(word完整版)高中数学导数练习题(分类练习)讲义

(word完整版)高中数学导数练习题(分类练习)讲义
(word完整版)高中数学导数练习题(分类练习)讲义

导数专题

经典例题剖析 考点一:求导公式。 例1. ()f x '是3

1()213

f x x x =

++的导函数,则(1)f '-的值是 。 解析:()2'2

+=x x f ,所以()3211'=+=-f 答案:3

考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1

(1))M f ,处的切线方程是1

22

y x =+,则(1)(1)f f '+= 。

解析:因为21=

k ,所以()2

1

1'=f ,由切线过点(1

(1))M f ,,可得点M 的纵坐标为25,所以()2

5

1=f ,所以()()31'1=+f f 答案:3

例3.曲线32

242y x x x =--+在点(1

3)-,处的切线方程是 。 解析:443'2

--=x x y ,∴点(1

3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x

点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 232

3

+-=,直线kx y l =:,且直线l 与曲线C 相切于点

()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000

≠=

x x y k 。由点()00,y x 在曲线C 上,则02

030023x x x y +-=,∴

2302

00

0+-=x x x y 。又263'2+-=x x y ,∴ 在()

00,y x 处曲线C

的切线斜率为()263'02

00+-==x x x f k ,∴

2632302

0020+-=+-x x x x ,

整理得:03200=-x x ,解得:2

3

0=x 或00=x (舍),此时,830-

=y ,41-=k 。所以,直线l 的方程为x y 4

1

-=,切点坐标是??

?

??-83,23。 答案:直线l 的方程为x y 41-

=,切点坐标是??

? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知()132

3

+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2

-+=x ax x f 。对于R x ∈都有()0'

x f 为减函数。由()R x x ax ∈<-+01632

可得?

?

?<+=?<012360

a a ,解得3-

当3-

(1) 当3-=a 时,()983131333

23+??? ?

?

--=+-+-=x x x x x f 。

由函数3

x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

(2) 当3->a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在

R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a

点评:本题考查导数在函数单调性中的应用。对于高次函数单调性问题,要有求导意识。 考点五:函数的极值。

例6. 设函数32

()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;

(2)若对于任意的[03]x ∈,,都有2

()f x c <成立,求c 的取值范围。

解析:(1)2

()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有

(1)0f '=,(2)0f '=.即6630241230a b a b ++=??

++=?,

,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++,2

()618126(1)(2)f x x x x x '=-+=--。 当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。因为对于任意的[]03x ∈,,有2

()f x c <恒成立,

所以 2

98c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,。

答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞U ,

,。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。 考点六:函数的最值。

例7. 已知a 为实数,()()

()a x x x f --=42

。求导数()x f ';(2)若()01'=-f ,求()

x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 442

3

+--=,∴ ()423'2

--=ax x x f 。

(2)()04231'=-+=-a f ,2

1=

∴a 。()()()14343'2

+-=--=∴x x x x x f

令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3

4

=x , 则()x f 和()x f '在区间[]2,2-

()291=

-f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为275034-=??

?

??f ,最

小值为()2

91=

-f 。 答案:(1)()423'2

--=ax x x f ;(2)最大值为275034-

=??

?

??f ,最小值为()2

91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3

()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线

670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值;

(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。 解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即3

3

ax bx c ax bx c --+=---

∴0c =,∵2

'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为

1

6

,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.

(2)3

()212f x x x =-。 2'()6126(f x x x x =-=,列表如下:

所以函数()f x 的单调增区间是(,-∞和)+∞,∵(1)10f -=,

f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是

f =-

答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

导数强化训练

(一) 选择题

1. 已知曲线24x y =的一条切线的斜率为1

2

,则切点的横坐标为( A )

A .1

B .2

C .3

D .4

2. 曲线132

3

+-=x x y 在点(1,-1)处的切线方程为 ( B )

A .43-=x y

B .23+-=x y

C .34+-=x y

D .54-=x y

3. 函数)1()1(2

-+=x x y 在1=x 处的导数等于 ( D )

A .1

B .2

C .3

D .4

4. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( A )

A .)1(3)1()(2

-+-=x x x f

B .)1(2)(-=x x f

C .2)1(2)(-=x x f

D .1)(-=x x f

5. 函数93)(23

-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( D )

(A )2 (B )3 (C )4 (D )5

6. 函数3

2

()31f x x x =-+是减函数的区间为( D ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)

7. 若函数()c bx x x f ++=2

的图象的顶点在第四象限,则函数()x f '的图象是( A )

8. 函数23

1

()23

f x x x

=-在区间[0,6]上的最大值是( A

) A .

