金属线膨胀系数测量实验讲义

合集下载

金属棒线膨胀系数的测量 实验报告

金属棒线膨胀系数的测量 实验报告

金属棒线膨胀系数的测量实验报告一、实验目的本实验旨在通过一种精密的测量方法,测量金属棒在温度升高时的线膨胀系数。

线膨胀系数是金属材料的重要物理性质之一,对于许多工程应用和科学研究都具有重要意义。

通过本实验,我们可以更深入地理解金属的物理性质,为相关领域的实际应用提供准确的参数。

二、实验原理线膨胀系数是表示金属材料在温度升高时长度增加的物理量。

根据热胀冷缩原理,当温度升高时,金属棒的长度会增大,而当温度降低时,金属棒的长度会减小。

线膨胀系数可以用下式表示:α = (L2 - L1) / (L1 * ΔT)其中,L1 和L2 是金属棒在温度为T1 和T2 时的长度,ΔT 是温度变化量。

本实验中,我们通过高精度的测量仪器,测量金属棒在受热和受冷两种状态下的长度,并计算出线膨胀系数。

三、实验设备加热炉:用于加热金属棒。

光学显微镜:用于测量金属棒的长度。

热电偶:用于测量加热炉内的温度。

数字万用表:用于测量和记录数据。

四、实验步骤在光学显微镜下,测量金属棒在室温下的长度,并记录数据。

将金属棒放入加热炉中,用热电偶测量炉内温度。

慢慢加热金属棒,并每隔5摄氏度记录一次金属棒的长度。

将数据记录在数字万用表上。

在金属棒完全冷却后,再次测量其长度,并记录数据。

使用公式计算金属棒的线膨胀系数。

五、实验结果以下是实验数据记录表:温度(摄氏度)室温下长度(mm)加热后长度(mm)冷却后长度(mm)根据上述数据,我们计算出金属棒的线膨胀系数为(L2 -L1) / (L1 * ΔT) = 0.005/摄氏度。

六、结果分析从实验结果可以看出,金属棒的线膨胀系数为0.005/摄氏度。

这表明当温度升高时,金属棒的长度会增加。

这是由于金属内部的原子在热能的作用下变得更加活跃,导致原子间的间距增大,进而引起金属棒的长度增加。

这个结果与理论预期相符。

此外,我们还可以观察到,随着温度的升高,金属棒长度的增加量逐渐增大。

这说明金属材料的线膨胀系数是随着温度的升高而增大的。

金属线热膨胀系数实验讲义

金属线热膨胀系数实验讲义

固体线热膨胀系数的测定物体因温度改变而发生的膨胀现象叫“热膨胀”。

通常是指外压强不变的情况下,大多数物质在温度升高时,其体积增大,温度降低时体积缩小。

也有少数物质在一定的温度范围内,温度升高时,其体积反而减小。

在相同条件下,固体的膨胀比气体和液体小得多,直接测定固体的体积膨胀比较困难。

但根据固体在温度升高时形状不变可以推知,一般而言,固体在各方向上膨胀规律相同。

因此可以用固体在一个方向上的线膨胀规律来表征它的体膨胀。

测量固体线热膨胀系数的方法和实验仪器有很多种,本实验只是其中的一种。

一、实验目的⒈ 了解DH4608A 金属热膨胀系数实验仪的基本结构和工作原理。

⒉ 掌握千分表和温度控制仪的使用方法。

⒊ 掌握测量金属线热膨胀系数的基本原理。

4.测量不锈钢管、紫铜管的线膨胀系数。

5、学会用热电偶测量温度。

二、实验原理在一定温度范围内,原长为0L (在0t =0℃时的长度)的物体受热温度升高,一般固体会由于原子的热运动加剧而发生膨胀,在t (单位℃)温度时,伸长量△L ,它与温度的增加量△t (△t=t-0t )近似成正比,与原长0L 也成正比,即:△L=α×0L ×△t (1)此时的总长是:t L =0L +△L (2) 式中α为固体的线膨胀系数,它是固体材料的热学性质之一。

在温度变化不大时,α是一个常数,可由式(1)和(2)得tL L t L L L t 1000∙∆=-=α (3) 由上式可见,α的物理意义:当温度每升高1℃时,物体的伸长量△L 与它在0℃时的长度之比。

