基带信眼图实验m精编b仿真

合集下载

实验2 眼图观察测量实验

实验2 眼图观察测量实验

班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期实验2 眼图观察测量实验一、实验目的学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1. 眼图观察电路2.时钟与基带数据发生模块,位号:G3.PSK调制模块,位号A4.噪声模块,位号B5.PSK解调模块,位号C6.复接/解复接、同步技术模块,位号:I7.20M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1 或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

眼图图2-1 无失真及有失真时的波形及眼图(a)无码间串扰时波形;无码间串扰眼图(b)有码间串扰时波形;有码间串扰眼图通信工程实验教学中心通信系统原理实验报告在图2-2中给出从示波器上观察到的比较理想状态下的眼图照片。

本实验主要是完成PSK 解调输出基带信号的眼图观测实验。

(a) 二进制系统 (b) 随机数据输入后的二进制系统图2-2实验室理想状态下的眼图四、各测量点和可调元件作用底板右边“眼图观察电路”W06:接收滤波器特性调整电位器。

(完整word版)使用matlab绘制眼图.docx

(完整word版)使用matlab绘制眼图.docx

使用 matlab 绘制数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉 MATLAB语言编程。

二、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1 所示,要获得良好的基带传输系统,就应该a n t nT s基带传输a n h t nT sn n抽样判决H ( )图 3-1基带系统的分析模型抑制码间干扰。

设输入的基带信号为a n t nT s, T s为基带信号的码元周期,则经过n基带传输系统后的输出码元为a n h t nT s。

其中nh(t )1H ()e j t d(3-1 )2理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:,k 0h( kT s)(3-2)0,k为其他整数频域应满足:T s,T s(3-3)H ( )0,其他H ( )T sT sT s图 3-2 理想基带传输特性此时频带利用率为2Baud / Hz , 这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:2 i H2 2 ,(3-4)HH ( ) HT s iT sT sT sT s基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性H ( ) 时是适宜的。

1 sinT s ( ) , (1 ) (1 )2T sT sT sH ( )1, (1 ) 0(3-5)T s0,(1 )T s这里称为滚降系数,1。

所对应的其冲激响应为:sin tcos( t T s )h(t )T s (3-6)t 1 4 2t 2 T s 2T s此时频带利用率降为 2 / (1 ) Baud/ Hz ,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。

实验八M序列发生及眼图观测实验

实验八M序列发生及眼图观测实验

实验八 M序列发生及眼图观测实验
四、实验原理
1、M序列
移位时 钟节拍
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
表1 m序列发生器状态转移流程图
第1级 a n1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
第2级
an2
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0
二、实验预习要求
认真预习《通信原理》中关于M序列及 眼图有关章节的内容。
通信工程专业实验室
实验八 M序列发生及眼图观测实验
三、实验仪器仪表
1、70MHz双踪数字存储示波器一台 2、实验模块:
数字编码模块——M序列输出 数字时钟信号源模块 眼图观测及白噪声输出模块
通信工程专业实验室
实验八 M序列发生及眼图观测实验
通信工程专业实验室
实验八 M序列发生及眼图观测实验
四、实验原理
2、眼图
所谓“眼图”,就是由解调后经过低通 滤波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰和 失真所产生的传输畸变,可以在眼图上清楚 地显示出来。因为对于二进制信号波形,它 很像一只人的眼睛。
眼图是指利用实验的方法估计和改善(通
实验八 M序列发生及眼图观测实验
实验八 M序列发生及 眼图观测实验
【实验性质】:验证性实验
通信工程专业实验室
实验八 M序列发生及眼图观测实验
一、实验目的
1、掌握M序列等伪随机码的发生原理。 2、了解伪随机码在通信电路中的作用。 3、掌握眼图的观测。
通信工程专业实验室
实验八 M序列发生及眼图观测实验
t

关于使用matlab绘制眼图

关于使用matlab绘制眼图

使用matlab 绘制数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1基带系统的分析模型抑制码间干扰。

设输入的基带信号为()nsna t nT δ-∑,sT 为基带信号的码元周期,则经过基带传输系统后的输出码元为()nsna h t nT -∑。

其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。

实验二 信道与眼图实验

实验二      信道与眼图实验

实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

使用matlab绘制眼图

使用matlab绘制眼图

使用matlab 绘制数字基带信号的眼图实验一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验原理和电路说明1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1基带系统的分析模型抑制码间干扰。