323

B .

163

C .12

D .9

9. 函数x x y 33

-=的极大值为m ,极小值为n ,则n m +为 ( A ) A .0

B .1

C .2

D .4

10. 三次函数()x ax x f +=3

在()+∞∞-∈,x 内是增函数,则 ( A )

A . 0>a

B .0

C .1=a

D .3

1=

a 11. 在函数x x y 83

-=的图象上,其切线的倾斜角小于4

π

的点中,坐标为整数的点的个数是

( D ) A .3

B .2

C .1

D .0

12. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数

)(x f 在开区间),(b a 内有极小值点( A )

A .1个

B .2个

C .3个

D . 4个

(二) 填空题

13. 曲线3

x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为

____

3

8

____。 14. 已知曲线314

33

y x =

+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是A x

D

C

x

B

__044=+-x y _ 15. 已知()

()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,

都有()

()n f

x =0,则n 的最少值为 7 。

16. 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 20 吨.

(三) 解答题

17. 已知函数()c bx ax x x f +++=2

3

,当1-=x 时,取得极大值7;当3=x 时,取得极

小值.求这个极小值及c b a ,,的值.

J 解析:

()b ax x x f ++=23'2。

据题意,-1,3是方程0232

=++b ax x 的两个根,由韦达定理得

???

???

?

=?--=+-3313231b a ∴9,3-=-=b a

∴()c x x x x f +--=9323

()71=-f ,∴2=c

极小值

()25239333323-=+?-?-=f

∴极小值为-25,9,3-=-=b a ,2=c 。

18. 已知函数.93)(2

3a x x x x f +++-= (1)求)(x f 的单调减区间;

(2)若)(x f 在区间[-2,2].上的最大值为20,求它在该区间上的最小值.

解析: (1)

.963)(2++-='x x x f 令0)(<'x f ,解得,31>-

所以函数)(x f 的单调递减区间为).,3(),1,(+∞--∞

(2)因为

,218128)2(a a f +=+-+=- ,2218128)2(a a f +=+++-=

所以

).2()2(->f f 因为在(-1,3)上0)(>'x f ,所以)(x f 在[-1,2]上单调递增,又由

)(x f 在[-2,-1]上单调递减,因此)2(f 和)1(-f 分别是)(x f 在区间[]2,2-上的最大值和最小

值.于是有2022=+a

,解得.2-=a

故.293)(23-++-=x x x x f 因此,72931)1(-=--+=-f

即函数

)(x f 在区间[]2,2-上的最小值为-7.

19. 设0≠t ,点P (t ,0)是函数c bx x g ax x x f +=+=2

3

)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线。 (1)用t 表示c b a ,,;

(2)若函数)()(x g x f y -=在(-1,3)上单调递减,求t 的取值范围。

解析: (1)因为函数)(x f ,)(x g 的图象都过点(t ,0),所以0)(=t f ,

即03

=+at t .因为,0≠t 所以2t a -=. .,0,0)(2ab c c bt t g ==+=所以即

又因为

)(x f ,)(x g 在点(t ,0)处有相同的切线,所以).()(t g t f '='

.23,2)(,3)(22bt a t bx x g a x x f =+='+='所以

将2t a

-=代入上式得.t b = 因此.3t ab c -==故2t a -=,t b =,.3t c -=

(2)

))(3(23,)()(223223t x t x t tx x y t tx x t x x g x f y -+=--='+--=-=.

0))(3(<-+='t x t x y 时,函数)()(x g x f y -=单调递减. 由

0<'y ,若t x t t <<-

>3,0则;若.3

,0t x t t -<<<则 由题意,函数

)()(x g x f y -=在(-1,3)上单调递减,则

).3,()3,1(),3()3,1(t t t t -?--?-或所以.39.33

3≥-≤≥-≥t t t

t 或即或

又当39<<-t

时,函数)()(x g x f y -=在(-1,3)上单调递减.

所以t 的取值范围为).,3[]9,(+∞?--∞

20. 设函数()32()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数。 (1)求b 、c 的值。

(2)求()g x 的单调区间与极值。

解: (1)∵

()32f x x bx cx =++,∴()232f x x bx c '=++。从而

322()()()(32)g x f x f x x bx cx x bx c '=-=++-++=32(3)(2)x b x c b x c +-+--是一个奇函数,所以(0)0g =得0c =,由奇函数定义得3b =;

(2)由(Ⅰ)知3()6g x x x =-,从而2

()36g x x '=-,由此可知,

(,-∞和)+∞是函数()g x 是单调递增区间;

(是函数()g x 是单调递减区间;

()g x 在x =取得极大值,极大值为()g x 在x =取得极小值,极小值为-。

21. 用长为18 cm 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

解:设长方体的宽为x (m ),则长为x 2 (m),高为

?