当温度变化较大时,α可用t 的多项式来描叙:α=A+Bt+C 2t +……式中A ,B ,C 为常数。

在实际的测量当中,通常测得的是固体材料在室温1t 下的长度1L 及其在温度1t 至2t 之间的伸长量,就可以得到热膨胀系数,这样得到的热膨胀系数是平均热膨胀系数α:()()1212112112t t L L t t L L L -∆=--≈α (4)式中1L 和2L 分别为物体在1t 和2t 下的长度,△21L =2L -1L 是长度为1L 的物体在温度从1t 升至2t 的伸长量。

实验三、金属线膨胀系数的测定(光杠杆法)讲解

实验三、金属线膨胀系数的测定(光杠杆法)讲解
2. 调节光杠杆的程序是什么?在调节中要特别注意哪些 地方?
3. 分析本实验各物理量的测量结果,哪一个对实验误差 影响较大?
4. 根据实验室条件你还能设计一种测量△L 的方案吗?
5. 为什么有时候在望远镜里只能看到部份清晰、部分模 糊的标尺的像?
Байду номын сангаас
谢谢
到镜子中尺子的像; e 调节物镜焦距,看清镜子,将镜子调整到望远镜视
场的中央,继续调焦距寻找标尺。 6. 寻找标尺:调节目镜、物镜焦距看清标尺,并通过调 节光杠杆的镜面,使标尺的零刻度线大致与视场的水平 线重合。
7. 记下标尺的读数 d1 和初温 t1 。
8. 加热蒸汽锅。将蒸汽通入金属筒中,待温度计的读数 稳定后,记下温度 t2 以及读出望远镜中标尺的读数 d2 。
可写出 :
L L0 (1 t1)
(2)
L L L0 (1 t2 ) (3)
从(2)、(3)式消去 L0 后,再经简单运算得
=
L
(4)
L(t2 t1 ) L t1
由于 L0 <<L ,故(4)式可近似写成
= L
L(t2 t1 )
(5)
显然,固体线膨胀系数的物理意义是当温度变化1℃
实验三、金属线膨胀系数的测定(光杠杆法)
一般物质都有热胀冷缩的特 性,在相同的条件下,不同的金 属其膨胀程度是不同的,通常用 单位长度的膨胀率来描述金属的 膨胀特性。线膨胀系数的测定, 关键是测量金属受热后微小长度 的变化,一般用光杠杆法、螺旋 测微法或测量显微镜法等进行测 定。本实验用光杠杆法测定金属 线膨胀系数的方法。
4. 将光杠杆放置到仪器平台上,其后足尖踏到金属棒的 顶端,两前足尖置于固定平台的凹槽中。光杠杆的平 面镜面要调到铅直方向。

