差动保护误动原因分析及解决措施
变电站母线差动保护异常原因分析及处理措施

变电站母线差动保护异常原因分析及处理措施变电站的母线是电力系统最重要的电能传输元件。
母线差动保护作为母线的主保护,是保证电力系统安全运行的重要装置,其运行的安全性、可靠性将直接影响电力系统的安全稳定运行,而它的误动和拒动都会给电力系统造成严重的危害。
因此,必须要保证变电站母线差动保护运行的可靠性。
鉴于此,本文就某变电站母线差动保护异常启动进行分析。
标签:母线差动保护;电力系统;电力元件;电能一、异常现象检查分析1.1现象描述与装置检查对220kV某变电站220kVCSC150母线差动保护进行专业巡视时,发现保护装置发出告警信号,告警报文提示B相差动保护启动。
随即检查各间隔电流实时数据,电流、电压的有效值、相序正确,大差、小差均为0,检查外部开入正确,保护定值校核正确,装置无异常的保护自检信息,唯有不同的是投入了互联压板,当时母线已倒向单母运行。
为了防止保护误动发生,当即申请退出保护出口压板,测试互联压板投入退出,保护装置开入反映正确。
投入互联压板保护启动,退出互联压板启动返回,但是两种状态下保护装置显示各通道采样的有效值是一致的。
单从现象看差动保护启动与互联压板有关,在经过与设备开发组沟通后,认为互联压板只是保护启动的一个诱因,不是根本原因。
1.2采样点值与录波图分析打印采样点值逐个通道检查,发现第三个间隔电流通道B相采样异常。
CPU3为差动启动处理器,Ib3=29.06A;CPU4为差动出口处理器,Ib3=0.3769A。
由于第三个间隔为备用间隔,外部无电流接入回路,正常情况只有一点零漂值,区间(-0.001,0.001)。
不难看出,采样点值反映为一直流分量,检测未发现外部回路存在直流量输入。
采样点值异常,而没有差流,是因为装置各通道输入为交流量,交流采样计算将直流分量绝大部分被滤除掉了,所以Ib3通道计算得到的有效值近似为0,因此,差流仍为0.差动保护启动故障录波如图1所示。
模拟量电流通道Ib3有一个正向直流分量,量程已满格29.06A,开关量1——保护启动已发生变位。
高压电机差动保护原理及误动作故障分析

高压电机差动保护原理及误动作故障分析电机差动保护主要应用到大型的高压电机当中,一旦出现故障就会造成电机的损坏,给正常的生产带来影响,造成巨大的经济损失。
因此,要做好高压电机差动保护。
标签:高压电机;差动保护;原理;误动;故障排除1 前言高压电机差动保护是电机设备保护的关键,对于设备的稳定运行提供有效的保障。
2 差动保护的原理差动保护是大型高压电气设备广泛采用的一种保护方式。
就水利水电工程而言,它主要用来保护10KV及以上高压电机或具有6个引出线的重要电机的主要保护措施。
当电流速断保护不能满足灵敏度要求时,通常装设纵差保护作为电机相间短路故障的主保护。
差动保护是基于被保护设备的短路故障而设。
当电机绕组发生相间短路故障时,它能快速反应并动作,使出口断路器在第一时间跳闸,从而起到保护电机并防止故障进一步扩大的作用。
它的基本原理是:在电机的进口(高压开关柜内)和出口(电机中性点柜内)分别装设型号相同、变比相同的电流互感器,电流互感器二次侧按循环电流法接线。
即两端电流互感器一、二次侧的异极性相连,并在两连线之间并联接如差动继电器。
继电器线圈流过的电流是两侧电流互感器二次侧电流之差。
在正常情况下,电机首尾两端电流相等,即流入电机的电流与流出电机的电流差值为零,也就是电机首尾两端电流互感器二次侧电流差值为零,此时电机运行正常,差动保护不动作。
如电机绕组发生相间短路故障,此时,流入电机的电流远远大于流出电机的电流,即电机首尾两端电流互感器二次侧电流存在差值,此时差动继电器动作,从而驱使高压开关柜内的断路器跳闸,达到保护电机的目的。
在科学日新月异发展的今天,过去那种以模拟继电器为主的保护方式,早已被数字综合保护装置所代替,且稳定性、准确性和可靠性大大提高,以及安装、调试的方法也大为简单,但差动保护的基本原理却是相同的。
