2524.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A. 20cmB. 50cmC. 40cmD. 45cm25.已知的三边长分别为a,b,c,则下列条件中不能判定是直角三角形的是().A. B.C. D.26.以下列各组数为边长,不能构成直角三角形的是()A. 3,4,5B. 9,12,15C. ,,D. 0.3,0.4,0.527.-64的立方根是()A. ±8B. 4C. -4D. 1628.-8的立方根是()A. -2B. ±2C. 2D. -29.的立方根是()A. -1B. 0C. 1D. ±130.下列说法正确的是()A. 1的相反数是-1B. 1的倒数是-1C. 1的立方根是±1D. -1是无理数31.在实数0,-2,,3中,最大的是()A. 0B. -2C.D. 332.在实数,,,中有理数有()A. 1个B. 2个C. 3个D. 4个33.8的相反数的立方根是()A. 2B.C. -2D.34.下列说法正确的是()A. 是有理数B. 5的平方根是C. 2<<3D. 数轴上不存在表示的点35.-的相反数是()A. -B. -C. ±D.36.|1-|的值为()A. 1-B. 1+C. -1D. +137.在下列实数中:π,-,0,,最小的数是()A. -B. 0C.D. π38.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数39.下列说法正确的是()A. 3.14是无理数B. 是无理数C. 是有理数D. 2p是有理数40.下列各式正确的为()A. =±4B. -=-9C. =-3D.41.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数42.下列四个数:-2,-0.6,,中,绝对值最小的是()A. -2B. -0.6C.D.43.与最接近的整数是()A. 4B. 5C. 6D. 744.下列对实数的说法其中错误的是()A. 实数与数轴上的点一一对应B. 两个无理数的和不一定是无理数C. 负数没有平方根也没有立方根D. 算术平方根等于它本身的数只有0或145.下列说法:①带根号的数都是无理数;②无理数都可用数轴上的点表示;③的平方根是±4:④a2的算术平方根是a;⑤负数也有立方根,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个答案和解析1.【答案】C【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选:C.2.【答案】D【解析】【分析】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.3.【答案】C【解析】【分析】根据勾股定理列式计算即可得解;本题考查了勾股定理,是基础题,主要是对勾股定理的理解与应用.【解答】解:由勾股定理得,A边长,故A的面积.故选C.4.【答案】C【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.5.【答案】B【解析】【分析】本题考查了勾股定理,求出AB、BC的长是解题的关键.根据正方形的性质求出AB、BD、DC的长,再根据勾股定理求出AC的长即可.【解答】解:如图,∵两个正方形的面积分别是64和49,∴AB=BD=8,DC=7,∴BC=BD+DC=8+7=15,根据勾股定理得:AC==17.故选B.6.【答案】C【解析】解:由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.利用勾股定理列式求出OB,再根据无理数的大小判断即可.本题考查了勾股定理,估算无理数的大小,熟记定理并求出OB的长是解题的关键.7.【答案】B【解析】解:∵四边形ABCD是正方形,∴∠B=90°,∴BC2=EC2-EB2=22-12=3,∴正方形ABCD的面积=BC2=3.故选:B.先根据正方形的性质得出∠B=90°,然后在Rt△BCE中,利用勾股定理得出BC2,即可得出正方形的面积.本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.也考查了正方形的性质.8.【答案】C【解析】解:由勾股定理得:斜边长为,故选:C.利用勾股定理即可求出斜边长.本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是关键.9.【答案】C【解析】【分析】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C10.【答案】C【解析】【分析】此题主要考查了勾股定理,正确应用勾股定理是解题关键.直接利用勾股定理得出AC的长,进而求出BC的长.【解答】解:∵AD⊥CD,CD=4,AD=3,∴AC==5,∵∠ACB=90°,AB=13,∴BC==12.故选C.11.【答案】C【解析】【分析】本题考查的知识点是勾股定理和等腰三角形的性质,在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得等腰底边上的高.【解答】解:根据题意画出图形,,如图:BC =12,AB=AC=10 ,在△ABC中,AB =AC,AD⊥BC,则BD =DC=BC=6 ,在Rt△ABD中,AB=10,BD=6,,故选C.12.【答案】C【解析】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225-81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.本题考查了勾股定理:会利用勾股定理进行几何计算.13.【答案】D【解析】【分析】本题考查了勾股定理,是基础题,难点在于要分情况讨论,分3是直角边和斜边两种情况讨论求解.【解答】解:3是直角边时,第三边==,3是斜边时,第三边==,所以,第三边长为或.故选D.14.【答案】A【解析】【分析】此题主要考查了菱形的性质以及坐标与图形的性质,解题的关键是利用勾股定理求出DO的长度.首先根据菱形的性质求出AB的长度,再利用勾股定理求出DO的长度,进而得到点C的坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,∴AB=AO+OB=5,∴AD=AB=CD=5,∴DO===4,∴点C的坐标是(5,4).