金属线膨胀系数的测定实验报告

金属线膨胀系数的测定实验报告

金属线膨胀系数的测定实验报告一、实验目的。

本实验旨在通过测定金属线的膨胀系数,探究金属在受热作用下的膨胀规律,并验证线性膨胀系数的概念。

二、实验原理。

金属在受热作用下会发生线性膨胀,其膨胀量与温度变化呈线性关系。

金属线的膨胀量可用以下公式表示:ΔL = αL0ΔT。

其中,ΔL为金属线的膨胀量,α为线性膨胀系数,L0为金属线的原始长度,ΔT为温度变化量。

三、实验器材。

1. 金属线。

2. 热水槽。

3. 温度计。

4. 尺子。

四、实验步骤。

1. 准备金属线,并测量其原始长度L0。

2. 将金属线固定在支架上。

3. 将热水倒入热水槽中,待温度稳定后,记录水温作为初始温度T1。

4. 将金属线放入热水中,测量金属线的膨胀量ΔL。

5. 记录金属线在热水中的最终温度T2。

6. 根据实验数据计算金属线的线性膨胀系数α。

五、实验数据记录。

1. 金属线原始长度L0 = 1m。

2. 初始温度T1 = 25°C。

3. 最终温度T2 = 75°C。

4. 金属线膨胀量ΔL = 5mm。

六、实验结果分析。

根据实验数据计算得到金属线的线性膨胀系数α为:α = ΔL / (L0ΔT) = 5mm / (1m × 50°C) = 1 × 10^-4 /°C。

七、实验结论。

通过本实验的测定和计算,验证了金属线在受热作用下会发生线性膨胀的规律,并得到了金属线的线性膨胀系数α。

实验结果表明,金属线的膨胀量与温度变化呈线性关系,膨胀系数是一个常数,可用于预测金属在不同温度下的膨胀量。

八、实验注意事项。

1. 在实验过程中要小心热水的温度,避免烫伤。

2. 测量金属线的膨胀量时要注意准确度,避免误差。

九、实验总结。

本实验通过测定金属线的膨胀量,验证了金属在受热作用下的线性膨胀规律,得到了金属线的线性膨胀系数α。

实验结果对于理解金属膨胀规律具有重要意义,也为工程应用提供了重要参考。

以上为金属线膨胀系数的测定实验报告。

金属线膨胀系数的测量(最全版)PTT文档

金属线膨胀系数的测量(最全版)PTT文档

因为 甚小,故上式二次项以后各项可略去,代回 到(2)式,得
L 2L 1[1(t2t1)] 3

L2L1 L
L1(t2t1) L1(t2t1)
4
又 tg L
a
2tg2 nn0
D
L2aDnn0 5
将(5)代入到(4),得
ann0
6
2DL1(t2 t1)
五、实验内容
1 测量前的调整
2、概念
线膨胀——一般情况下,固体受热后长度的增加称 为线膨胀。
线膨胀系数——实验证明,长度为的固体受热膨胀
后,其相对伸长量dL/L与温度变化dt成正比,写成
等式为:
dL dt
1
L
其中,比例系数称为固体线膨胀系数。
3、光杠杆
T:望远镜;M:光杠杆(反光镜);P:标尺;C:有孔 圆柱体;m,c:金属杆受热膨胀后的光杠杆和圆柱 体 ;a:光杠杆长度;D:光杠杆距标尺距离.
3)记录金属杆的原长 (实验室给出);
将(2)中
展开成级数,得
Dx x 50 1) 调节光杠杆小镜镜面铅直(目估),保证镜面与望远镜等高共轴;
2)记录室温t1及此时望远镜目镜中叉丝所对准的1 标尺2刻度 ,对金属杆进行加热,温度达到t2时记录望远镜目镜中叉丝所对准的标尺
刻度 ;
其中 和 分x别为室温时上叉丝和中 然后再对金属杆降温,温度达到t2和t1时分别记录标尺的刻度 和 。
金属的线膨胀系数的方法
三、实验装置
反光镜
温度计
加热装置
直标尺
望远镜
四、实验原理
1、背景:
“热胀冷缩”现象是绝大多数物体的共性。 在工程计算、材料的焊接和加工过程中都必须对物 体这种热胀冷缩的特性加以考虑,定量地分析它所 引起的结构变化。 各种材料的热膨胀系数,是定量分析热膨胀问题的 依据,用实验方法测定热膨胀系数,则是最简便的 途径。

金属线胀系数的测定实验报告资料

金属线胀系数的测定实验报告资料

金属线胀系数的测定实验报告资料实验报告:一、实验目的通过实验掌握金属线的胀系数的测定方法,了解线性膨胀系数的概念,掌握测量金属线胀系数的步骤和注意事项。

二、实验原理当一条金属线受热后,由于温度的升高导致其长度发生了改变,这种现象被称为热膨胀。

线性膨胀系数α是指物体在温度每变化1℃时,单位长度发生的变化量。

金属线胀系数的测定方法是采用差极式法。

实验中选用圆形金属丝,其胀系数可以用弹簧测微计来测量。

三、实验步骤1.将样品金属线固定在实验架上,线的一端用两片木板固定,另一端通过夹具固定在弹簧测微计的下端。

2.设定弹簧测微计的初始读数,并记录下来。

3.将电热器连接电源,并设置恒温水槽温度。

4.待水温稳定后,在恒温水槽中浸泡金属线,并等待其达到恒定温度。

6.将采样点数据整理,计算金属线的胀系数。

四、实验数据实验数据如下表所示:温度(℃)弹簧测微计读数(mm)膨胀量ΔL(mm)20 124.5 040 125.0 0.560 125.5 1.080 126.0 1.5100 126.5 2.0由上表可知,金属线在温度上升到100℃时,长度发生了2.0mm的变化。

