材料学中的相和组织

合集下载

相与组织

相与组织

组成材料最基本的、独立的物质为组元。

组元可以是纯元素,如金属元素Fe、Cu、Al等,也可以是非金属元素,C、N、O等,也可以是化合物,如等。

材料可以由单一组元组成,如纯铁,纯铜,石英( )等,也可以由多种组元组成,如钢(Fe、C二种组元组成)。

多组元组成的化合物在不同的条件下的微观组织结构可以不同,结果这些化合物表现出来的性能也差异甚大,如常见的钢和铸铁,虽然它们都是由Fe、C二种元素组成,但钢在受到拉伸载荷时,可以产生较大的变形,而铸铁则不能,因此它们的应用场合也十分不同。

这种相同组元在不同物理化学条件下可以成为不同材料的规律为人们研制新材料指明了方向。

这种规律是由一种称之为“相图”的图来表征的,它表示了材料相的状态和温度、成份的综合关系。

在这一节中,我们将对相图做一简要介绍,使大家体会到材料微观世界中影响性能的又一层次--相和组织。

相是指系统中的物质结构均匀的部分。

气体在平衡条件下,不论有多少组分,都是均匀的,因此气相只有一种,固体内部就比较复杂了,在固体材料中,具有同样聚集状态,同样原子排列特征性质,并以界面相互隔开的均匀组成部分称之为“相”。

相可以是单质,也可以是化合物。

材料的性能与各组成相的性质、形态、分布和数量直接有关。

人们还常将用肉眼观察到的或借助于放大镜、显微镜观察到的相的形态、分布的图象统称为组织,用肉眼和放大镜观察到的为宏观组织,用显微镜观察到的为显微组织,用电子显微镜观察到的为电显微组织。

图2-54a为Al铸锭的宏观组织(横截面),从中我们可以看到液态Al在凝固时形成的晶粒形状,在靠近铸模的部分是细的等轴晶,然后是一些柱状晶,在中间部分是一些粗大的等轴晶,如果冷却条件不同,这些不同形状的晶粒的大小和分布就不一样,进而导致材料的性能不同。

这个Al锭是纯Al ,所有的晶粒都是同样的相,这种组织为单相组织。

材料也可由不同相组成此时的组织为多相组织。

图2-54b,是一张显微组织照片,里面有两种颜色,表示有两种相,白色的为铁素体,即α-Fe,黑色的为化合物,称之为渗碳体。

材料科学基础 第5章 相 图剖析

材料科学基础 第5章 相 图剖析
dG i dni i dni

由于 所以
dni dni
dG (i i )dni
在 相和 相处于平衡时,dG=0 ,故:
i i
即两相平衡的条件是两相中同一组元的化学 位相等。此时,在两相之间转移趋于平衡。 若多元系中有C个组元,P个相,则它们的相 平衡条件可以写成:
由热力学原理可知,当组元在不同相间转 移时,将引起体系自由能的变化。对于一个多 元系,这种自由能变化可用下式表示:
dG Vdp SdT
dn
i
i
在等温等压条件下,可简化为:
dG
dn
i
i
如果体系中只有 和 两相,当极少量(d n i)的 i 组元从 相转移到 相中,则B
Pb
10
20
30
40
50
60
70
80
90
500 400 tA 300 327.5℃ 231.9℃ M α +L 183℃ 19 α +β F Pb 10 20 30 40 50 60 70 80 90 G Sn E 61.9 L+β N β 97.5 L
200 α 100
tB
W W1 W2
2的质量 Wx W1 x1 体系中相 W21 x 体系中相 的质量 体系中物质的总质量 2
t1 t2 M R P Q
L1
L2 L E x x2 20 40 K S N B 100
由上两式可得:
体系中 相1 相 中 B2 组元的含量 B 中 组元的含量 B组元的含量
W1 (x x1 ) W2 (x 2 x)
1083
时间
Cu 0
30

材料科学与工程第二章 固体结构 3 合金相.

