《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案.doc

合集下载

运筹学第三章习题答案详细

运筹学第三章习题答案详细

运筹学第三章习题答案详细运筹学是一门研究如何有效地做出决策的学科,它运用数学和逻辑的方法来解决实际问题。

在运筹学的学习中,习题是非常重要的一部分,通过解答习题可以加深对知识的理解和应用。

本文将详细解答运筹学第三章的习题,帮助读者更好地掌握该章节的内容。

第一题是关于线性规划的基本概念和性质的。

线性规划是运筹学中的重要分支,它的目标是在一组约束条件下,找到使目标函数最大或最小的变量值。

这个问题可以用一个线性规划模型来描述,其中包括决策变量、目标函数和约束条件。

在解答这个问题时,我们需要先确定决策变量、目标函数和约束条件,然后使用线性规划的方法求解最优解。

具体的计算过程可以通过线性规划的算法来完成。

第二题是关于线性规划的图解法的。

线性规划的图解法是一种直观的解法,它通过绘制变量的可行域和目标函数的等高线图来求解最优解。

在解答这个问题时,我们需要先将约束条件转化为直线或者曲线的形式,然后绘制出这些直线或曲线,并确定它们的交点。

最后,我们需要在可行域内找到使目标函数取得最大或最小值的点,这个点就是线性规划的最优解。

第三题是关于整数规划的应用的。

整数规划是线性规划的一种特殊形式,它要求决策变量取整数值。

在解答这个问题时,我们需要先确定整数规划的模型,包括决策变量、目标函数和约束条件。

然后,我们可以使用整数规划的算法来求解最优解。

在实际应用中,整数规划可以用来解决很多实际问题,比如生产计划、运输调度等。

第四题是关于线性规划的灵敏度分析的。

灵敏度分析是线性规划中的一种重要技术,它用来分析目标函数系数、约束条件右端常数和决策变量上下界的变化对最优解的影响。

在解答这个问题时,我们需要计算目标函数系数、约束条件右端常数和决策变量上下界的变化对最优解的影响程度,并进行相应的调整。

通过灵敏度分析,我们可以了解到线性规划模型对参数变化的敏感性,从而做出更加准确的决策。

第五题是关于线性规划的对偶问题的。

线性规划的对偶问题是线性规划的一个重要概念,它可以用来求解原始问题的最优解。

《运筹学教程》第三章习题答案

《运筹学教程》第三章习题答案

《运筹学教程》第三章习题答案1.影子价格是根据资源在生产中作出的贡献而做的估价。

它是一种边际价格,其值相当于在资源得到最有效利用的生产条件下,资源每变化一个单位时目标函数的增量变化。

又称效率价格。

影子价格是指社会处于某种最优状态下,能够反映社会劳动消耗、资源稀缺程度和最终产品需求状况的价格,是社会对货物真实价值的度量。

只有在完善的市场条件下才会出现,然而这种完善的市场条件是不存在的,因此现成的影子价格也是不存在的。

市场价格是物品和服务在市场上销售的实际价格,是由供求关系决定的。

2.证明:当原问题约束条件右端变为b i′时,原问题变为: maxz=∑C i X js.t. ∑a ij X i≤b i′(i=1,2,3,……,m)X j≥0 (j=1,2,3,……,n)对偶问题为: minp=∑b i′y is.t. ∑a ij y i≥C iy i≥0(i=1,2,3,……,m) (j=1,2,3,……,n) 设,当b i变为b i′原问题有最优解(X1′X2′X3′……X n-1′X n′)时,对偶问题的最优解为(y1′y2′y3′……y n-1′y n′),则有:又因为当原问题有最优解时,对偶问题也有最优解,且相等,则有:所以3(1).minp=6y1 + 2y2s.t. -y1+2y2≥-33y1+3y2≥4y1,y2≥0(2)解:令X2=X2′-X2〞,X4= X4′-X4〞,X2′,X2〞,X4′,X4〞≥0 ,原式化为:maxz=2X1 +2X2′-2X2〞-5X3 +2X4′-2X4〞s.t. 2X1 -X2′+X2〞+3X3 +3X4′-3X4〞≤-5-2X1 +X2′-X2〞-3X3 -3X4′+3X4〞≤5-6X1 -5X2′+5X2〞+X3 -5X4′+5X4〞≤-610X1 -9X2′+9X2〞+6X3 +4X4′-4X4〞≤12X1, X2′,X2〞,X3, X4′,X4〞≥0则对偶规划为:.minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3≥2y1′-y1〞+5y2 + 9y3≥-23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞-5y2 + 4y3≥2-3y1′+3y1〞+5y2 -4y3≥-2即:minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3=23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞+5y2 + 4y3=2令 y1〞- y1′= y1,得:minp= 5y1 -6y2 + 12y3s.t. -2y1-6y2 + 10y3≥2y1-5y2 -9y3=2-3y1+y2 + 6y3≥-5-3y1-5y2 + 4y3=24、试用对偶理论讨论下列原问题与他们的对偶问题是否有最优解。