3 差动保护误动的原因实际调试过程中,尤其是在高压电机初次启动时,在电机内部没有任何故障的情况下,差动保护会在电机启动的瞬间动作,造成电机启动失败。
关于差动保护误动作原因的分析

时发生误 动作 , 那么将对设备危害极大并且造成经济损失。 2 电流互感器 - r _ A对差动保护的影响 2 . 1 T A饱 和对差动保护的影 响
差动保护的极性关系到差动保 护中差回路韵 电流方 向。 差动保 护的原理如 图一 , 被保护设备两侧各装设一组 T A1 , T A 2 , 其二次侧 按环 流法连接 , 电流方 向由一次侧 同极性端流人 , 二次侧同极性端
护 的影响做重点分析 , 其 次对差动保护极性做 简单分析 。 关键词 : 差 动保 护 ; 误 动作 ; T A
1 差 动 保 护概 述 人差动回路 中的电流为两侧电流之和, 保护可靠动作 。 ・ 差动保护是电力系统发 电机 、 变压器等设备的主保护。差动保 差动保护常因 r A二次接线错误造成保护误动作 。因此 , 在保 护分为纵差保护和横差保护 , 纵差保护主要反映相间短路 , 横差主 护投入运行前 , 必须认真做好差 动回路二次接线极性的实验 , 测量 要反映匝间短路 。 纵差保护主要是按 比较被保护设备两侧的电流大 差动继电器的差电压 、 差 电流 , 保证差动 回路接线的正确性。 小和相位的原理实现的。 然而做为主保护纵差保护 的可靠性是关键 3 极性错误对差动保护的影响 问题 , 如果差动保护在发生事故时没有可靠 动作 , 或者在外部故障 3 . 1 差动保护的极性
铁心饱和。 r A在正常工作时接近于短路状态 , T A开路对设备的损 坏是很大的 , 会造成 r A伏安特 『 生 下降 , 降低 T A使用寿命 。 因此 , T A的饱和主要是一次侧大电流的冲击 , 使T A伏安特性 下降, 造成 T A的变 比误差和角误差 。从而引起差动 回路 产生差 电
保护各侧用 的 T A , 其电压等级 、 变比、 容量和磁饱和程度都不一致 , T A感应出的二次电流方 向是相反 的;一般在不发生 内部故障的情
发电机差动保护误动原因分析

发电机差动保护误动原因分析[摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。
本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。
[关键词]差动保护;电流互感器;原因分析;整改措施0 引言多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。
造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。
各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。
发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。
1 发电机差动保护动作情况山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。
发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。
中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。
如图1图18月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。
差动保护回路因差流存在并达到动作限值引起差动保护动作,装置动作正确。
但因区外短路,故本不应引起发电机差动保护动作。
