博弈的扩展式表述
博弈类型及其表述形式

1博弈的分类博弈模型一般分为合作博弈( cooperative game )和非合作博弈( non- cooperativegame),如图。
合作博弈是以单个参与者的可能行动集合为基本元素,而非合作博弈是以参与人群的可能联合行动集合为基本元素( Martin and Ariel Rub in stein ,2000, P2),也就是说,在合作博弈中,博弈中所有参与者都独立行动,不存在有约束力的合作、联合或联盟的关系,而在非合作博弈中,在一些参与者之间存在着有约束力的合作、联合或联盟的关系,并因为这种关系影响到博弈的结局。
合作博弈强调的是团体理性( collectiverati on ality )、效率、公正和公平;非合作博弈强调的是个人理性、个人最优决策,其结果可能是有效率的,也可能是低效率或无效率的(张维迎,1996,P5)。
20世纪50年代,合作博弈的研究达到鼎盛期,同时开始出现对非合作博弈的研究,此后,博弈论的研究主流逐步转向在非合作博弈领域。
有些人认为非合作博弈模型比合作博弈更“基本”,但有些人认为两者不相上下(Martin and Ariel Rubinstein ,2000,P2)。
合作博弈,有时也叫做联盟博弈( coalitional game ),一般根据有无转移支付而分为两类:可转移支付联盟博弈( coalitio nal game with tran sferable payoff )和不可转移支付联盟博弈(coalitional game with non-transferable payoff )。
可转移支付也叫有旁支付(side payment ),可转移支付联盟博弈假设博弈中各参与者都用相同的尺度来衡量他们的赢得,且各联盟的赢得可以按任意方式在联盟成员中分摊;否则,就是不可转移支付联盟博弈。
可转移支付合作博弈合作博弈不可转移支付合作博、非合作博弈非合作博弈的分类主要从两个角度进行划分。
信息经济学部分习题解答

解:设金钱总数为M。
对赌徒i,战略空间Si=[0,M],si∈Si,支付
函数ui为
ui
si 0
if if
si M
i
si M
i
所有满足∑isi≤M的选择都是纳什均衡。纳什均 衡有无穷多个。
5.(库诺特博弈)假定有n个库诺特寡头企业,每 个企业具有相同的不变单位成本c,市场逆需求 函数是p = a - Q,其中p是市场价格,Q = ∑jqj是 总供给量,a是大于零的常数。企业i的战略是 选择产量qi最大化利润 πi=qi(a-Q-c),给定其他 企业的产量q-i,求库诺特-纳什均衡。
2
q2
14q12q220
求解可得 q 14q24 116
假设企业1第一阶段投资引进新技术。此时
两个企业的边际成本下降到1,利润函数为:
1 1 q 1 4 q 2 q 1 q 1 f
2 1 q 4 1 q 2 q 2 2 q 2
一阶最优条件为
1
q1
142q1q210
求 故解当可1得9q 6 1 fq 22 1 1 31644 q2 q11 f3 2 q1 25122 时10,99 引6 f进新技术
解:根据问题的假设可知各企业的利润函数为
i piq ciqaqijn iqjqiciq
其中i=1,…,n。
将利润函数对qi求导并令其为0得:
i
qi
n
a
ji
qj
c2qi 0
解得各企业对其他企业产量的反应函数为:
n
qi aji qj c/2
根据n个企业之间的对称性,可知 q1 *q2 *qn * 必然成立。代入上述反应函数可解得:
q
2
再代入企业1的反应函数,得
博弈论讲义2-完全信息动态博弈

2.1 博弈的扩展式表述 2.2 扩展式博弈的策略与均衡 2.3 完美信息扩展式博弈的SPNE 2.4 子博弈精练下的策略性行动
动态博弈:参 与人行动有先 后顺序,且后
2.5 子博弈精炼NE应用举例
2.6 重复博弈
行动者能够观
察先行动者选 择的行动。
有限次重复博弈
海萨尼公理:当存在外生不确定性时,假定所有参与人对N的选择具有相同 的先验概率,且这种概率分布是共同知识。
版权所有
余向华
2
房地产开发博弈的 一种可能的扩展 开发 式表述
N
大 信息集
开发
A
参与人(A,B,N)
结:初始结 不开发
枝:行动 N
小
结:决策结 小
大
1/2
1/2
1/2
1/2
B
不开发
B
不开发 开发
B
开发
x
不开发
B
开发
x’
不开发
•
(-3,-3)
(1,0) (0,1)
(0,0)
•
版权所有
余向华
17
如何写出下面扩展式博弈的纯策略? 男
足球
芭蕾
女
芭蕾
x
足球
女
芭蕾
x’
足球
(1,2)
(-1,-1)(0,0)
(2,1)
版权所有
余向华
18
又例
1 上 2 h2(1) 右 h1(2) 左 h1(3) h1(1) 下 2 h2(2) 右
集上可选行动的个数, ∑pij =1)。
行为策略中,不同信息集上的概率分布是相互独立的;
完全信息动态博弈