运筹学 03 对偶理论及灵敏度分析

运筹学 03 对偶理论及灵敏度分析

目标函数取值 变量 目标函数系数 常数 约束条件系数 变量 - 约束 约束 - 变量
例2:将下述线性规划作为原问题,请转换为 对偶问题 max z=5x1+3x2+2x3+4x4 5x1+x2+x3+8x4≤8 2x1+4x2+3x3+2x4=10 x1≥0,x2≥0,x3任意,x4任意
1 对偶理论
对偶问题的提出 原问题与对偶问题的数学模型 原问题与对偶问题的对应关系 对偶问题的基本性质 影子价格 对偶单纯形法
对偶问题的提出
例1:某厂利用现有资源(设备A、设备B、 调试工序)生产两种产品(产品Ⅰ、产品Ⅱ),有 关数据如下表。问如何安排生产,使厂家利润 最大? 产品Ⅰ 产品Ⅱ 资源限量 0 5 15 6 2 24 1 1 5 2 1
CX*=bTY*
从弱对偶性可得到以下重要结论: (1)极大化问题(原问题)的任一可行解所对应的目 标函数值是对偶问题最优目标函数值的下界。 (2)极小化问题(对偶问题)的任一可行解所对应的 目标函数值是原问题最优目标函数值的上界。 (3)若原问题可行,但其目标函数值无界,则对偶 问题无可行解。 (4)若对偶问题可行,但其目标函数值无界,则原 问题无可行解。 (5)若原问题有可行解而其对偶问题无可行解,则 原问题目标函数值无界。 (6)对偶问题有可行解而其原问题无可行解,则对 偶问题的目标函数值无界。
原问题与对偶问题的数学模型
原问题 max z=2x1+x2 5x2≤15 6x1+2x2≤24 x1+x2≤5 x1,x2≥0 互为对偶问题 厂 家 对偶问题 min w=15y1+24y2+5y3 6y2+y3≥2 5y1+2y2+y3≥1 y1,y2,y3≥0

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第3章 对偶理论与灵敏度分析

北交大交通运输学院《管理运筹学》知识点总结与例题讲解第3章 对偶理论与灵敏度分析

⎟ ⎟ ⎟⎟⎠
⎪⎩x1, x2 ,", xn ≥ 0
min z = b1y1 + b2y2 +" + bm ym
(3-5)
⎪⎧⎜⎛ s.t.⎪⎪⎪⎪⎨⎜⎜⎜⎜⎝
a11 a12 #
a1n
a21 a22 #
a2n
" "
"
am1 ⎟⎞⎜⎛ y1 ⎟⎞ ⎜⎛ c1 ⎟⎞
am2 #
amn
⎟⎜ y ⎟⎟⎟⎠⎜⎜⎜⎝#y
+ −
y3* =3 y3* = 4
把 X * 代入原问题 3 个约束中可知原问题式(3)是不等式,故 y 3 * =0,然后解方程组
得到
⎧⎪ ⎨ ⎪⎩
2y1* 3y1*
+ +
3y2* =3 2 y2* = 4
⎧⎪ ⎨ ⎪⎩
y1* =6/5 y2* = 1/ 5
故对偶最优解为 Y * =(6/5,1/5,0), z * =w * =28.
⎪⎪⎪⎨22yy11++3yy22
− +
y3 y3
≥2 ≥3
⎪⎪3y1 + 2 y2 − y3 ≥ 4
⎪⎩y1, y2 , y3 ≥ 0
由于 x 3 * =x 4 * =4>0,故对偶问题约束方程式(3)、(4)是等式约束,即对 Y * 成立等式
⎧⎪ ⎨ ⎪⎩
2y1* 3y1*
+ +
3 y2* 2 y2*
推论 3 若原始问题可行,则其目标函数无界的充要条件是对偶问题没有可行解。
定理 3.2 最优性准则定理
若 X 和 Y 分别为互为对偶问题的线性规划(3-5)与(3-6)的可行解,且使 CX = bT Y T ,