根据线性膨胀系数的公式:ΔL = L × α × ΔT其中ΔL为长度变化量,L为材料长度,α为线性膨胀系数,ΔT为温度变化量。

可以得到公式:根据实验数据计算得到金属线的胀系数为:α = 2.0 ÷ 500 ÷ 80 = 0.00005 ℃-1五、实验结论通过差极式法测量,本实验测得圆形金属丝的胀系数为0.00005 ℃-1。

六、实验注意事项1. 金属线需保持一定的拉力,以保证数据结果的准确度。

2. 弹簧测微计需经常校准,以确保其读数的准确度。

3. 采样点的选取应尽量均匀,以得到更为准确的结果。

4. 实验前需检查实验设备的安全性,保证实验过程的安全。

线胀系数实验-实验说明

线胀系数实验-实验说明

金属线膨胀系数测量实验绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。

这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。

否则,将影响结构的稳定性和仪表的精度。

考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。

【实验目的】1.学习并掌握测量金属线膨胀系数的一种方法。

2.学会用千分表测量长度的微小增量。

【实验仪器】FB712型金属线膨胀系数测量仪实验装置如图1、图2所示:【实验原理】材料的线膨胀是材料受热膨胀时,在一维方向的伸长。

线胀系数是选用材料的一项重要指标。

特别是研制新材料,少不了要对材料线胀系数做测定。

固体受热后其长度的增加称为线膨胀。

经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ∆与其温度的增加量t ∆近似成正比,与原长L 亦成正比,即:t L L ∆••α=∆ (1)式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。

大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。

殷钢和石英的这一特性在精密测量仪器中有较多的应用。

几种材料的线胀系数 材 料铜、铁、铝 普通玻璃、陶瓷 殷 钢 熔凝石英 数量级 ()15C 10−−°× ()16C 10−−°× ()16C 102−−°×< ()17C 10−−°× 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。

某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。

另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。

因此测定线胀系数也是了解材料特性的一种手段。

但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。

为测量线胀系数,我们将材料做成条状或杆状。

由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ∆和受热前后的温度升高量t ∆(12t t t −=∆),则该材料在)t , t (21温度区域的线胀系数为:()t L L ∆•∆=α (2) 其物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1C −°。

金属线膨胀系数的测定

金属线膨胀系数的测定

实验仪器
千分表
金 属 棒 伸 长 0.2mm , 即 探 针 移 动 0.2mm 时 , 大表针正好转一周。大表盘上均匀地刻有200个 格,因此大表盘的每一小格表示0.001 mm。当大 表针转动一圈的同时,小表针跟着转动一小格, 所以小表盘的一格代表线位移0.2mm,小表盘上 均匀地刻有5个小格,千分表可测量的最大线位 移为1mm。
实际测量值等于小表盘读数+大表盘读数,应 该读到最小刻度0.001mm的下一位,所以若以毫 米为单位,测量结果在小数点后应有四位数。
实验内容及步骤
1.准备工作。检查仪器各部分的水电是否连 接好。检查仪器前面的水位管,将水箱水 加到适当值。检查金属棒固定端是否连接 好。
2.打开温控仪开关,检查水是否循环良好。 设置测量的温度。
注意:温控仪温度达到设定值后再等约5分 钟,才能读数。
实验内容及步骤
3. 测量线膨胀系数 为了保证实验安全,温控仪最高设置温
度为60℃。若决定测量n个温度点,则每次 升温范围为Δt=(60-室温)/n。
本次实验,共测量n=8个温度点,Δt=2℃。 为减小系统误差,将第一次温度达到平 衡时的温度及千分表读数分别作为t0,L0。
实验数据记录及处理
线膨胀系数的测定
次数
0
千分表读数 L0= 温度/℃ t0=
Δti=ti-t0
ΔLi=Li-L0
12345 678
(1)用作图法作出ΔLi-Δti的曲线
(2)根据ΔL=αL0Δt,从所作的直线上求出ΔLi-Δti直线 的斜率K (3)已知长度L0=500 mm,根据α=K/L0求线膨胀系数
实验目的 测量金属线膨胀系数; 了解千分表的原理及使用方法; 学习PID调节的原理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属线膨胀系数测量实验讲义(FB 7 1 2型金属线膨胀系数测定仪)浙江大学物理实验中心杭州精科仪器有限公司金属线膨胀系数的测量绝大多数物质都具有“热胀冷缩’’的特性,这是由于物体内部分子热运动加剧或减弱造成的。