设输入的基带信号为()nsna t nT δ-∑,sT 为基带信号的码元周期,则经过基带传输系统后的输出码元为()nsna h t nT -∑。

其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。

实验二 带通信道模拟及眼图实验

实验二 带通信道模拟及眼图实验

实验二带通信道模拟及眼图实验一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、掌握眼图观测的方法并记录研究。

二、实验器材1、主控&信号源、9号、13号、17号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图PSK 调制信号带通滤波信道输入白噪声观测信道输出加升余弦滤波的带通信道模拟白噪声产生噪声幅度调节升余弦滤波带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK信号和经过升余弦滤波后调制的PSK信号送入带通信道,比较两种状况的眼图。

然后,改变带通信道的带宽重复观测。

四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。

源端口目的端口连线说明信号源:PN15 模块9:TH1(基带信号) 调制信号输入信号源:256KHz 模块9:TH14(载波1) 载波1输入信号源:256KHz 模块9:TH3(载波2) 载波2输入信号源:CLK模块9:TH2(差分编码时钟)调制时钟输入模块9:TH4(调制输出) 模块17:TH1(信道输入)调制输出经过信道模拟模块17:TH2(信道输出)模块13:TH2(载波同步输入)载波同步模块信号输入模块13:TH1(SIN)模块9:TH10(相干载波输入)用于解调的载波模块17:TH2(信道输出) 模块9:TH7(解调输入) 送入解调单元2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【信道模拟及眼图观测实验】→【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。

17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

眼图观察实验

眼图观察实验

眼图观察实验实验九眼图观察实验实验内容1、PN码/CMI码的眼图。

2、噪声、码间干扰对眼图的影响。

3、眼图的垂直张开度与水平张开度。

一、实验目的1、熟悉基带信号的眼图观察方法。

2、学会用眼图判断数字信道的传输质量。

3、分析眼图的垂直张开度与水平张开度。

二、眼图观察电路眼图是在同步状态下,各个周期的随机信码波形,重叠在一起所构成的组合波形。

其形状类似一只眼睛故名眼图。

其形成是由于人眼的视觉暂留作用把随机信号在荧屏上反复扫描的波形复合起来。

眼图是用来观察数字传输系统是否存在码间干扰的最简单、直观的方法。

将示波器置于外同步状态,平台的输出时钟接往示波器的通道1,伪随机码接往示波器的通道2,缓慢调整示波器的“同步”旋钮,当时钟与信码的相位同步时即可在示波器屏幕上观察到眼图。

眼图的垂直张开度反映信码幅度的变化量,可用来表示系统的抗噪声能力,垂直张开度越大,抗噪声能力越强。

水平张开度则反映信码的码间干扰。

水平张开度越大,表示信码的码间干拢越小。

垂直张开度与水平张开度越大,越有利于信码再生器的判决,还原出来信码的误码率就越小。

Vt11垂直张开度E= 水平长开度E1= 0tV22V V 12 t 1 t 2图9-1 模型化眼图平台上专门设置有眼图观察电路,它是一级由运算放大器和RC网络组成的低通滤波器,把输入数字信号的高频分量滤除,得到一个模拟的升余弦波,以获得眼图观察效果。

输入的PN码数字信号由U101 CDLD可编程模块二内的数字信号产生电路产生,经过 U101 CPLD可编程模块二 70 CMI码 34 产生电路 35 5 36 31 PN2 2KB/S PN 32 码产生电路CMIOUTCMI MCMI 数字信号眼图FCMI 测试点测试点TP902 TP903 HPN2 FPN2 眼 HPN2 CMI码 1 图 HPN32 2 PN32 3 K02 观 FPN32 察 HC1 1KHz方波电产生电路 FC1 路 HC2 FC2 32KHz方波产生电路 U301 U302 FPGA可编程模块一 39 CMI码产生电路 47 2KB/S PN 码产生电路 48 32KB /S PN 码产生电路 ? ? ? ? 图9-2 眼图观察方框图 ? ? FPGA/CPLD模块选择开关K01和PN码/CMI码选择开关K02的3~2送入眼图观察电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基带信眼图实验m精编b仿真文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]数字基带信号的眼图实验——m a t l a b 仿真一、实验目的1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法;2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度;3、熟悉MATLAB 语言编程。