保护装置记录当时的动作数据如下:机端A相电流13.97∠090°A机端B相电流18.13∠322°A机端C相电流16.52∠175°A中性点A相电流18.91∠252°A中性点B相电流21.92∠117°A中性点C相电流15.62∠354°AA相差动电流8.30AA相制动电流16.10AB相差动电流9.42AB相制动电流19.55AC相差动电流0.14AC相制动电流15.57A2保护动作原因分析2.1客观原因:发电机组中性点电流互感器与机组出口电流互感器距离为350米,两电流互感器间有一段300米的汇流母排,外部设备雷击后,多次谐波被母排及发电机吸收,使机端与发电机中性点电流互感器的一次电流差异较大,引起差动动作,造成发电机事故停机。
浅议主变差动保护误动的成因及解决办法

浅议主变差动保护误动的成因及解决办法摘要:介绍了主变差动保护原理,从新建变电站、运行中变电站、改造变电站三个方面进行说明分析了主变差动保护误动的成因,并提出了相应的解决办法。
关键词:差动保护主变压器成因对策由于各种类型的差动继电器结构简单、动作可靠,所以广泛地应用在变压器差动保护上,但由于某些原因将会导致差动保护在外部故障时误动,在内部故障时拒动或灵敏度降低,给电力系统安全运行造成威胁。
分析主变差动保护误动成因,探讨解决措施,是保障电力系统安全运行的有力措施。
1.主变差动保护原理简介主变差动保护一般包括:差动速断保护、比率差动保护、二次谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过主变各侧电流的矢量和得到。
1.1比率差动的原理及动作特性(见图1)。
比率差动动作特性方程:式中:Iqd为差动电流起动定值;Id为差动电流动作值,I1、I2的矢量和;Izd为制动电流、K为比率制动系数;Ie为变压器的额定电流。
即:当IzdIe时,比率差动有较大的制动作用。
1.2差动速断的作用差动速断是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。
2.主变差动保护误动作原因分析下面按新建变电站、运行中变电站、改造变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于同行在分析问题时优先考虑现实问题。
2.1新建变电站主变差动误动作原因分析新建变电站的主变差动保护误动在主变差动保护误动中占了较大的比例,但这种情况的误动作绝大多数在主变投运带负荷试运行的72小时就会被发现。
根据现场经验大概可以总结为以下几个方面。
2.1.1定值的不合理造成主变差动保护误动作,具体包括以下几个方面。
(1)定值选择不正确造成误动作差动速断是取变压器的励磁涌流和最大运行方式下穿越性故障引起的不平衡电流两者中的较大者。
定值计算部门往往根据运行经验将差动速断定值取为5~6Ie。
这样,就会造成主变在空载合闸时出现误跳闸。
变压器纵差动保护误动原因分析和防范措施

.
1I . H极 性反 接引 起差 动保 护误动 作 安 装或更 改 二次 回路 时 , L 将 H二 次线 圈极性 K 、 2 1K 反接 , 使二 次 接 引线 上 电流发 生 变 化 , 在
差 动 回路 中形成 Ip 当区外故 障 Ip 于保 护定 值 时 , 护将 误 动 作 。在 表 中分 析 了一 相 或 二 相 b, b大 保 或 三相六 类极 性反 接 的 电流向量 , 与正确 电流 向量加 以比较 , 求 出继 电器 中 Ip 小 。其 它 相 且 并 b大
・
继电 保护・
电气 试 验
20 年第 2 02 期
变 压 器 纵 差 动 保 护 误 动 原 因 分 析 和 防 范 措 施
何 琦
( 州市 涔天河 水利水 电管 理局 永 邮编 :2 0 0 4 50 )
变压 器纵 差保 护是一 种完 善的快 速保 护 , 是大 中型变 的主保 护 , 作 的可靠性 对 变压 器稳 定 其动 运行 起着 重要 作用 。但 在实 际运 行 中特别 是新安 装或更 改二 次 回路 后 , 正确 动作率 并不 高 , 响 其 影
系统 的安 全运 行 。为此 , 通过 对常 见的误 动原 因分析 , 提 出相应 防范措 施 。 并
一
、
变压 器 纵差保 护正确 接 线分析
1 变 压器 纵差保 护工 作原 理及接 线规定 .