?? ?

?

-=-=

230(m)35.44

1218<<x x x

h . 故长方体的体积为

()()()

?

?? ?

?

<<-=-=2306935.423

322x m x x x x x V 从而

).1(18)35.4(1818)(2

x x x x x x V -=--=' 令

()0'=x V ,解得0=x (舍去)或1=x ,因此1=x .

当10<x V ;当

23

1<

故在1=x

处()x V 取得极大值,并且这个极大值就是()x V 的最大值。

从而最大体积

()()3

321619'm x V V ?-?==,此时长方体的长为2 m ,高为1.5 m.

答:当长方体的长为2 m 时,宽为1 m ,高为1.5 m 时,体积最大,最大体积为3

3m 。

22. 已知函数32

11()32

f x x ax bx =

++在区间[11)

-,,(13],内各有一个极值点. (1)求2

4a b -的最大值;

(2)当2

48a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.

解析:(1)因为函数

3211

()32

f x x ax bx =++在区间[11)

-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],

内分别有一个实根,

设两实根为12x x ,(1

2x x <),则21x x -=2104x x <-≤.于是

04<,20416a b <-≤,

且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16.

(2)解法一:由

(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是

(1)(1)(1)y f f x '-=-,即21

(1)32

y a b x a =++--,

因为切线l 在点(1())A f x ,处空过()y f x =的图象,

所以21

()()[(1)]32

g x f x a b x a =

-++--在1x =两边附近的函数值异号,则

1x =不是()g x 的极值点.

而()

g x 321121

(1)3232

x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.

若11a ≠--,则1x =和1x a =--都是()g x 的极值点.

所以11a =--,即2a =-,又由248a b -=,得1b =-,故321

()3

f x x x x =--.

解法二:同解法一得21

()()[(1)]32

g x f x a b x a =-++--

2133

(1)[(1)(2)]322

a x x x a =-++-+. 因为切线l 在点

(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是

存在12m m ,(121m m <<).

当1

1m x <<时,()0g x <,当21x m <<时,()0g x >; 或当1

1m x <<时,()0g x >,当21x m <<时,()0g x <.

设233()

1222a a h x x x ???

?=++-+ ? ??

???,则

当11m x <<时,()0h x >,当21x m <<时,()0h x >; 或当1

1m x <<时,()0h x <,当21x m <<时,()0h x <.

由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102

a

h =?++=, 所以2a =-,又由248a b -=,得1b =-,故321

()3

f x x x x =--.

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

导数讲义终极版

导数目录 【导数的计算与几何意义】 【三次函数】 【导数与单调性】 【导数与极最值】 【导数与零点】 【导数中的恒成立与存在性问题】 【原函数导函数混合还原】 【导数中的距离问题】 【导数题基础练习】 【分离参数】 【构造新函数类】 【导数中的函数不等式放缩】 【导数中的卡根思想 【可使用洛必达法则】 【先构造,再赋值,证明和式或积式不等式】 【极值点偏移问题】 【极值点减元思想】 【导数解决含有x ln与x e的证明题】 【导数解决含三角函数的证明】 【高考导数真题研究】

[基础知识整合] 1、导数的定义:,)()(lim )(000 0x x f x x f x f x ?-?+='→? x x f x x f x f x ?-?+='→?) ()(lim )(0 2、导数的几何意义: 导数值)(0x f '是曲线)(x f y =上点))(,(00x f x 处的切线的斜率 3、常见函数的导数: ;sin )(cos ;cos )(sin );()(;01x x x x Q n nx x C n n -='='∈='='- ;)(;log 1 )(log ;1)(ln x x a a e e e x x x x ='='= ' ;ln )(a a a x x =' 4、导数的四则运算:[])()(;)(;)(;)(2 x u k x ku v u v v u v u u v v u uv v u v u '=' '+'=''+'=''±'='±; 5、复合函数的导数:[])()())((x u f x f ??'?'=' 6、导函数与单调性: 求增区间,解0)(>'x f ; 求减区间,解0)(<'x f 若函数)(x f 在区间),(b a 上是增函数0)(≥'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上是减函数0)(≤'?x f 在),(b a 上恒成立; 若函数)(x f 在区间),(b a 上存在增区间0)(>'?x f 在),(b a 上成立; 若函数)(x f 在区间),(b a 上存在减区间0)(<'?x f 在),(b a 上成立. 7、导函数与极最值: 确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题: 强化变形技巧、巧妙构造函数、一定要多记题型,总结方法