故选A.15.【答案】A【解析】【分析】此题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,勾股定理的有关知识,注意利用直角三角形斜边上的中线等于斜边的一半,求得AC的长是关键.首先由O是矩形ABCD对角线AC的中点,可求得AC的长,然后由勾股定理求得AB的长,即CD的长,又由M是AD的中点,可得OM是△ACD的中位线,继而求得答案.【解答】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB===6,∵M是AD的中点,∴OM=CD=3.故选A.16.【答案】A【解析】【分析】本题考查了勾股定理的知识,解答本题的关键是掌握格点三角形中勾股定理的应用.建立格点三角形,利用勾股定理求解AB的长度即可.【解答】解:如图所示:AB===5.故选:A.17.【答案】C【解析】【分析】通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.【解答】解:因为四边形ABCD是菱形,所以AC⊥BD,设AC与BD交于点O,则AO=1,BO=2,所以AB=.周长为4AB=4.故选C.18.【答案】C【解析】【分析】本题考查勾股定理以及正方形的性质,解题关键是利用勾股定理求出正方形的边长,然后利用部分之和等于整体求出阴影部分面积.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE转换求面积.【解答】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE=AB2-×AE×BE=100-×6×8=76.故选C.19.【答案】D【解析】【分析】本题考查了正方形的性质,勾股定理的运用,利用勾股定理求出正方形的边长并观察出阴影部分的面积的表示是解题的关键,根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25-6=19,故选D.20.【答案】A【解析】【分析】本题考查勾股定理和直角三角形斜边上的中线的性质,在Rt△ABC中,由勾股定理可得AB=26,根据直角三角形斜边上的中线等于斜边的一半,即可得到M、C两点之间的距离.【解答】解:在Rt△ABC中,AB2=AC2+CB2,∴AB==26,∵M点是AB中点,∴MC=AB=13,故选A.21.【答案】A【解析】【分析】本题考查了勾股定理在直角三角形中的运用,掌握勾股定理是解决问题的关键.由题意可知:斜边为AB,直接由勾股定理求得答案即可.【解答】解:根据勾股定理,AB===17.故选A22.【答案】C【解析】解:由题意得,斜边=,所以斜边上的中线=×13=6.5.故选:C.根据勾股定理,先求出直角三角形的斜边长,再根据直角三角形斜边上的中线等于斜边的一半,即可求出中线长.此题考查了勾股定理以及直角三角形斜边上的中线的性质.23.【答案】D【解析】【分析】考查了矩形的性质,三角形中位线定理,勾股定理,了解矩形的性质是解答本题的关键,难度不大.首先利用三角形的中位线定理求得BC的长,然后利用勾股定理求得AC的长即可.【解答】解:∵四边形ABCD为矩形,∴O为BD的中点,∵E为CD的中点,∴OE为△ABC的中位线,∵OE=6,∴BC=2OE=12,∵AB=5,∴AC==13,故选D.24.【答案】D【解析】【分析】本题考查了勾股数的定义,掌握勾股数的知识是解决问题的关键.理解勾股数的定义,即在一组(三个数)中,两个数的平方和等于第三个数的平方.解:由题意可知,在A组中,152+82=172=289,在B组中,92+122=152=225,在C组中,72+242=252=625,而在D组中,32+52≠72,故选:D.25.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.26.【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC的长,进而可得出结论.本题考查的是勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.【解答】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴AC===13(m),∴这棵树原来的高度=BC+AC=5+13=18(m).故选C.27.【答案】A【解析】解:A.∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B.∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C.∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D.∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.28.【答案】A【解析】解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.29.【答案】C【解析】【分析】本题考查勾股定理的实际应用,首先要正确理解题意,明白怎么放桶内所能容下的木棒最长,然后灵活利用勾股定理,难度一般.根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.30.【答案】A【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A.∵∠A:∠B:∠C=3:4:5,∴∠C=×180°=75°,故不能判定△ABC是直角三角形;B.∵,设a、b、c边长为k、k、k∴则有k2+k2=2k2,即a2+b2=c2,∴∠C=90°,故能判定△ABC是直角三角形;C.∵∠C=∠A-∠B,∴∠A=∠B+∠C,∴∠A=90°,故能判定△ABC是直角三角形;D.∵b2=a2-c2,∴b2+c2=a2,故能判定△ABC是直角三角形.故选A.31.【答案】C【解析】解:A、因为32+42=52,故能构成直角三角形,此选项错误;B、因为92+122=152,能构成直角三角形,此选项错误;C、因为()2+()2≠()2,不能构成直角三角形,此选项正确;D、因为0.32+0.42=0.52,能构成直角三角形,此选项错误.