二、实验预习要求1、复习《数字通信原理》第七章节——奈奎斯特第一准则内容;2、复习《数字通信原理》第七章节——数字基带信号码型内容;3、认真阅读本实验内容,熟悉实验步骤。

三、实验原理和电路说明 1、基带传输特性基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该图3-1 基带系统的分析模型抑制码间干扰。

设输入的基带信号为()n s na t nT δ-∑,s T 为基带信号的码元周期,则经过基带传输系统后的输出码元为()n s na h t nT -∑。

其中1()()2j th t H ed ωωωπ+∞-∞=⎰(3-1)理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足:10()0,s k h kT k =⎧=⎨⎩,为其他整数 (3-2)频域应满足:()0,ss T T H πωωω⎧≤⎪=⎨⎪⎩,其他 (3-3)图3-2 理想基带传输特性此时频带利用率为2/Baud Hz ,这是在抽样值无失真条件下,所能达到的最高频率利用率。

由于理想的低通滤波器不容易实现,而且时域波形的拖尾衰减太慢,因此在得不到严格定时时,码间干扰就可能较大。

在一般情况下,只要满足:222(),s i s s s si H H H H T T T T T ππππωωωωω⎛⎫⎛⎫⎛⎫+=-+++=≤⎪ ⎪⎪⎝⎭⎝⎭⎝⎭∑ (3-4)基带信号就可实现无码间干扰传输。

这种滤波器克服了拖尾太慢的问题。

从实际的滤波器的实现来考虑,采用具有升余弦频谱特性()H ω时是适宜的。

(1)(1)1sin (),2(1)()1,0(1)0,s s s s s s T T T T H T T ππαπαωωαπαωωπαω⎧⎡⎤-+--≤≤⎪⎢⎥⎣⎦⎪⎪-⎪=≤≤⎨⎪⎪+>⎪⎪⎩(3-5)这里α称为滚降系数,01α≤≤。

所对应的其冲激响应为:()222sin cos()()14s s s stT t T h t t t T T παππα=-(3-6)此时频带利用率降为2/(1)Baud/Hz α+,这同样是在抽样值无失真条件下,所能达到的最高频率利用率。

换言之,若输入码元速率'1/s s R T >,则该基带传输系统输出码元会产生码间干扰。

2、眼图所谓眼图就是将接收滤波器输出的,未经再生的信号,用位定时以及倍数作为同步信号在示波器上重复扫描所显示的波形(因传输二进制信号时,类似人的眼睛)。

干扰和失真所产生的畸变可以很清楚的从眼图中看出。

眼图反映了系统的最佳抽样时间,定时的灵敏度,噪音容限,信号幅度的畸变范围以及判决门限电平,因此通常用眼图来观察基带传输系统的好坏。

图3-3 眼图示意图四、仿真环境Windows NT/2000/XP/Windows 7/VISTA ; MATLAB 以上。

五、仿真程序设计 1、程序框架图3-4程序框架首先,产生M 进制双极性NRZ 码元序列,并根据系统设置的抽样频率对该NRZ 码元序列进行抽样,再将抽样序列送到升余弦滚降系统,最后画出输出码元序列眼图。

2、参数设置该仿真程序应具备一定的通用性,即要求能调整相应参数以仿真不同的基带传输系统,并观察输出眼图情况。

因此,对于NRZ 码元进制M 、码元序列长度Num 、码元速率Rs ,采样频率Fs 、升余弦滚降滤波器参考码元周期Ts 、滚降系数alpha 、在同一个图像窗口内希望观测到的眼图个数Eye_num 等均应可以进行合理设置。

3、实验内容根据现场实验题目内容,设置仿真程序参数,编写仿真程序,仿真波形,并进行分析给出结论。

4、仿真结果参考参考例程参数设置如下:无码间干扰时:Ts=1e-2; %升余弦滚降滤波器的理想参考码元周期,单位sFs=1e3; %采样频率,单位Hz。

注意:该数值过大将 %严重增加程序运行时间Rs=50; %输入码元速率,单位BaudM=2; %输入码元进制Num=100; %输入码元序列长度。

注意:该数值过大将 %严重增加程序运行时间Eye_num=2; %在一个窗口内可观测到的眼图个数。

图3-5(a) 仿真参考结果图(1)图3-5(b) 仿真参考结果图(2)图3-5(c) 仿真参考结果图(3)从眼图张开程度可以得出没有发生码间干扰,这是因为基带信号的码元速率Rs为50Baud,而升余弦滚降滤波器和FIR滤波器的等效带宽B=60Hz(Ts=10ms),Rs<2B,满足了奈奎斯特第一准则的条件。