材料科学与工程第二章 固体结构 3 合金相.
c. 中间相具有不同于各组成元素的晶体结构,组元原子各占据
一定的点阵位置,呈有序排列。
d. 中间相的性能明显不同于各组元的性能,一般是硬而脆的。
中间相是许多合金中重要的第二相,其种类、数量、大小、形 状和分布决定了合金的显微组织和性能。
e. 中间相的形成也受原子尺寸、电子浓度、电负性等因素的影
20
同一周期自左至右 电负性逐渐增大,
4
O 相 对 电 负 性 F
同一主族自上至下 电负性逐渐减小,
Cl Br Ru Cu As Zn Sc Mn Ca K Rb In Y Sr Cs Ba I S P Si Al Mg
3
H
N C
2
B Be
1
Li
Na
0
0
10
20
原子序数
30
40
50
60
21
(d) 原子价因素(电子浓度): 原子尺寸因素较为有利的时候,某些一价金属Cu、Ag、Au为 基的固溶体中,发现随着溶质原子价的增大,其溶解度减少。 电子浓度:合金中价电子数目与原子数目的比值
固溶体分类
(1)按溶质原子在点阵中所占位置分为: 置换固溶体(substitutional solid solution):溶质原子 置换了溶剂点阵中部分溶剂原子。 间隙固溶体(interstitial solid solution) :溶质原子分 布于溶剂晶格间隙中。 (2)按溶质原子在溶剂原子中溶解度分类: 有限固溶体:在一定条件下,溶质原子在溶剂中的溶解 量有一个上限,超过这个限度就形成新相。 无限固溶体:溶质原子可以任意比例溶入溶剂晶格中形 成的。如: Cu—Ni Au—Ag Ti—Zr· · · · ,结构相同。

材料的相结构

材料的相结构

1.置换式
2.间隙式 溶质原子一般均大于间隙——撑开——点阵常数增大
(五)固溶体的性质

固溶体的硬度、强度往往高于组成它的各
组元,而塑性则较低,这种现象就称为固溶强化。 强化的程度(或效果)不仅取决于它的成分,还取 决于固溶体的类型、结构特点、固溶度等一系列 因素。

固溶强化的特点及规律如下:

(4)电子浓度因素(原子价因素):电子浓度↓(价电子总数/原子总数),有利于溶


2.间隙式固溶体


形成条件 ——溶质原子尺寸与溶剂晶体结构间隙尺寸相近 影响间隙固溶体溶解度的因素

溶质原子尺寸 溶剂晶体中的间隙形状和大小
半径小于0.1 nm的非金属
元素,如C、H、B、O、N通常
会溶入到溶剂金属晶体点阵中
(三)固溶体的均匀性
同类、异类原子间亲合力相同 -使原子随机分布 ——无序分布 同类原子亲合力大、异类间小 -同类原子偏聚 ——偏聚分布 同类原子亲合力小,异类间大 -相间排列 ——有序排列

有序固溶体和无序固溶体之间可以相互转变。 当有序固溶体加热到某一临界温度时,将转变为无 序固溶体。而在缓慢冷却到这个临界温度时,又可
的间隙内而形成固溶体。由于
间隙数量和尺寸有限,所以只
能形成有限固溶体。

bcc Fe与fcc Fe的对比:

体心立方体的致密度虽然低于面心立方,但是
因为它的间隙数量多,因此单个间隙半径反而比面心
立方的小。若以同样大小的间隙原子填人,将产生较
大畸变。因此碳原子在-Fe中的固溶度(质量分数)比在 -Fe中要大得多(碳原子在-Fe的最大溶解度的质量分 数为0.0218wt%)。

“相”及“组织”概念的定义

“相”及“组织”概念的定义

“相”及“组织”概念的定义赵杰;叶飞;王清;齐民【摘要】“相”与“组织”是材料类课程中非常重要的概念,在目前的材料科学基础和工程材料教材中,相关概念的定义各有千秋。

根据目前一些教材中的定义及教学过程中的体会,阐述了这两个重要概念应有的内涵,并提出“相”与“组织”的定义。

%There are two important concepts in the course of fundamentals of materials science: "phase" and what is named as "zuzhi-structure". There are various deifnitions for these concepts in different textbooks. The current paper discusses the very basic meaning of these two concepts based on some typical Chinese and English textbooks and references. The deifnition for these two concepts are also proposed for judgement of colleague.【期刊名称】《中国现代教育装备》【年(卷),期】2013(000)019【总页数】2页(P40-41)【关键词】材料科学基础;相;组织;概念【作者】赵杰;叶飞;王清;齐民【作者单位】大连理工大学材料学院辽宁大连 116085;大连理工大学材料学院辽宁大连 116085;大连理工大学材料学院辽宁大连 116085;大连理工大学材料学院辽宁大连 116085【正文语种】中文“相”与“组织”是材料类课程中非常重要的概念,又是在教师讲授和学生学习过程中常常讲不明白,需要反复举例让学生体会领悟的概念。