纵差保护按循环电流原理构成。见图 1 当正常运行 或区外故障时 , , 在各 侧引导线 中形成环 流 , 流入 差动 电器 电流 为 I 0 保 护不 动 作 。 当区 内故 障 I=2 , 而 , j I当它 大 于 继 电器 动作 值 时 , 保
L 二次 开路 , H 在差 动 回路产 生 Ip引起保 护误 动作 。在表 中 , 了 四类 L 开路 时 的电流 向量 , b, 分析 H 并标 出差 动 回路 Ip大小 。其它相 开路 , 参照分 析 。 b 请 4 L 相加 紧错 误 ( .H 接成反 序 ) 引起 差动保 护误 动 任两根 引线 号牌标 反 或对 接 , 导致 相 别错 误 , 在差 动 回路 中 产 生 Ip 引 起 差 动 误 动 。表 中分 b, 析 了三类反 序 的 电流 向量 。其 它相反 序 , 照分析 。 请参
高压电动机差动保护误动原因分析

( 1 ) ( 2 )
( 3 )
级, 电流变 比为 4 0 0 / 5 , D级是差动保护专用。差动继 电器动作 电流整定值为 5 A 。第一次起动时 , 为 了调试 方便 , 在 确认 互感 器 极性 正确 , 电机 没 有 异 常 后 , 退 出 差动保护 , 起动电机 , 电动机起动成功。但 电机起动期 间, “ C T断线 ” 信号灯亮 , 起动完后 , 信号灯熄 灭。C T 断线 整定 电流 为 0 . 6 2 5 A 。说 明起 动 时 回路有 大 于
L I NG Y a n, L 1 U J i e
( X i a n n i n g P o w e r S u p p l y C o m p a n y , X i a n n i n g 4 3 7 1 0 0 , C h i n a )
Ab s t r a c t : An a l y z e t h e c a u s e o f ma l f u n c t i o n o f t h e d i f f e r e n t i a l p r o t e c t i o n o f t h e h i g h—v o l t a g e mo t o r , a n d p u t f o r w a r d
从 保 护原 理上 保护 是 完 整 的 , 检 查 过 电 动机 一 次 系 统 无异常 , 二 次接 线无 异 常 , 校 验 过差 动 继 电器 也 正 常 。
正常情况下 , 二次负荷计算公式为:
Z 2 = Z + z l +z ( 6 )
继 电器 绕 组 的 阻 抗 很 小 , 大约为 0 . 0 4 Q即 Z : 0 . 0 4 1 1 ; 接触 电阻 可 按 0 . 1 n计算 , 即Z , :0 . 1 1 - 1 , 如 果 按 照 电动 机 的启 动 电流 为 其 额 定 电流 的 ( 6~8 ) 取6 倍计算 , 从 图 2电流 互感 器 1 0 %倍 数 曲线可 以看 出 , 6 倍 电流值 的二 次负 荷不 应该 大 于 2 . 5 f l 将 上 述 数 值 代 人公 式 ( 6 ) , 可算 出 Z . =1 . 3 6 1 1 也 就 是 连接 导线 电 阻 z ≤1 . 3 6 Q 才 能满 足 电流互感 器二 次 负荷 的要 求 。按 照铜 的 电阻率 为 1 . 7 5×1 0 n ・ m、 电缆 芯 截 面 积 为 2 . 5 am r , 通 过 计 算 电 阻 的公 式 可得 到 电缆 长 度 : L=
一起主变差动保护误动作原因分析

一起主变差动保护误动作原因分析对一起主变差动保护误动作情况展开讨论,从该主变差动保护的动作原理入手,根据现场保护动作行为及故障录波对此次误动的原因作了详细的分析,并针对其原因提出了预防及改进建议。
标签:主变差动保护;误动;分析1 故障前系统运行方式该站为外桥接线站,综自系统,2台35kV主变。
306#为1#主变进线开关,301#、101#为1#主变高低压侧开关。
304#为2#主变进线开关,302#、102#为2#主变高低压侧开关。