-3 1
-3, 0,
-3 0
1, 0,
0 1
1, 0,
0 0
这里有3个纯战略Nash均衡,分别是 {开发,{不开发,开发}} (均衡结果:A
14
开发,B不开发) {开发,{不开发,不开发}} {不开发,{开发,开发}} 在每一个均衡,给定对方的战略,自己 的战略是最优的(效用最大) 均衡结果是(开,不开) , (开,不开) , (不开,开) 。注意均衡与均衡结果不同。 一般定义:扩展式博弈的战略 令 H i 为第 i 个参与人的信息集的集合,
1
选择什么行动, 而不是简单的, 与环境无关的 行动选择。 为了说明,我们考虑房地产开发博弈的 例子。有两个开发商A和B,互为竞争对手,决 定是否进行房地产开发。但他们不是同时行 动,且后行动者可以观察到先行动者的行动。 假定博弈的行动顺序如下: (1)开发商A先行 动,选择开发或不开发; (2)在A决策后,自 然选择市场需求大小; (3) 开发商B在观察到A 的决策和市场需求(自然的行动)后,决定开 发或不开发。 如图是房地产开发博弈的博弈树。
4
路径: (path)从初始结到终点结,由结 和枝所组成的系列。 扩展式 (extensive form) 是对博弈的一种描述,满足以下条件: (1)由结和枝组成的整体结构,由单个 起始结开始到终点结, 中间无闭合的圈。 即没 有以下结构
11
1
(所有前列结全排序) (2)必须说明每个结点属于某个参与人。 (3)在自然选择的结上,有自然选择不同 枝的概率。 (4)有划分每个参与人的结的信息集。 (每个信息集是决策结集合的一个子集, 满足 (a)每个决策结都是同一个参与人的决
11
1
U 2 L R L R 1 D
第二节完全信息动态博弈(1)

一 博弈扩展式表述
只包含一个决策结的信息集称为单结信息集, 如果博弈树的所有信息都是单结的,该博弈称 为完美信息博弈。
完美信息博弈意味着博弈中没有任何两个参与 人同时行动,且后行动者知道所有前序行动 (任何两个决策结都无虚线相连)。
自然总是假定是单结的,因为自然在参与人决 策之后行动等价于自然在参与人之前行动但参 与人不能观测到自然的行动。
第二节 完全信息动态搏弈 -子博弈精炼纳什均衡
一 博弈扩展式表述 二 子博弈精练纳什均衡 三 应用举例
一 博弈扩展式表述
战略式主要用于描述和分析静态博弈,给出的是 参与人有什么战略可供选择,用博弈支付矩阵表示; 扩展式主要用于描述和分析动态博弈,给出的是参与 人的相机行动规则(依据条件选择行动),用博弈树 表示。
如果市场上只有一栋楼需求大时可卖18亿需求小时可卖11亿博弈战略表述40004000800000800000不开发开发商a开发不开发开发30003000100000100000不开发开发商b开发商a开发不开发开发开发商b需求小的情况需求大的情况博弈的战略式表述一博弈扩展式表述由战略组合决定的每个参与人的支付进入者进入不进入0300在位者市场进入阻挠博弈树不可置信威胁合作4050斗争100开发不开发12121212开发不开发开发不开发开发不开发开发不开发4480331008000100参与人abn战略支付参与人集合参与人行动顺序参与人的行动空间参与人的信息集参与人的支付函数外生事件的概率分布房地产开发博弈结决策结结终点结结初始结信息集一博弈扩展式表述博弈树的基本构造包括决策结和终点结两类
N
大
小
A
开发 不开发
1/2 1/2
A
开发
博弈论策略的扩展式和战略式表述

博弈论策略的扩展式和战略式表述下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!博弈论策略的扩展式与战略式表述:深度解析博弈论,作为经济学、社会学、心理学等领域的核心理论工具,主要研究决策者在相互影响的环境下如何做出选择。
博弈的扩展式表述

03:23:30 经济管理学院 曹正勇 1
03:23:30 经济管理学院 曹正勇 10
RECALL) 5,完美回忆(PERFECT RECALL) 完美回忆( 指没有参与人会忘记自己以前知道的 事情, 事情,所有参与人都知道自己以前的选 择. 见下例: 见下例:
03:23:30
经济管理学院 曹正勇
11
参与人不具完美回忆的两个例子
03:23:30 经济管理学院 曹正勇 12
�
6
03:23:30
经济管理学院 曹正勇
7
以下按理对信息集进行直观的解释: 以下按理对信息集进行直观的解释:
03:23:30
经济管理学院 曹正勇
8
下例中: 下例中:B有2个信息集 ,每个信息集对应两个决策结
03:23:30
经济管理学院 曹正勇
9
4,完全且完美信息博弈 单结信息集. 只包含一个决策结的信息集称为单结信息集. 如果博弈树的所有信息集都是单结的, 如果博弈树的所有信息集都是单结的,该博弈称为 完美信息博弈. 注意:完美信息博弈意味着博弈中没有任何两 注意: 个参与人同时行动,并且所有后行动者能确切 确切地知 个参与人同时行动,并且所有后行动者能确切地知 道前行动者选择了什么行动,所有参与人都观测 都观测到 道前行动者选择了什么行动,所有参与人都观测到 自然的行动. 自然的行动.
完美信息博弈意味着博弈中没有任何两个参与人同时行动并且所有后行动者能确切地知道前行Байду номын сангаас者选择了什么行动所有参与人都观测到自然的行动
博弈论的extensive form