材料中相的定义

材料中相的定义

材料中相的定义相是物质存在的一种形式,是由分子、原子等微观粒子组成的。

相的变化是物质在不同条件下呈现出的不同状态。

在自然界中,常见的相包括固态、液态和气态。

固态是一种相,通常具有较高的密度和较低的能量。

在固态下,物质的分子或原子紧密排列,并保持相对固定的位置。

固态物质具有一定的形状和体积,其分子或原子只能通过振动的方式进行运动。

固态物质的分子间相互作用力较强,因此具有较高的稳定性和较低的压缩性。

液态是另一种相,具有较高的密度和较高的能量。

在液态下,物质的分子或原子间的相互作用力较弱,使得它们能够自由移动和流动。

液态物质的分子或原子之间的距离相对较大,没有固定的形状,但具有一定的体积。

液态物质具有较高的压缩性,可以通过外力改变形状和体积。

气态是物质的另一种相,具有较低的密度和较高的能量。

在气态下,物质的分子或原子之间的相互作用力非常弱,使得它们能够自由运动和扩散。

气态物质没有固定的形状和体积,可以自由填充容器。

气态物质的分子或原子之间的距离很大,具有很高的压缩性。

相的转变是物质在不同条件下从一种相变为另一种相的过程。

例如,固态物质在加热后可以变为液态,这个过程称为熔化;液态物质在加热后可以变为气态,这个过程称为汽化;气态物质在降温后可以变为液态,这个过程称为凝结;液态物质在降温后可以变为固态,这个过程称为冷冻。

相变过程中,物质的分子或原子之间的相互作用力发生改变,导致物质的性质和状态发生变化。

相的定义和转变在物质科学研究和工程应用中具有重要的意义。

通过研究和理解相的本质和性质,可以揭示物质的结构和特性,为新材料的设计和合成提供基础。

相的转变也广泛应用于工业生产和日常生活中,如冶金、化工、能源等领域。

相变现象的研究对于改善材料性能、提高生产效率和节能减排具有重要意义。

相是物质存在的一种形式,包括固态、液态和气态。

相的转变是物质在不同条件下从一种相变为另一种相的过程。

相的定义和转变对于物质科学研究和工程应用具有重要意义,为新材料的设计和合成以及工业生产和日常生活中的应用提供基础。

材料科学中的相和组织

材料科学中的相和组织

材料学中的相和组织相:是指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分;组织:是指合金中有若干相以一定的数量、形状、尺寸组合而成的并且具有独特形态的部分。

相(phase)体系内部物理和化学性质完全均匀的部分称为相。

相与相之间在指定条件下有明显的界面,在界面上宏观性质的改变是飞跃式的。

体系中相的总数称为相数,用P 表示。

比如铁渗碳体相图中所有的物质都是由渗碳体和铁素体构成的,这两个是相,但由于结晶方式的不同,它们两个的形态,相对数量会有所不同,造成宏观上形貌的不同,即构成不同的组织了。