300#为进线桥开关,100#为低压母联开关。
故障前运行方式:304#开关、302#开关、102#开关、100#开关运行,即2#变通过低压侧母联100#开关带全部负荷运行。
306#开关合位,301#开关、101#开关热备用。
2 保护配置1#、2#主变均配置南自PST641主变差动保护。
该主变保护为成熟产品,目前在系统内已安全稳定运行多年。
3 保护原理分析3.1 差动速断元件当任一相差动电流大于差动速断整定值时,动作于总出口继电器,用于在变压器差动区发生严重故障情况下快速切除变压器。
差动速断定值应能躲过外部故障的最大不平衡电流和空投变压器时的励磁涌流,一般为6 ~12倍的额定电流。
总出口动作后输出 4 副接点分别为(X5∶1,X5∶2)(X5∶7,X5∶8)(X5∶9 5∶10)和(X5∶11,X5∶12)。
3.2 比率差动元件采用常规比率差动原理其动作方程如下:Id > Icd Ir Kcd(Ir- Ir0)(Ir Ir0)。
同时满足上述两个方程时,比率差动元件动作,其中Id 为差动电流,Ir 为制动电流,Kcd为比率制动系数,Icd为差动电流门槛定值,Ir0为拐点电流值,建议将元件中的拐点电流Ir0设定为1.0倍的高压侧额定电流,以保证匝间短路在制动电流小于额定电流,即Ir < Ie时没有制动作用,差动电流门槛判据不宜过小建议取Icd(0.4 ~0.8)Ie,比率制动系数的整定可按以下的公式进行:Kcd Kk (Ktx Fwc + U + Fph);其中Kk为可靠系数取1.3~ 1.5;Ktx为同型系数取1.0;Fwc为电流互感器的允许误差取0.1;U为变压器调压抽头引起的误差,取调压范围的一半;Fph为因电流互感器引起的电流不平衡产生的相对误差,取0.05;比率制动系数Kcd建议取值范围为0.3 ~0.7,对于双圈变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
差动保护误动原因分析及解决措施
摘要:文章针对变压器差动保护误动率较高的现状,阐述了变压器差动保护的工作原理和作用,探究了引起变压器差动保护误动的原因,主要包括以下几方面:二次回路接线错误或设备性能欠佳、区外故障、电流互感器局部暂态饱和及和应涌流等,并提出了相应的解决措施。
关键词:差动保护;误动;和应涌流
变压器是配电网的重要组成设备,其运行状态直接影响着配电网供电的稳定性和可靠性,为了确保变压器安全、可靠的运行,通常给变压器安装差动保护装置,目前多数变压器都采用纵联差动保护为主保护。
然而运行时,差动保护引起的保护误动时常出现,据相关部门的统计数据显示,某区域在2010~2013年,变压器差动保护共动作1 035次,其中误动作有237次,误动率高达22.9%,部分误动原因没有查清楚,就允许变压器继续运行,给整个配电网的可靠运行造成安全隐患。
基于此,本文对变压器差动保护误动问题进行了探讨。
1 差动保护的基本工作原理及作用
1.1 基本工作原理
变压器正常运行时,高低两侧的不平衡电流近似于零,若保护区域内发生异常或者故障,同时不平衡电流数值达到差动继电器动作电流时,保护装置开始动作,跳开断路器,切断故障点。
1.2 保护作用
差动保护是相对合理、完善的快速保护之一,能准确反映出变压器绕组的各种短路,例如:相间、匝间及引出线上的相间短路等,避免变压器内部及引出线之间的各种短路导致变压器损坏的重要作用。
2 差动保护误动的原因分析及解决措施
2.1 二次回路接线错误或设备性能欠佳
经过多年运行统计可知,引起差动保护误动的一个原因是二次回路接线错误或者二次设备性能欠佳。
变压器差动保护二次接线线路复杂,通常要进行三角形和星形接法的变换,现场调试时工作人员一疏忽就极易将接线弄错,主要表现在以下几方面:电流互感器极性接反、组别和相别错误。
为了避免上述问题,可加强对调试安装人员进行专业技能培训,提高业务水平,在调试运行时,关键环节要重点进行检查。
2.2 区外故障
通常情况下,变压器两侧电压等级存在差异,所以差动保护在不同侧所使用的电流互感器的型号也是不同的。