故选:C.根据勾股定理的逆定理,一个三角形的三边满足两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.本题考查勾股定理的逆定理,关键知道两个较小边的平方和等于较大边的平方,这个三角形就是直角三角形.32.【答案】C【解析】【分析】本题主要考查的是立方根的定义,掌握立方根的定义是解题的关键.依据立方根的定义求解即可.【解答】解:∵(-4)3=-64,∴-64的立方根是-4.故选C.33.【答案】A【解析】解:∵-2的立方等于-8,∴-8的立方根等于-2.故选:A.如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.34.【答案】C【解析】解:的立方根是1,故选:C.根据开立方运算,可得一个数的立方根.本题考查了立方根,先求幂,再求立方根.35.【答案】A【解析】解:A、1的相反数是-1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、-1是有理数,故错误;故选:A.根据相反数、倒数、立方根,即可解答.本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.36.【答案】D【解析】【分析】本题考查了实数的大小比较,要注意无理数的大小范围.根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<<3,实数0,-2,,3中,最大的是3.故选D.37.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.38.【答案】C【解析】解:8的相反数是-8,-8的立方根是-2,则8的相反数的立方根是-2,故选:C.根据相反数的定义、立方根的概念计算即可.本题考查的是实数的性质,掌握相反数的定义、立方根的概念是解题的关键.39.【答案】C【解析】【分析】本题考查了实数的意义、实数与数轴的关系,利用被开方数越大算术平方根越大是解题关键.根据无理数的意义,开平方,被开方数越大算术平方根越大,实数与数轴的关系,可得答案.【解答】解:A、是无理数,故A错误;B、5的平方根是,故B错误;C、<,∴2<3,故C正确;D、数轴上存在表示的点,故D错误;故选C.40.【答案】D【解析】解:根据相反数、绝对值的性质可知:-的相反数是.故选:D.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.41.【答案】C【解析】解:|1-|的值为-1.故选:C.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.绝对值的性质,负数的绝对值是其相反数.考查了实数的性质,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.42.【答案】A【解析】解:∵-<<0<π,∴最小的数是-.故选:A.根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.43.【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.44.【答案】C【解析】解:整数和分数统称为有理数.A.3.14是小数,可写成分数的形式,所以是有理数,错误.B.是有理数,错误.D.2p表示p的2倍,要视乎p本身是否为有理数而定,错误.故选:C.按照有理数无理数的定义判断即可.本题考查了有理数的定义,正确理解有理数定义是解题关键.45.【答案】D【解析】解:A、=4,故原题计算错误;B、-=9,故原题计算错误;C、=3,故原题计算错误;D、=,故原题计算正确;故选:D.根据=|a|进行化简计算即可.此题主要考查了二次根式和立方根,关键是掌握二次根式的性质.46.【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.47.【答案】C【解析】解:∵|-2|=2,|-0.6|=0.6,||=,||=,∵,所以绝对值最小的是,故选:C.根据绝对值的意义,计算出各选项的绝对值,然后再比较大小即可.此题考查了实数的大小比较,以及绝对值的意义,注意先运算出各项的绝对值.48.【答案】B【解析】【分析】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和5.5之间,题目比较典型,根据无理数的意义和二次根式的性质,即可求出答案.【解答】解:∵,∴,∴最接近的整数为,∴.故选B.49.【答案】C【解析】【分析】本题考查了实数,利用平方根的意义、立方根的意义、实数与数轴的关系是解题关键.根据平方根的意义、立方根的意义、实数与数轴的关系,可得答案.【解答】解:A.实数与数轴上的点一一对应,说法正确,故选项不符合题意;B.π+(1-π)=1,说法正确,故选项不符合题意;C.负数的立方根是负数,说法错误,故选项符合题意;D.算术平方根等于它本身的数只有0或1,说法正确,故选项不符合题意.故选C.50.【答案】B【解析】【分析】本题主要考查了实数中无理数的概念,算术平方根,平方根,立方根的概念.①根据无理数的定义即可判定;②根据无理数与数轴的关系即可判定;③根据算术平方根、平方根的定义计算即可判定;④根据算术平方根的定义即可判定;⑤根据立方根的定义即可判定.【解答】解:①带根号的数不一定是无理数,有的是有理数,故说法错误;②无理数都可用数轴上的点表示,故说法正确;③=4,4的平方根是±2,故说法错误:④a2的算术平方根是|a|,故说法错误;⑤负数也有立方根,故说法正确.正确的是:②⑤.故选B.。
勾股定理的逆定理练习题(超经典含答案)

3.【答案】A
【解析】A、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;
B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;
C、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;
A.5B.6C.7D.8
11.下列命题中,命题为真命题的是
A.对顶角相等B.若a=b,则|a|=|b|
C.同位角相等,两直线平行D.若ac2<bc2,则a<b