有码间干扰时:Ts=5*(1e-2); %升余弦滚降滤波器的参考码元周期,单位sFs=1e3; %采样频率,单位Hz。

注意:该数值过大将 %严重增加程序运行时间Rs=50; %输入码元速率,单位BaudM=2; %输入码元进制Num=100; %输入码元序列长度。

注意:该数值过大将 %严重增加程序运行时间Eye_num=2; %在一个窗口内可观测到的眼图个数。

图3-5(d) 仿真参考结果图(4)眼图基本闭合,存在较为严重的码间干扰,这是因为码元速率Rs虽然仍为50Baud,但滤波器等效带宽已经变为12Hz(Ts=50ms),Rs>2B不再满足奈奎斯特第一准则。

多进制码元情况:图3-6 四进制NRZ码元眼图六、实验报告要求1、整理实验数据,画出相应的波形。

2、结合奈奎斯特第一准则,分析波形,表述出码间干扰ISI现象与滤波器的等效带宽设定值之间的关系,给出原因。

3、结合奈奎斯特第一准则,分析波形,表述出码间干扰ISI现象与滤波器的滚降系数设定值之间的关系,给出原因。

七、思考题1、自行编写升余弦滚降滤波器冲激响应函数,特别注意当公式中分子分母均为0时的特殊情况。

2、采用MATLAB自带眼图函数eyediagram来观察眼图。

八、参考程序close all;alpha=; %设置滚降系数,取值范围在[0,1]Ts=1e-2; %升余弦滚降滤波器的参考码元周%期, Ts=10ms,无ISI。

% Ts=2*(1e-2); %Ts=20ms,已经出现ISI(临界点)% Ts=5*(1e-2); %Ts=50ms,出现严重ISIFs=1e3; %采样频率,单位Hz。

注意:该数%值过大将严重增加程序运行时间Rs=50; %输入码元速率,单位Baud% M=2;M=4; %输入码元进制Num=100; %输入码元序列长度。

注意:该数值%过大将严重增加程序运行时间。

Samp_rate=Fs/Rs %采样率,应为大于1的正整数,即 %要求Fs,Rs之间呈整数倍关系% Eye_num=2; %在一个窗口内可观测到的眼图个数。

Eye_num=4; %在一个窗口内可观测到的眼图个数。

%产生双极性NRZ码元序列NRZ=2*randint(1,Num,M)-M+1;figure(1);stem(NRZ);xlabel('时间');ylabel('幅度');hold on;grid on;title('双极性NRZ码元序列');%对双极性NRZ码元序列进行抽样k=1;for ii=1:Numfor jj=1:Samp_rateSamp_data(k)=NRZ(ii);k=k+1;endend%基带升余弦滚降系统冲激响应[ht,a] = rcosine(1/Ts,Fs,'fir',alpha);%画出基带升余弦滚降系统冲激响应波形figure(2);subplot(2,1,1);plot(ht);xlabel('时间');ylabel('冲激响应');hold on;grid on;title('升余弦滚降系统冲激响应,滚降因子\alpha=');%将信号送入基带升余弦滚降系统,即做卷积操作st = conv(Samp_data,ht)/(Fs*Ts);subplot(2,1,2);plot(st);xlabel('时间');ylabel('信号幅度');hold on;grid on;title('经过升弦滚降系统后的码元')%画眼图,在同一个图形窗口重复画出一个或若干个码元figure(3);for k = 10:floor(length(st)/Samp_rate)-10%不考虑过渡阶段信号,只观测稳定阶段ss = st(k*Samp_rate+1:(k+Eye_num)*Samp_rate); plot(ss);hold on;endxlabel('时间');ylabel('信号幅度');hold on;grid on;title('基带信号眼图');% eyediagram(st,Samp_rate);% xlabel('时间');% ylabel('信号幅度');% hold on;% grid on;% title('基带信号眼图');。

相关文档
最新文档