若变压器发生区外短路故障,故障电流远远大于正常电流,此时若一侧电流互感器严重饱和或者两侧饱和程度不同,就极易产生较大的不平衡电流,从而导致差动保护误动。
差动保护二次接线如图1所示,某次出现区外短路故障时各侧电流及差流录波如图2、图3所示,据图可知,电流互感器已经严重饱和,两次电流差值很大,出现严重不平衡。
为了避免出现上述问题,可采取以下措施:①在选择电流互感器时,尽量选取型号一致、TPY级;②对电流互感器的伏安特性、二次负载进行测试,并画出10%的误差曲线,尽量确保最大短路电流在误差10%范围内,若超过此数值,可选择两组电流互感器串联使用;③在满足灵敏度的条件下,尽量提高制动系数。
2.3 变压器空载合闸零序环流的助增问题
若现场空载合闸,也可能造成误动。
对于如图4(a)所示的变压器,在空载合闸时,由于三相铁心饱和情况的不平衡,会导致三角形侧出现环流,如下图4(b)所示。
国内目前多数变压器都采用Y0/Δ-11接法,为了方便接线和使用简单,新投运的变压器,对于电流互感器通常采取统一的Y接线,再通过专业软件实现相位校正。
软件进行相位幅值设置包括两种方式:其一,相间差动原理;其二,相电流差动消零序原理。
若采取第二个原理,必须要消除变压器Y测的零序电流,否则一旦区外发生故障,极易造成差动保护误动。
经过推到可得下述公式(1):
根据式(1)可知,变压器空载合闸时,每相差电流及其谐波都是由三相励磁电流决定的,若采取分相制动就极易导致差动保护误动。
因此若变压器差动保护是由相电流决定的,最好不要采用分相制动原理。
2.4 电流互感器局部暂态饱和
电流互感器暂态饱和与暂态不一致两者在本质上是相同的。
研究发现,电流互感器暂态特性不同而引发的差电流极易造成区外故障切除后差动保护误动。
变压器受到外部故障影响时,电流互感器也由于暂态特性不同将可能形成差电流,外部故障切除后,差点流也会消失,这种情况下差动保护表现出如下特征:
①差动保护动作量较大。
②恢复性涌流二次谐波由于电流互感器差点流的存在降低,此时根据二次谐波制动的判据就会失去效果。
③随着外部故障的切除,差动保护制动量也随之减小。
对于此种情况,可采取以下措施:在安装差动保护装置时,尽量选择性能较好的电流互感器,并调整其负载确保变压器两侧电流互感器的饱和特性一致。
2.5 和应涌流
变压器空载合闸时,不仅设备自身会出现励磁涌流,也会造成和其串联或者并联的变压器出现浪涌电流。
变压器合应涌流产生系统如图5(a)所示,变压器T1、T2分别处于正常和空载合闸状态,两台变压器由于侧电阻耦合进而互相影响,此时T1、T2分别产生的和应涌流、励磁涌流分别如图5(b)、(c)所示。
合应涌流会造成变压器暂态饱和,极大减少了二次谐波的分量,造成二次谐波制动式差动保护的误动。
为了尽量避免上述情况的出现,可采取以下措施:
①在符合灵敏度的条件下,保护动作定值进行适当调整,这是相对简单有效的一种方法。
②若主变开关要进行空载合闸,尽可能的将相连的其他变压器连接到其他母线上进行启动,减少出现和应涌流的机会。
③如果条件许可,可将电流互感器换为剩磁系数较小的设备,减小在工频电流、常非周期分量下出现的误差。
3 结语
综上所述,笔者分析了引起变压器差动保护的原因,并提出了相应的解决措施。
只有结合实践,了解差动保护误动的根本原因及保护原理,才能从本质上减少差动保护误动的出现,从而确保配电网的稳定、可靠运行。
参考文献:
[1] 潘毅,郑永涛,李志猛. 变压器差动动作原因分析[J].电工技术,2010,(7).
[2] 韦恒.变压器差动保护励磁涌流误动分析及解决方案[J].广西电力,2012,(3).
[3] 袁宇波,李德佳,陆于平,等.变压器和应涌流的物理机理及其对差动保护的影响[J].电力系统自动化,2013,(6).
[4] 上官帖,谌争鸣,郭军燕.和应涌流对变压器差动保护的影响及对策[J]..华中电力,2011,(5).
[5] 刘元秋.变压器空载合闸和应涌流的防范措施[J].农村电气化,2011,(12).。