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答 案) 选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是() A.b2-4ac0 B.b0,c0 C.b=0,c D.b2-3ac0 [答案] D [解析]∵a0,f(x)为增函数, f(x)=3ax2+2bx+c0恒成立, =(2b)2-43ac=4b2-12ac0,b2-3ac0. 2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3) C.(1,4) D.(2,+) [答案] D [解析]考查导数的简单应用. f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex, 令f(x)0,解得x2,故选D. 3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+) B.(-,2]

C.(-,-1)和(1,2) D.[2,+) [答案] B [解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2]. 4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是() [答案] C [解析]当01时xf(x)0 f(x)0,故y=f(x)在(0,1)上为减函数 当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C. 5.函数y=xsinx+cosx,x(-)的单调增区间是() A.-,-2和0,2 B.-2,0和0,2 C.-,-2, D.-2,0和 [答案] A [解析]y=xcosx,当-x2时, cosx0,y=xcosx0, 当02时,cosx0,y=xcosx0. 6.下列命题成立的是() A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ) 4.函数)(x f y =在一点的导数值为0是函数)( x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞Y B .]3,3[- A x D C x B

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高中数学全套讲义 选修1-1 导数概念中挡 学生版

目录 目录 (1) 考点一导数的概念 (2) 题型1 变化的快慢和变化率 (2) 题型2 导数的概念 (4) 考点二导数的几何意义 (4) 题型3 有关斜率的判断与计算 (4) 课后综合巩固练习 (5)

考点一 导数的概念 1.平均变化率:已知函数()y f x =在点0x x =及其附近有定义, 令0x x x ?=-,0000()()()()y y y f x f x f x x f x ?=-=-=+?-,则当0 x ?≠时,比值00()()f x x f x y x x +?-?= ??叫做函数()y f x =在0x 到0x x +?之间的平均变化率. 2.瞬时变化率:如果当x ?趋近于0时,平均变化率00()() f x x f x x +?-?趋近于一个常数l ,则 数l 称为函数()f x 在点0x 的瞬时变化率. 可用符号记为:当0x ?→时,00()() f x x f x l x +?-→?. 还可以说:当0x ?→时,函数平均变化率的极限等于函数在0x 的瞬时变化 率l ,记作:000()() lim x f x x f x l x ?→+?-=?. 3.导数:函数在0x 的瞬时变化率,通常就定义为()f x 在0x x =处的导数.并记作()0f x '0 |x x y ='可以写为:0000()() lim ()x f x x f x f x x ?→+?-'=?. 4.导函数:如果()f x 在开区间()a b ,内每一点x 导数都存在,则称()f x 在区间()a b ,可导, 这样,对于开区间()a b ,内的每个值x ,都对应一个确定的导数()f x ',于是在区间()a b , 内构成一个新的函数,我们把这个函数称为函数()y f x =的导函数,记为()f x '.导函数通常简称为导数,今后,如不特别指明求某一点的导数,求导数指的就是求导函数. 题型1 变化的快慢和变化率 1.(2018春?菏泽期中)已知函数()y f x =,其导函数()y f x '=的图象如图,则对于函数 ()y f x =的描述正确的是( ) A .在(,0)-∞上为减函数 B .在0x =处取得最大值 C .在(4,)+∞上为减函数 D .在2x =处取得最小值 2.(2019春?韩城市期末)设函数()f x 在定义域内可导,()y f x =的图象如图所示,则导函数()y f x ='的图象可能为( )

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高三数学导数基础讲义教案

高三数学导数基础讲义教案 二、考试要求 ⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。 ⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, log x的导数)。掌 a 握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。 三、复习目标 1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念. x的导数)。 2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, log a 掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。 4.了解复合函数的概念。会将一个函数的复合过程进行分解或将几个函数进行复合。掌握复合函数的求导法则,并会用法则解决一些简单问题。 四、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 5.瞬时速度

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高中数学竞赛教材讲义第十四章极限与导数讲义

第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为 )(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导, 此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x) 在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7) )'(log x a x x a log 1= ;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3) )(')]'([x u c x cu ?=(c 为常数);(4) ) () (']')(1[2x u x u x u -=;(5))()()(')(')(]')()([2x u x v x u x v x u x u x u -=。

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

相关文档
最新文档