运筹学第三章 对偶问题和灵敏度分析

运筹学第三章 对偶问题和灵敏度分析
对偶理论与灵敏度分析
线性规划的对偶问题 对偶问题的基本性质 影子价格 对偶单纯形法 灵敏度分析
3.1 线性规划的对偶问题
一、问题的提出 回顾例题1
例1 某工厂在计划期内要安排生产A、B两种产品(假定产
品畅销)。已知生产单位产品的利润与所需的劳动力、设备
台时及原材料的消耗,如表1.1所示
项目
基变量 非基变量
CB XB Cj-Zj
B-1 b
XB Ⅰ 0
表2.5
XN B-1 N CN-CB B-1 N
XS B-1Ⅰ - CB B-1
初始单纯形表:
项目
非基变量
XB
XN
B-1 0 XS
b
B
N
Cj-Zj
CB
CN
B1 p1p2...pn
基变量
XS Ⅰ 0
项目
基变量 非基变量
XB
CB XB B-1 b
x 1 , x 2 , x 3 0
2.
m in Z 3 x1 2 4 x4 0

x2 3 x3 4 x4 5

2
x
1

3 x2

7 x3

4 x4

2
x 1 0 , x 2 0 , x 3、 x 4 无 约 束
答 案 :1 . m a x W 2 y 1 3 y 2 5 y 3
2y1 3y 2 y3 2

3 5
y y
1 1

y2 7y2

4y3 6y3

2 4
y 1 0 , y 2 . y 3 0
2 .m ax W 3 y1 5 y 2 2 y3

运筹学教材编写组《运筹学》章节题库-对偶理论与灵敏度分析(圣才出品)

运筹学教材编写组《运筹学》章节题库-对偶理论与灵敏度分析(圣才出品)
3 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台

5.已知 Yi 为线性规划的对偶问题的最优解,若 Yi>0,说明()。[深圳大学 2006 研] A.原问题的最优解 xi=0 B.在最优生产计划中第 i 种资源己完全耗尽 C.在最优生产计划中第 i 种资源有剩余 D.无法判断 【答案】B 【解析】当影子价格为 0 时,表示某种资源未得到充分利用;而当资源的影子价格不为 零时,表明该种资源在生产中已耗费完毕。
【答案】对偶单纯形法
3.某极小化线性规划问题的对偶问题的最优解的第 l 个分量为 yl=-12,则该问题的第 1 个约束条件的右端常数项的对偶价格为:______。[武汉大学 2006 研]
5 / 36
圣才电子书

【答案】-12
十万种考研考证电子书、题库视频学习平台
【解析】由对偶问题的经济解释可知,原问题约束条件的右端常数项的对偶价格等于对
4.根据对偶解的经济含义,若天然气资源是我国的一种稀缺能源资源,其影子价格必 然是()。[北京科技大学 2010 研]
A.不能确定 B.<0 C.=0 D.>0 【答案】D 【解析】影子价格是对系统内部资源稀缺程度的一种客观评价,某种资源的影子价格越 高,说明该资源在系统内越稀缺,增加该资源的供应量对系统目标函数值贡献也越大。天然 气是资源是一种稀缺能源资源,其影子价格必然大于 0。
学 2008 研]
十万种考研考证电子书、题库视频学习平台
【答案】√
【解析】它的对偶问题可能无解,也可能有无界解。
二、选择题
1.用线性规划制定某一企业的生产计划问题,两种资源的影子价格分别为 y甲=5 , y乙=8 ,说明这两种资源在该企业中的稀缺程度为()。[北京交通大学 2010 研]

