数值计算方法

合集下载

数值计算方法及算法

数值计算方法及算法

b a
(
x

x0
)
(
x

xn
)
xdx
n is odd n is even
特别,梯形公式和Simpson公式的误差为
E1

f ( ) (b a)3
12
代数精度=1
E2


f (4) ( ) (b a)5
2880
代数精度=3
复化数值积分
b
f (x)dx
f (x)dx
构造n-1次插值多项式φ1(x)和 φ2(x),则有
(x)

x xn x0 xn
1(x)
x x0 xn x0
2 ( x)
对n用归纳法。
• f[x0,…,xn]与x0,…,xn的顺序无关。
误差估计:
R(x)
f (x) (x)
f (n1) ( )
(n 1)!
(n 1)!
Hermite插值
给定平面上n+1个插值点(xi,yi,mi), 构造 2n+1次多项式φ(x), 满足φ(xi)=yi, φ’(xi)=mi, i=0,1,…,n.
单项式 基函数
Lagrange 基函数
(x) a0 a1x an1x2n1
1





1 2
1 n1
nh (nh)
(nh)
2 n1

0
1
1

1

1
1


1

n



0 0
1 1n

数值计算方法总结

数值计算方法总结
误差分类
模型误差 数据误差 截断误差 计算误差 在建立数学模型时,忽略次要因素而造成的 由于问题中的值通过观察得到的,从而产生误差 通过近似替代,简化为较易求解的问题 由于计算机中数的位数限制而造成的
第1章 数值计算方法的一般概念
1.2 误差
~ x 设 为真值, x 为真值的近似值
绝对误差 绝对误差:是指近似值与真正值之差或差的绝对 值,即 x x x,或 x 绝对误差界:用一个满足 绝对误差的大小,并记为 的数 ,来表示
分为n -1步, 第k步变换n - k 行 : 求倍数, 再从n 1- k 个元素中减去第k 行 对应列的倍数,因此所需乘除次数: n3 n 2 5n N1 (n k )(n 1 k 1) 3 2 6 k 1
n
2.回代运算量
求xn需做1次除法, 求xn-1需做1次乘法和1次除法,..., 求x1需n -1次 乘法和1次除法,因此所需乘除次数: n(n 1) N 2 1 2 ... n n3 2 2 n 因此,N N1 N 2 n 3 3
j i, i 1,..., n j i 1, i 2,..., n 1
第2章 解线性代数方程的直接法
2.2 三角分解法 2.2.3 追赶法
b1 a 1 A A b
作克洛特分解
c1 b2 a2
c2 b3 c3 an 1 bn 1 cn 1 an
选主元方法分为行主元法与全主元法
第2章 解线性代数方程的直接法
2.2 三角分解法 2.2.1 杜里特尔分解法 高斯消去法的消去过程,实质上是把系数矩阵A分解为单位下三角矩 阵L与上三角矩阵R的乘积,并且求解方程组Ly=b的过程,回代过程是求解 上三角形方程组Rx=y

数值计算方法

数值计算方法

1.题目造倒数表,并例求 18 的倒数。

(精度为 0.0005)2.算法原理2.1 牛顿迭代法牛顿迭代法是通过非线性方程线性化得到迭代序列的一种方法。

对于非线性方程f x( ) = 0 ,若已知根x* 的一个近似值x k ,将f (x) 在x k 处展成一阶泰勒公式后忽略高次项可得:f (x) ≈f x( k ) + f '(x k )(x −x k )右端是直线方程,用这个直线方程来近似非线性方程f (x) 。

将非线性方程f x( ) = 0的根x*代入f x( *) = 0 ,即f x( k ) + f '(x k )(x* −x k ) ≈ 0* x k−f (x k ) 解出x ≈f '(x k )将右端取为x k+1 ,则x k+1 是比x k 更接近于x* 的近似值,即f (x k )x k+1 ≈x k −f '(x k ) 这就是牛顿迭代公式,相应的迭代函数是f (x)ϕ(x) = x −f '(x)2.2 牛顿迭代法的应用1 1算是求cx− =1 0的解,解出计x,即得到。

取c c 有牛顿迭代公式精品文档cx k −11 x k+1 = x k −= c c 这样就失去了迭代的意义,达不到迭代的效果。

1f (x) = cx−1,f '(x)= c,故重新构造方程:cx2 −x = 0 ,也是该式的解。

故取f (x) = cx2 −x ,cf '(x) = 2cx −1,则有牛顿迭代公式x k+1 = x k −cx k2 −x k = cx k2 , k = 0,1,...2cx k −1 2c k −11 1的值在~ 之间,取初值x0 = 0.1。

20 103.流程图0 ,,N x ε读入 1 k⇒ ( ) 0?0x f ′ = 1x 输出 01 1 k kx x ⇒ + ⇒ ( ) ( )0 10 0f x x x f x ⇒ − ′ 1 0 ?x x ε − < ≠=<=≥≠4.输出结果5.结果分析当k= 3时,得 5 位有效数字 0.05 564。

数值计算方法

数值计算方法

数值计算方法的特点1.面向计算机,要根据计算特点提供实际可行的有效算法,即算法只能包括加、减、乘、除运算和逻辑运算,是计算机能直接处理的。

2.有可能的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性,还要对误差进行分析,这些都建立在相应数学理论基础上。