如珠光体和莱氏体,它们本质都是由两种相构成,但是比例不同,当然形貌不同,它们就是不同的组织。

(1)相与相之间有界面,各相可以用物理或机械方法加以分离,越过界面时性质会发生突变。

(2)一个相可以是均匀的,但不一定只含一种物质。

体系的相数P∶气体:一般是一个相,如空气组分复杂。

液体:视其混溶程度而定,可有1、2、3…个相。

固体:有几种物质就有几个相,如水泥生料。

但如果是固溶体时为一个相。

固溶体:固态合金中,在一种元素的晶格结构中包含有其它元素的合金相称为固溶体。

在固溶体晶格上各组分的化学质点随机分布均匀,其物理性质和化学性质符合相均匀性的要求,因而几个物质间形成的固溶体是一个相。

系统中物理状态、物理性质和化学性质完全均匀的部分称为一个相(phase)。

系统里的气体,无论是纯气体还是混合气体,总是一个相。

若系统里只有一种液体,无论这种液体是纯物质还是(真)溶液,也总是一个相。

若系统中有两种液体,如乙醚与水,中间以液-液界面隔开,为两相系统,考虑到乙醚里溶有少量水,水里也溶有少量乙醚,同样只有两相。

同样,不相溶的油和水在一起是两相系统,激烈振荡后油和水形成乳浊液,也仍然是两相(一相叫连续相,另一相叫分散相)。

不同固体的混合物,是多相系统,如花岗石(由石英、云母、长石等矿物组成),又如无色透明的金刚石中有少量的黑色的金刚石,都是多相系统。

第6章:固体材料的热力学状态:自由能、相图、相和组织

第6章:固体材料的热力学状态:自由能、相图、相和组织
○ 材料组织结构的变化及其他过程行为的了解→要进行 细节、机理、速度等的分析 ——动力学;
○物化中处理理想气体及一般化学反应居多,现要用于 复杂的固态材料。
6.1 材料系统中自由能与相平衡 (Phase equilibrium)
6.1.1 材料系统的热力学描述
(1) 系统与环境(system and environment) 系统:即研究对象,一块材料, 1mol 物质, 1个 晶粒,1个碳化物粒子……。 环境:系统外(与之相联系)的其余部分。
定量表达式:S = K lnW W为微观状态数(热力学几率)
具体有分布状态的混合熵、振动方式的振动熵等。
理解熵的三要点(可作判据、熵值计算、无序度的度量)
6.1.2 自由能( free energy)
孤立系统不现实,故熵增原理判断过程方向不方便。
合并Ⅰ、Ⅱ律:dU=δQ + δW, δQ≤TdS 得: dU-TdS ≤ δ W,
材料系统多为多元系,增加成分变数 → 要用
化学热力学与化学势(位)。
由H = U+PV,dH = dU+PdV+VdP = TdS PdV+PdV+VdP=TdS+VdP
G = H-TS,dG = dH-TdS-SdT=TdS+VdP TdS-SdT = -SdT(恒P)
多元系:定义 →
μi≡

G ni
第六章 固体材料的热力学状态:自由 能、相图、相和组织
6.1 材料系统中自由能与相平衡 6.2 材料系统中影响自由能的因素 6.3 材料系统多相平衡的自由能曲线与材料相图 6.4 金属和陶瓷的的一元相图与二元相图 6.5 金属与陶瓷材料中的相组成 6.6 单相与多相组织形貌及对材料性能的影响
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料学中的相和组织
铁渗碳体相图中所有的物质都是由渗碳体和铁素体构成;相:是指合金中具有同一聚集状态、同一晶体结构和性;相(phase)体系内部物理和化学性质完全均匀的;(1)相与相之间有界面,各相可以用物理或机械方法;(2)一个相可以是均匀的,但不一定只含一种物质;体系的相数P∶;气体:一般是一个相,如空气组分复杂;液体:视其混溶程度而定,可有1、2、3…个相;固体:有几种物铁渗碳体相图中所有的物质都是由渗碳体和铁素体构成的,这两个是相,但由于结晶方式的不同,它们两个的形态,相对数量会有所不同,造成宏观上形貌的不同,即构成不同的组织了。

如珠光体和莱氏体,它们本质都是由两种相构成,但是比例不同,当然形貌不同,它们就是不同的组织。

相:是指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分;组织:是指合金中有若干相以一定的数量、形状、尺寸组合而成的并且具有独特形态的部分。