灵敏度分析(第三章线性规划4)

灵敏度分析(第三章线性规划4)

初始单纯形表 x1 x2 1 2 8 x3 1 2 6 x4 1 0 0 x5 0 1 0 bi
12 12
b2 20
0
0
x4 x5 f
1 1 5
0
最优单纯形表 x1 x2 0 1 0 x3 0 1 2 x4 2 1 2 x5 1 1 3 bi 424-b
2
5 x1 8 x2
f
1 0 0
实例1
产品 资源 原料甲 原料乙 A 1 1 5 B 1 2 8 C 1 2 6 资源拥 有量 12kg 20kg
利润 (元/kg)
在实例1中,假设产品C 的资源消耗量由 试分析最优解的变化情况。
1 2
2 变为 1

x4 x5 f
x1 1 1 5
•设XB=B1b是最优解,则有XB=B1b 0
•b的变化不会影响检验数 •b的变化量b可能导致原最优解变为非基可行解 设b’=b+ b 为保证最优基不变,必须满足XB=B-1b’ 0
1. 分析b1=16和b2=20时,最优基和最优解的变化
初始单纯形表 x1 x4 x5 f 1 1 5 x2 1 2 8 x3 1 2 6 x4 1 0 0 x5 0 1 0 bi
5 x1 8 x2
f
1 0 0
保持b1=12,分析b2在什么范围内 变化时,最优基不变?
2 B b' 1
1
1 12 1 b2
24 b 2 12 b 2
0
解之得:12≤b2≤24
即:当12≤b2≤24时,最优基不变
3.2 增加新约束条件的分析
产品 资源 原料甲 原料乙 原料丙 利润 (元/kg)

线性规划的对偶理论与灵敏度分析习题

线性规划的对偶理论与灵敏度分析习题

第二章 线性规划的对偶理论与灵敏度分析习题1. 写出下列线性规划问题的对偶问题。

(1)⎪⎪⎩⎪⎪⎨⎧≥=++≤++≥++++=无约束321321321321321,0,534332243422min x x x x x x x x x x x x x x x z (2) ⎪⎪⎩⎪⎪⎨⎧≤≥≤++≥-+-=++++=0,0,837435522365max 321321321321321x x x x x x x x x x x x x x x z 无约束(3)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥=====∑∑∑∑====),,1;,,1(0),,1(),,1(min 1111n j m i x n j b x m i a x x c z ij mi j ij nj i ij mi ijnj ij (4)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥++==<=<=∑∑∑===),,,,1(0),,2,1(),,1(min 1211111n n j x m m m i b x a m m i b x a x c z j n j i j ij nj i j ij nj jj 无约束 2. 判断下列说法是否正确,为什么?(1)如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; (2)如果线性规划的对偶问题无可行解,则原问题也一定无可行解; ( 3)在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原问题可行解的目标函数值一定不超过其对偶问题可行解的目标函数值;(4)任何线性规划问题具有唯一的对偶问题。

3. 已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯形表如下表所示,求表中各括弧内未知数的值。

⎪⎩⎪⎨⎧=≥-≤+-+-≥++++++=)4,,1(0322326532min 432143214321 j x x x x x x x x x x x x x z j(1)写出其对偶问题;(2)用图解法求解对偶问题;(3)利用(2)的结果及根据对偶问题性质写出原问题最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章线性规划对偶理论与灵敏度分析习题 一、思考题1.对偶问题和对偶变量的经济意义是什么?2.简述对偶单纯形法的计算步骤。

它与单纯形法的异同之处是什么?3.什么是资源的影子价格?它和相应的市场价格之间有什么区别?4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系?5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意义是什么?7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为求最小值),其经济意义是什么?8.将i j ji bc a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确1.任何线性规划问题都存在且有唯一的对偶问题。