这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。

否则,将影响结构的稳定性和仪表的精度。

考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。

【实验目的】1、学习测量金属线膨胀系数的一种方法。

2、学会使用千分表。

【实验仪器】FB712型金属线膨胀系数测量仪实验装置,如图1、图2所示图1金属线膨胀系数测定仪测试架结构示意图图2 FB7 12型金属线膨胀系数测定仪面板【实验原理】材料的线膨胀是材料受热膨胀时,在一维方向的伸长。

线胀系数是选用材料的一项重要指标。

特别是研制新材料,少不了要对材料线胀系数做测定。

固体受热后其长度的增加称为线膨胀。

经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量△L 与其温度的增加量△t 近似成正比,与原长L 亦成正比,即:△L=α· L ·△t (1)式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。

大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。

殷钢和石英的这一特性在精密测量仪器中有较多的应用。

几种材料的线胀系数生变化的温度附近,同时会出现线胀量的突变。

另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。

因此测定线胀系数也是了解材料特性的一种手段。

但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。

为测量线胀系数,我们将材料做成条状或杆状。

由(1)式可知,测量初始杆长L 、受热后温度从t1升高到t2时的伸长量△t 和受热前后的温度升高量△t (△t =t 2-t1),则该材料在(t1,t2)温度区域的线胀系数为: tL L ∆*∆=α (2)其物理意义是固体材料在(t1,t2)温度区域内,温度每升高1℃时材料的相对伸长量,其单位为(℃)-1测量线胀系数的主要问题是如何测伸长量△L 。

我们先粗估算一下△L 的大小,若L=250mm ,温度变化t2一t1≈100℃,金属的α数量级为×10-5(℃)-1,估算△L=α· L ·△t ≈0.25mm 。

对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。

可采用千分表(分度值为0.001mm)、读数显微镜、光杠杆放大法、光学干涉法等方法测量。

本实验就用分度值为0.001mm 的千分表测量。

【实验内容和步骤】⒈把样品空心铜棒、铝棒安装在测试架上。

在室温下用米尺重复测量金属杆的原有长度2~3次,记录到表1中,求出L原有长度的平均值。

2.参照图1安装好实验装置,连接好加热胶管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。

水箱容积大约为750ml。

3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口橡胶盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口橡胶盖。

接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。

(说明:为了保护加热器不损坏,仪器设计了自动保护装置,只有水位正常状态才能启动加热或强制冷却装置,系统水位过低、缺水将自动停机。

)因此,在虚假水位显示已满的情况下,可采用反复启动强制冷却按钮,利用循环水泵的间断工作把管路中的空气排除,即启动强制冷却按钮一自动停机一再加水的反复过程,直到最终系统的水位计稳定显示,水位计只剩上方一个红灯未转变为绿灯,此时必须停止加水,以防水从系统溢出,流淌到实验桌上。

接下来即可进行正常实验,实验过程中发现水位下降,应该适时补充。

4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。

5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。

将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为O.2mm左右,只要把该数值作为初读数对待,不必调零。

(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。

⒍正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到50℃左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如35℃)。

温控器设置操作方法请参看【附录1】.7.测量并记录数据:.当被测介质温度为35℃时,读出千分表数值L35,记入表2中。

接着在温度为40℃,45℃,50℃,55℃,60℃,65℃,70℃时,记录对应的千分表读数L40,L45,L50,L55,L60,L65,L70 .⒏用逐差法求出温度每升高5 ℃金属棒的平均伸长量,由(2)式即可求出金属棒在(35℃,70℃)温度区间的线膨胀系数。

【数据记录及处理】数据记录1:数据记录2:计算α铜、计算α铝附几种纯金属材料的线膨胀系数:物质名称温度范围(℃)线膨胀系数×10-6(℃)-1纯铝0~1 00 23.8纯铜0~1 00 1 7.1注:由于材料提炼和加工的难度,例如纯铝几乎无法进行机械加工,所以一般使用的材料多非纯金属,所以以上参数并非标准数据。