博弈论的extensive form博弈论是研究具有相互冲突和合作元素的情境下的决策制定的数学理论。
在博弈论中,一个游戏(博弈)可以被表示为扩展式(extensive form)或标准式(normal form)。
扩展式博弈也被称为树形结构,它详细地描述了游戏的所有可能的决策过程和时间顺序。
在扩展式博弈中,每个玩家根据游戏的历史(从根节点到当前决策点的路径)做出选择。
这种表示方法允许捕捉到玩家之间的行动顺序和信息传递,非常适合描述具有时间序列和信息不完全的动态决策过程。
扩展式博弈的主要组成部分包括:1. 历史(History):历史是一个有序集合,表示从博弈的开始到当前决策点所采取的行动序列。
在扩展式博弈的树形结构中,历史从根节点开始,每个节点代表一个决策点,节点之间的路径代表了行动的历史。
2. 玩家函数(Player Function):玩家函数P(h) 定义了在历史h 之后做出决策的玩家。
在扩展式博弈中,玩家函数确保了在每一个决策点,只有一个玩家负责做出选择。
3. 纯策略(Pure Strategy):纯策略是玩家在每个决策点上可能采取的行动集合。
一个玩家在扩展式博弈中的纯策略可以被表示为一个函数,该函数将历史映射到一个具体的选择上。
4. 博弈长度(Length of the Game):博弈长度l(G) 是指从根节点到叶节点的最长路径长度,它代表了博弈的持续时间。
扩展式博弈的优点在于它能够精确地描述玩家之间的决策顺序和信息结构,但它也有可能变得非常复杂,尤其是在参与者数量多或者决策序列长的情况下。
尽管如此,扩展式博弈是分析具有时序特征和信息不完全的决策问题的有力工具,特别是在经济学、政治学、心理学和人工智能等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
09:08:11 经济管理学院 曹正勇 1 2004年9月
1,博弈的扩展式与战略式的区别 博弈的扩展式表述"扩展" (1)博弈的扩展式表述"扩展"的主要是参与人 的战略空间. 的战略空间.
战略式表述简单地给出参与人有些什么战略可以 选择,而扩展式表述要给出每个战略的动态描述:谁 选择,而扩展式表述要给出每个战略的动态描述: 在什么时候行动,每次行动时有些具体行动可供选择, 在什么时道些什么.
2,博弈的扩展式表述包括的要素
09:08:11
经济管理学院 曹正勇
2 2004年9月
例1:房地产博弈 假定博弈顺序如下: 假定博弈顺序如下:
09:08:11
经济管理学院 曹正勇
3 2004年9月
A
图2.1
09:08:11 经济管理学院 曹正勇 4 2004年9月
3,博弈树的构造
09:08:11
09:08:11
经济管理学院 曹正勇
9 2004年9月
4,完全且完美信息博弈 单结信息集. 只包含一个决策结的信息集称为单结信息集. 如果博弈树的所有信息集都是单结的, 如果博弈树的所有信息集都是单结的,该博弈称为 完美信息博弈. 注意:完美信息博弈意味着博弈中没有任何两 注意: 个参与人同时行动,并且所有后行动者能确切 确切地知 个参与人同时行动,并且所有后行动者能确切地知 道前行动者选择了什么行动,所有参与人都观测 都观测到 道前行动者选择了什么行动,所有参与人都观测到 自然的行动. 自然的行动.
经济管理学院 曹正勇
5 2004年9月
09:08:11
经济管理学院 曹正勇
6 2004年9月
09:08:11
经济管理学院 曹正勇
7 2004年9月
以下按理对信息集进行直观的解释: 以下按理对信息集进行直观的解释:
09:08:11
经济管理学院 曹正勇
8 2004年9月
下例中: 下例中:B有2个信息集 ,每个信息集对应两个决策结
经济管理学院 曹正勇
11 2004年9月
09:08:11
经济管理学院 曹正勇
12 2004年9月
�
09:08:11
经济管理学院 曹正勇
10 2004年9月
RECALL) 5,完美回忆(PERFECT RECALL) 完美回忆( 指没有参与人会忘记自己以前知道的事情, 指没有参与人会忘记自己以前知道的事情, 所有参与人都知道自己以前的选择. 所有参与人都知道自己以前的选择. 见下例: 见下例:
09:08:11