2.对偶问题的对偶问题一定是原问题。

3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。

4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。

5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。

7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。

8.对于ij j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。

9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加u k 。

10.应用对偶单纯形法计算时,若单纯形表中某一基变量0<i x ,且i x 所在行的 所有元素都大于或等于零,则其对偶问题具有无界解。

三、写出下列线性规划的对偶问题 (1)32123max x x x Z++= (2)4321322max x x x x z +++=⎪⎪⎩⎪⎪⎨⎧≥≤++≤-+≤++0,,92372452321321321321x x x x x x x x x x x x ; ⎪⎪⎩⎪⎪⎨⎧≥≥+--=+-≤+++无约束43214313214321,,0,313212x x x x x x x x x x x x x x ; (3)32132min x x x z --= (4)3212min x x x z ++=⎪⎪⎩⎪⎪⎨⎧≥=++-≥--≤+-无约束321321321321,0,1042742523x x x x x x x x x x x x ; ⎪⎪⎩⎪⎪⎨⎧≥≥-+-=--≤++无约束321321321321,0,3453532722x x x x x x x x x x x x ; (5)321347max x x x z +-= (6)321345min x x x z +-= ⎪⎪⎩⎪⎪⎨⎧≤≥=+≥--≤-+无约束23132321221,0,030351546324624x x x x x x x x x x x ;⎪⎪⎩⎪⎪⎨⎧≥=+≤-+≥+无约束1323232131,0,306415458872x x x x x x x x x x 。

四、用对偶单纯形法求解下列线性规划问题 (1)32123minx x x Z ++= (2)321422max x x x z ++=⎪⎪⎩⎪⎪⎨⎧≥≥-≥-≤++0,,3463213231321x x x x x x x x x x ; ⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≥++0,,5643732532321321321321x x x x x x x x x x x x ; (3)43211216812min x x x x z +++= (4)321425min x x x z ++=⎪⎩⎪⎨⎧≥≥++≥++0,,,34222424321421321x x x x x x x x x x ;⎪⎩⎪⎨⎧≥≥++≥++0,,12536723321321421x x x x x x x x x ;五、对下列问题求最优解、相应的影子价格及保持最优解不变时j c与i b 的变化范围。

(1)1213max x x x z++= (2)4211935089max x x x z x +++=⎪⎩⎪⎨⎧≥≤++≤++0,,323222321321321x x x x x x x x x ; ⎪⎩⎪⎨⎧≥≤+≤+++0,,,6418410234321434321x x x x x x x x x x ; (3)32134max x x x z ++= (4)432181026max x x x x z +++=⎪⎩⎪⎨⎧≥≤++≤++0,,622422*********x x x x x x x x x ; ⎪⎪⎩⎪⎪⎨⎧≥≤++-≤++-≤--+0,,,103242582332044654321432143214321x x x x x x x x x x x x x x x x .六、已知下表(表3—1)为求解某线性规划问题的最终单纯形表,表中54,x x 为松弛变量,问题的约束为 ≤ 形式(2)写出原问题的对偶问题;(3)直接由表3—1写出对偶问题的最优解。

七、某厂利用原料A、B生产甲、乙、丙三种产品,已知生产单位产品所需原料数、单件利润及有关数据如表1—4所示,分别回答下列问题:(1)建立线性规划模型,求该厂获利最大的生产计划;(2)若产品乙、丙的单件利润不变,产品甲的利润在什么范围变化,上述最优解不变? (3)若有一种新产品丁,其原料消耗定额:A为3单位,B为2单位,单件利润为2.5单位.问该种产品是否值得安排生产,并求新的最优计划; (4)若原材料A市场紧缺,除拥有量外一时无法购进,而原材料B如数量不足可去市场购买,单价为0.5,问该厂应否购买,以够劲多少为宜?(5)由于某种原因该厂决定暂停甲产品的生产,试重新确定该厂的最优生产计划.八、某厂生产甲、乙、丙三种产品,分别经过A、B、C三种设备加工。