12.如图所示的一块地,∠ADC=90°, , , , ,求这块地的面积 为
A.54m2B.108m2C.216m2D.270m2
13.如图,在钝角△ABC中,已知∠A为钝角,边AB、AC的垂直平分线分别交BC于点D、E,若BD2+CE2=DE2,则∠A的度数为__________.
B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;
C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;
D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.
20.【答案】A
【解析】∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为: ×5×500×12×500=7500000(平方米)=7.5(平方千米).故选A.
∴四边形ABCD的面积是6.
18.【解析】(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°.
在Rt△ADC中,由勾股定理得AD=
在Rt△ADB中,由勾股定理得BD= .
勾股定理逆定理 12题附答案

勾股定理逆定理 12题附答案一、基础·巩固1.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值).图18-2-4 图18-2-5 图18-2-63.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________.4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形.二、综合·应用7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论.图18-2-910.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC 是直角三角形.问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______;②错误的原因是______________ ;③本题的正确结论是_________ _.11.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12.已知:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD 的面积.图18-2-10参考答案一、基础·巩固1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D.2.解:过D 点作DE ∥AB 交BC 于E, 则△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°. 又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.根据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.3.思路分析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S .4.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可.解:∵E 为AB 中点,∴BE=2.∴CE 2=BE 2+BC 2=22+42=20.同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25.∵CE2+EF2=CF2,∴△EFC是以∠CEF为直角的直角三角形.5.思路分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ABD中,AB2+AD2=32+42=9+16=25=BD2,所以△ABD为直角三角形,∠A =90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.所以△BDC是直角三角形,∠CDB =90°.因此这个零件符合要求.6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.二、综合·应用7.思路分析:如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形(例2已证).8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=(AD+BD)2=AB2.∴△ABC是直角三角形.9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10, OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10, ∴OA2+AB2=O B2.∴△OAB是以OB为斜边的等腰直角三角形.10.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,本题错在忽视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B) ②没有考虑a=b 这种可能,当a=b 时△ABC 是等腰三角形;③△ABC 是等腰三角形或直角三角形.11.思路分析:(1)移项,配成三个完全平方;(2)三个非负数的和为0,则都为0;(3)已知a 、b 、c ,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由已知可得a 2-10a+25+b 2-24b+144+c 2-26c+169=0,配方并化简得,(a -5)2+(b -12)2+(c -13)2=0.∵(a -5)2≥0,(b -12)2≥0,(c -13)2≥0.∴a -5=0,b -12=0,c -13=0.解得a=5,b=12,c=13.又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.12.