而实际使用的金属材料的线膨胀系数比纯金属要小1.0%~1.5%,铜合金约为1.4×10-5(℃)-1,铝合金约为2.0×10-5(℃)-1,供参考。

【思考题】1.该实验的误差来源主要有哪些?2.如何利用逐差法来处理数据?3.利用千分表读数时应注意哪些问题,如何消除误差?FB7 1 2型金属线胀系数测定仪使用说明书一、概述绝大多数物质具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的.这个性质在工程结构的设计中,在机械和仪表的制造中,在材料的加工(如焊接)中都应考虑到,否则,将影响结构的稳定性和仪表的精度。

考虑失当,甚至会造成工程结构的毁损,仪表的失灵以及加工焊接中的缺陷和失败等等。

固体材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。

线胀系数是选用材料的一项重要指标,在研制新材料中,测量其线胀系数更是必不可少的。

FB712型金属线胀系数测定仪通过加热温度控制仪,精确地控制实验样品在一定的温度下,由千分表直接读出实验样品的微小伸长量,实现对金属线胀系数测定的一种新型教学实验仪器。

该仪器的恒温控制由高精度数字温度传感器与PID智能温度控制仪组成,可根据实验需要把加热温度控制在室温~80℃之间。

并以稳定的加热电压维持实测温度的稳定度,由四位数码管显示设定温度和实验样品实测温度,读数精度为±O.1℃,调节设定方便,控温稳定、精确。

专用加热部件的加热电压低速档为:AC110V,高速档为:AC140V。

水位由7只双色发光管指示,无水时,所有发光管发红光,随着水位逐步升高,对应的发光管由红色转变为绿色。

为了避免在系统缺水的情况下加热器“干烧”,仪器设置了完善的缺水报警和保护系统,循环水一旦缺少,系统报警灯点亮且自动停机。

只有水量足够时才能恢复正常。

加热按钮按下时,强制冷却被锁住,只有按下复位键,先停止加热,强制风冷降温才能起动。

在加热或降温工作状态,热水泵总是处于工作状态。

只有按复位按钮热水泵才停止工作。

(注意:长期不用,应从主机底部放水阀门把水放掉。

)二、用途1、测量铜、铝棒(管)的线膨胀系数。

2、分析影响测量精度的各种因素。

3、掌握使用千分表和温度控制仪的操作方法。

三、技术指标1、温度读数精度:±O.1℃。

2、温度控制稳定度:±0.1 ℃/10min3、温度设定范围:室温~80℃,四位数码管显示。

4、样品实测温度:室温~80℃,四位数码管显示。

5、伸长量测量精度:0.0005mm,量程0~1mm(包括估读位)。

6、加热温度控制仪使用条件:1)输入电源:AC220V±1.0%.50Hz2)环境湿度:<85%3)环境温度:O~40℃4)最大功耗:≤200W【附录1】PID智能温度控制器一、该控制器是一种高性能。

可靠性好的智能型调节仪表,广泛使用于机械化工、陶瓷、轻工、冶金、热处理等行业的温度、流量、压力、液位自动控制系统。

控制器面板布置图:二、具体的温度设置步骤如下(出厂时设置温度为80度,改设定温度为40度)1.先按一下“设定键SET()”约0.5秒。

2.按“位移键()”,选择需要调整的“位数",数字闪烁的位数即是当前可以进行调整操作的“位数"。

3.按“上调(▲)或“下调(▼)"确定当前“位数值",接着按此办法调整,直到各位数值都满足温度设定要求。

4.再按一次“设定键SET”,退出设定工作程序。

当实验中需改变温度设定,重复以上步骤即可。

操作过程可按图4进行。

5.注意:如果学生在操作时按SET键时间长达5秒,那么将进入温控器单片机第二设定区,这时,不要胡乱调节,造成温控器不能正常工作,只要停止操作,静等30~40秒钟,或者再按住SET键5秒钟,单片机程序会自动恢复到正常温控状态。

*三、如果需要进一步了解PID智能温控器,可参看以下单片机程序第二设定区流程图:改变温度上限设定值SOH数值,可直接用位移和上、下键修改上限设定值。

(此流程图仅供实验室教师参考用)四、FB712型金属线膨胀系数测定仪照片【附录2】千分表的参数1.有效量程:0~1mm2.主指针:每圈200格,每格0.001mm;3.副指针:每格0.2mm,共分5格,总计1mm;4.主尺刻度调节圈用于主尺调零5.极限量程可达0~1.4mm。

相关文档
最新文档