相(phase)体系内部物理和化学性质完全均匀的部分称为相。

相与相之间在指定条件下有明显的界面,在界面上宏观性质的改变是飞跃式的。

体系中相的总数称为相数,用P表示。

(1)相与相之间有界面,各相可以用物理或机械方法加以分离,越过界面时性质会发生突变。

(2)一个相可以是均匀的,但不一定只含一种物质。

体系的相数P∶
气体:一般是一个相,如空气组分复杂。

液体:视其混溶程度而定,可有1、2、3…个相。

固体:有几种物质就有几个相,如水泥生料。

但如果是固溶体时为一个相。

固溶体:固态合金中,在一种元素的晶格结构中包含有其它元素的合金相称为固溶体。

在固溶体晶格上各组分的化学质点随机分布均匀,其物理性质和化学性质符合相均匀性的要求,因而几个物质间形成的固溶体是一个相。

系统中物理状态、物理性质和化学性质完全均匀的部分称为一个相(phase)。

系统里的气体,无论是纯气体还是混合气体,总是一个相。

若系统里只有一种液体,无论这种液体是纯物质还是(真)溶液,也总是一个相。

若系统中有两种液体,如乙醚与水,中间以液-液界面隔开,为两相系统,考虑到乙醚里溶有少量水,水里也溶有少量乙醚,同样只有两相。

同样,不相溶的油和水在一起是两相系统,激烈振荡后油和水形成乳浊液,也仍然是两相(一相叫连续相,另一相叫分散相)。

不同固体的混合物,是多相系统,如花岗石(由石英、云母、长石等矿物组成),又如无色透明的金刚石中有少量的黑色的
金刚石,都是多相系统。

相和组分不是一个概念,例如,同时存在水蒸气、液态的水和冰的系统是三相系统,尽管这个系统里只有一个组分——水。

一般而言,相与相之间存在着光学界面,光由一相进入另一相会发生反射和折射,光在不同的相里行进的速度不同。

混合气体或溶液是分子水平的混合物,分子(离子也一样)之间是不存在光学界面的,因而是单相的。

不同相的界面不一定都一目了然。

更确切地说,相是系统里物理性质完全均匀的部分。

铁碳合金相图中的相有:铁素体、奥氏体、渗碳体三种。

铁碳合金相图中的组织有:铁素体、奥氏体、渗碳体、珠光体、莱氏体、索氏体、托氏体、贝氏体、马氏体、回火马氏体、魏氏组织。

其中铁素体、奥氏体、渗碳体三种既是相也是组织,具有双重身份,其他的都是混合物。

如何区分?
1、根据含碳量:铁素体含碳0~0.0218%,奥氏体0~2.11%,渗碳体6.69%,
2、根据冷却速度:珠光体、索氏体、托氏体、贝氏体、马氏体一个比一个冷速快。

3、根据相变反应:珠光体是共析转变产物、莱氏体是共晶转变产物。

4、根据金相分析,这是最主要的区分方法:不同的组织形态不同,有很大区别,比如:珠光体、索氏体、托氏体都是层片状且一个比一个细,贝氏体是黑色针状或羽毛状、马氏体是板条状或片状,魏氏组织是分布着针状物质等等。

铁素体、渗碳体、奥氏体都是碳钢的基本相,是单一组织,可以独立存在,因此也是铁碳合金中的组织。

而珠光体、莱氏体不是单一相,是属于多相组成的机械混合物,因此,只能是铁碳合金的组织。

所以,铁素体是相,因其有时独立存在于碳钢,因此也属于组织。

组织:microstructure;相: phase.
从英文可以看出,组织侧重于微观结构,而相侧重于物质存在的方式和状态。

如果是单相金属,如铁素体不锈钢;说铁素体是组织也可以,相也可以。

如双相钢如 2205型铁素体加奥氏体,就是说双相钢,而不能说双组织钢。

实际很多都是约定成俗的说法,没有确切的道理,就和行业内人士说淬火是 ZHAN火一样。

合金
合金不是一般概念上的混合物,甚至可以是纯净物,如单一相的金属互化物合金,所添加合金元素可以形成固溶体、化合物,并产生吸热或放热反应,从而改变金属基体的性质。

不同于纯净金属的是,多数合金没有固定的熔点,温度处在熔化温度范围间时,混合物为固液并存状态。

因此可以说,合金的熔点比组分金属低。

参见低共熔混合物。

(1)混合物合金(共熔混合物),当液态合金凝固时,构成合金的各组分分别结晶而成的合金,如焊锡、铋镉合金等;
(2)固熔体合金,当液态合金凝固时形成固溶体的合金,如金银合金等;
(3)金属互化物合金,各组分相互形成化合物的合金,如铜、锌组成的黄铜(β-黄铜、γ-黄铜和ε-黄铜)等。

纯晶体,所有不同种类的原子都有确定的位置,高度有序;通常称为化合物。

固溶体:可以将某一成份理解为掺杂,而掺杂原子在固溶体中是
无序的,它有两种情况,其一是掺杂原子替代原原子,形成无序替代;其二是掺杂原子进入原晶格空穴,且无序占据。

固溶体不能称为化合物。

相关文档
最新文档