思路分析:(1)作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA );(2)DE=AB=4,BE=AD=3,EC=EB =3;(3)在△DEC 中,3、4、5为勾股数,△DEC 为直角三角形,DE ⊥BC ;(4)利用梯形面积公式,或利用三角形的面积可解.解:作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ),∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE 2+CE 2=32+42=25=CD 2,∴△DEC 为直角三角形.又∵EC=EB=3,∴△DBC 为等腰三角形,DB=DC=5.在△BDA 中AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12. ∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.。
人教版八年级下《17.2勾股定理的逆定理》同步练习及答案

第02课勾股定理逆定理【例1】若△ABC三边长满足下列条件,判断△ABC是不是直角三角形?若是,请说明哪个教角是直角.(1)BC=,AB=,AC=1;(2)△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,a=n2﹣1,b=2n,c=n2+1(n>1)【例2】如果△ABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。
【例3】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点。
⑴求证:△ACE≌△BCD;⑵若AD=5,BD=12,求DE的长。
【例4】观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412…按照这样的规律,第七个等式是:_________________________________。
【例5】如图,已知在正方形ABCD中,F为DC的中点,E为CB的四等分点且CB=4CE.求证:AF⊥FE.【例6】如图,已知△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.课堂同步练习一、选择题:1、若线段a,b,c组成Rt△,则它们的比可能为( )A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:72、△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形3、△ABC的三边为a、b、c,且(a+b)(a﹣b)=c2,则( )A.△ABC是锐角三角形B.c边的对角是直角C.△ABC是钝角三角形D.a边的对角是直角4、下列命题中,其中正确的命题的个数为( )①Rt△ABC中,已知两边长分别为3和4,则第三边长为5;②有一个内角与其他两个内角的和相等的三角形是直角三角形;③三角形的三边分别为a,b,c,若a2+c2=b2,则∠C=90°;④在△ABC中,∠A:∠B:∠C=1:5:6,则△ABC是直角三角形.A.1个 B.2个 C.3个 D.4个5、如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形的线段是( )A. CD、EF、GHB. AB、CD、GHC.AB、EF、GHD.AB、CD、EF6、如图,四边形ABCD中,∠B=∠D=90°,∠A=45°,AB=3,CD=1,则BC的长为( )A.3 B.2 C. D.7、如图,有一块地ABCD,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地面积为() A.60米2 B.48米2 C.30米2 D.24米28、在△ABC中,∠C=90°,c2=2b2,则两直角边a,b的关系是( )A.a<b B.a>b C.A=b D.以上三种情况都有可能9、已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形10、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学§18.2同步测试题天津市葛沽第三中学 李玉强 (300352)一、选择题1.下列几组数中,能作为直角三角形三边长度的是( ).A .2,3,4B .5,7,9C .8,15,17D .200,300,4002.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )3.三角形的三边长a 、b 、c ,满足22()2a b c ab +=+,则这个三角形是( ) . A . 锐角三角形 B . 直角三角形 C . 钝角三角形 D . 等边三角形4.下列结论错误的是( )A .三个角度之比为1∶2∶3的三角形是直角三角形;B .三条边长之比为3∶4∶5的三角形是直角三角形;C .三个角度之比为1∶1∶2的三角形是直角三角形;D .三条边长之比为8∶16∶17的三角形是直角三角形.5.在同一平面上把三边BC =3、AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ).A .125B.135 C .56 D .2456.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱在去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个( )角.A .锐角B .直角C .钝角D .不能确定7.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a >0);⑤22m n -、2mn 、22m n +(m 、n 为正整数,且m >n )其中可以构成直角三角形的有( )A .5组B .4组C .3组D .2组8.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定A 卷ABCD二、填空题1.在△ABC 中,若222AB BC AC +=,则∠A +∠C =______度.2.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 . 