已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润见表3—4。

(2)产品丙每件的利润增加到多大时才值得安排生产?如产品丙每件的利润增加到50/6 ,求最优生产计划。

(4)产品甲的利润在多大范围内变化时,原最优计划保持不变?(5)设备A 的能力如为100+10θ ,确定保持原最优基不变的θ 的变化范围。

(6)如有一种新产品丁,加工一件需设备A 、B 、C 的台时各为1、4、3小时,预期每件的利润为8元,是否值得安排生产?(7)如合同规定该厂至少生产10件产品丙,试确定最优计划的变化。

《运筹学》第三章线性规划对偶理论与灵敏度分析习题解答二.解:(1)√ (2)√(3)X (4)√(5) √(6)√(7)X (8)X (9)X (10)X 三、(1)321975miny y y w ++= (2)321312min y y y w +-=⎪⎪⎩⎪⎪⎨⎧≥≥+-≥++≥++0,,12222334321321321321y y y y y y y y y y y y ; ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≥=+=-+≥-≥++无约束2313132121321,0,0133222y y y y y y y y y y y y y ;(3)3211075max y y y w ++= (4)321356max y y y w ++= ⎪⎪⎩⎪⎪⎨⎧≥≤-=+--≤+--≤-+无约束321321321321,0,0342224123y y y y y y y y y y y y ; ⎪⎪⎩⎪⎪⎨⎧≥≤=--≤+-≤-+0,02421531322321321321321y y y y y y y y y y y y 无约束, (5)321301524min y y y w ++= (6)32130158max y y y z ++= ⎪⎪⎩⎪⎪⎨⎧≤≥≤+---=+-≥+无约束32132132121,0,033464562734y y y y y y y y y y y ; ⎪⎪⎩⎪⎪⎨⎧≤≥≤+--≤+=+无约束3213213221,0,03647445582y y y y y y y y y y 。

四、解:(1)用对偶单纯形法求得的最终单纯形表如下:由于基变量4x 所在行的j i a值全为非负,故问题无可行解。

(2)最优解为 T X z ]0,2.1,2.0[,8.2==*; (3)最优解为 T X z ]0,0,1,5.0[,14==*;(4)最优解为T X z ]0,2,34[,332==*;五、解:用单纯形法求得的最终单纯形表分别见表 3— 2(1) , 2(2) , 2(3) , 2(4) . (1)且+∞<≤≤<∞-≤<∞-3212,5.1,3ccc;+∞<≤≤≤211,60bb。

(2)且205.18,525.47,326,134321≤≤≤≤≤≤∞-≤<∞-cccc;2.75.4,241521≤≤≤≤bb。

(3)且42,63,3321≤≤≤≤≤<∞-x c c ; 84,6321≤≤≤≤b b 。

(4)资源3的影子价格为7/16 ,资源2的影子价格为5/8 。

且 421415,31638,833.2833.1321≤≤≤≤≤≤x c c ;3408,248,32622,114321≤≤≤≤≤≤+∞<≤b b b b 。

六、解:(1)原线性规划问题:3211026max x x x z +-=⎪⎩⎪⎨⎧≥≤+-≤+0,103522132122x x x x x x x ;(2)原问题的对偶规划问题为:21105min y y w +=⎪⎪⎩⎪⎪⎨⎧≥≥+-≥-≥0,1022632121212y y y y y y y ;(3)对偶规划问题的最优解为:)2,4(=*Y 。

七、解:(1)设321,,x x x 分别为产品甲、乙、丙的产量,其模型为32154max x x x z ++=⎪⎩⎪⎨⎧≥≤++≤++0,,3054345536321321321x x x x x x x x x ;得此问题的最终单纯形表如下:(表 3—3)可得X ]3,0,5[=,35=*z ;(2)产品甲的利润变化范围为 [ 3,6 ] 。

(3)安排生产丁有利,新最优计划为生产产品丁15件,而0321===x x x ;(4)购进原料B 15单位为宜;(5)新计划为30,]6,0,0[==**z X T 。

相关文档
最新文档