3.已知两条线段的长为5cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形.4.如图1,在四边形ABCD 中,AD ⊥DC ,AD =8,DC =6,CB =24,AB =26.则四边形ABCD 的面积为____________.5. 如图2所示,一架5米长的消防梯子斜靠在一竖直的墙AC 上,梯足(点B )离墙底端(C 点)的距离为3米,如果梯足内移1.6米至点B 1处,则梯子顶端沿墙垂直上移_______米.6.直角三角形的三边长为连续偶数,则这三个数分别为__________.7.如图3所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,则这块地的面积是__________2m .8. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数:, , .三、解答题1. 一个零件的形状如图3所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如图4所示,这个零件符合要求吗?2.已知:如图,△ABC 中,AB =5cm ,BC =3 cm ,AC =4cm ,CD ⊥AB 于D , 求CD 的长及△ABC 的面积;图2 图3图4 图1 图3图22.已知△ABC 的三边为22m n +,22m n -,2mn(1)当m =2,n =1时,△ABC 是否为直角三角形?并说明理由. (2)当m =3,n =2时,△ABC 是否为直角三角形?并说明理由. (3)对于m 、n 为任何正整数时(m >n ),你能说明△ABC 为直角三角形吗?3.如图5,已知正方形ABCD 中,F 是DC 的中点,E 为BC 的上一点,且EC =14BC .求证:EF ⊥AF .一、选择题(每小题3分,共15分)1.如图1,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对2.已知,如图2,在长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ).A .6cm 2B .8cm 2C .10cm 2D .12cm 2B 卷图5图1二、填空题(每题3分,共15分)1.如图4,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于2.观察下列表格:请你结合该表格及相关知识,求出b、c的值.即b=,c=三、解答题1.如图5,三个村庄A、B、C之间的距离分别为AB=5km,BC=12km,AC=13km.要从B 修一条公路BD直达AC.已知公路的造价为26000元/km,求修这条公路的最低造价是多少?2.如图6,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B 两岛相距60海里,问乙船出发后的航向是南偏东多少度?3.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB 上,求折痕AD的长.图4图5图61.(20分)如图,南北向MN 为我国领域,即MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B .已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?A 卷:一、1.C 2.C 3.B 4.D 5.D二、1. 90° 2.120 3.13或119 4.144 5.0.8.三、1.答:这个零件符合要求.∵在△ABD 中,22223425AB AD +=+=,22525BD ==.∴222AB AD BD +=,∴∠A =90°.同理可得∠DBC =90°.2.答:(1)△ABC 是直角三角形.∵当m =2,n =1时,222()25m n +=;222()9m n -=;2(2)16mn =.∴2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(2)当m =3,n =2时,还有2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(3)∵22224422222()(2)2()m n mn m n m n m n -+=++=+,∴对于m 、n 为任何正整数时(m>n ),△ABC 都是直角三角形.3.解:证明:连接AE ,设正方形边长为4a ,则EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,222222(4)(3)25AE AB BE a a a =+=+=.同理:222222(4)(2)20AF AD DF a a a =+=+=,222222(2)5EF EC CF a a a =+=+=,∴222EF AF AE +=.由勾股定理的逆定理知△AFE 为直角三角形,且∠AFE =90°,即EF ⊥AF . B 卷:C 卷一、1.B 2.B 3. C 4.A 5.A二、1.6、8、10 2.24 3.5、12、13 4.10 5.84,85三、1.解:∵2222512169AB BC +=+=,2213169AC ==,∴222AB BC AC +=.由勾股定理的逆定理知△AC 为直角三角形,且∠ABC =90°.由题意,可知BD ⊥AC ,∴AC ·BD =AB ·BC ,BD =6013.6013×26000=120000(元).即修这条公路的最低造价是12万元.2.解:∵AC =16×3=48,AB =12×3=36,∴222222604836BC AC AB +=-== ∴△ABC 为直角三角形且∠CAB =90°,∴乙船出发后的航向是南偏东40° C 卷:解:设MN 交AC 于E ,则∠BEC =90°.又AB 2+BC 2=52+122=169=32=AC 2,∴△ABC 是直角三角形,∠ABC =90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288,∴CE =13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分.答:走私艇最早在10时41分进入我国领海.。