3.要有好的计算复杂性,时间复杂性好是指节省时间,空间复杂性好是指节省存储量,这也是建立算法要研究的问题,它关系到算法能否在计算机上实现。

4.要有数值实验,即任何一个算法除了从理论上要满足上述三点外,还要通过数值试验证明是行之有效的。

误差来源模型误差;观测误差;截断误差;舍入误差。

设计算法的注意事项1.要注意简化计算步骤,减少运算次数。

2.要避免两相近数相减。

3.要注意浮点数运算的特点,防止大数“吃掉”小数。

4.要避免除数绝对值远远小于被除数绝对值的除法。

5.要设法控制误差的传播,选取数值稳定的计算公式。

二分法局限性是只能用于求实根,不能用于求复根及偶数重根。

牛顿法X n+1=x n-[f(x1)]/[f’(x1)],n=1,2,3……例:用牛顿法求方程f(x)=x3+4x2-10=0在[1,2]内一个实根,取初始近似值x0=1.5解:f’(x)=3x2+8x所以迭代公式为X n+1=x n-(x n3+4x n2-10)/(3x n2+8x n),n=0,1,2……拉格朗日插值多项式l0(x)=(x-x1)/(x0-x1),l1(x)=(x-x0)/(x1-x0)L1(x)=y0l0(x)+y1l1(x)例:已知y=,x0=4,x1=9,用线性插值求的近似值。

解:y0=2,y1=3,基函数分别为l0(x)=(x-9)/(4-9)=…….L1(x)=(x-4)/(9-4)=……..L1(x)= y0l0(x)+y1l1(x)=……所以L1(x)=……多项式拟合解题步骤:1.由已知数据画出函数粗略的图形—散点图,确定拟合多项式的次数n。

数值计算方法(李庆扬等)

数值计算方法(李庆扬等)

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与意义介绍数值计算的概念解释数值计算在科学研究与工程应用中的重要性1.2 数值计算方法分类介绍数值逼近、数值积分、数值微分、数值解方程等基本方法分析各种方法的适用范围和特点1.3 误差与稳定性解释误差的概念及来源讨论数值计算中误差的控制与减小方法介绍稳定性的概念及判断方法第二章:插值与逼近2.1 插值法的基本概念介绍插值的概念及意义解释插值函数的性质和条件2.2 常用的插值方法介绍线性插值、二次插值、三次插值等方法分析各种插值方法的优缺点及适用范围2.3 逼近方法介绍切比雪夫逼近、傅里叶逼近等方法解释逼近的基本原理及应用场景第三章:数值积分与数值微分3.1 数值积分的基本概念介绍数值积分的概念及意义解释数值积分的原理和方法3.2 常用的数值积分方法介绍梯形公式、辛普森公式、柯特斯公式等方法分析各种数值积分方法的适用范围和精度3.3 数值微分的基本概念与方法介绍数值微分的概念及意义解释数值微分的原理和方法第四章:线性方程组的数值解法4.1 线性方程组数值解法的基本概念介绍线性方程组数值解法的概念及意义解释线性方程组数值解法的原理和方法4.2 常用的线性方程组数值解法介绍高斯消元法、LU分解法、迭代法等方法分析各种线性方程组数值解法的优缺点及适用范围4.3 稀疏矩阵技术解释稀疏矩阵的概念及意义介绍稀疏矩阵的存储和运算方法第五章:非线性方程和方程组的数值解法5.1 非线性方程数值解法的基本概念介绍非线性方程数值解法的概念及意义解释非线性方程数值解法的原理和方法5.2 常用的非线性方程数值解法介绍迭代法、牛顿法、弦截法等方法分析各种非线性方程数值解法的优缺点及适用范围5.3 非线性方程组数值解法介绍消元法、迭代法等方法讨论非线性方程组数值解法的特点和挑战第六章:常微分方程的数值解法6.1 常微分方程数值解法的基本概念介绍常微分方程数值解法的概念及意义解释常微分方程数值解法的原理和方法6.2 初值问题的数值解法介绍欧拉法、改进的欧拉法、龙格-库塔法等方法分析各种初值问题数值解法的适用范围和精度6.3 边界值问题的数值解法介绍有限差分法、有限元法、谱方法等方法讨论边界值问题数值解法的特点和挑战第七章:偏微分方程的数值解法7.1 偏微分方程数值解法的基本概念介绍偏微分方程数值解法的概念及意义解释偏微分方程数值解法的原理和方法7.2 偏微分方程的有限差分法介绍显式差分法、隐式差分法、交错差分法等方法分析各种有限差分法的适用范围和精度7.3 偏微分方程的有限元法介绍有限元法的原理和步骤讨论有限元法的适用范围和优势第八章:数值模拟与计算可视化8.1 数值模拟的基本概念介绍数值模拟的概念及意义解释数值模拟的原理和方法8.2 计算可视化技术介绍计算可视化的概念及意义解释计算可视化的原理和方法8.3 数值模拟与计算可视化的应用讨论数值模拟与计算可视化在科学研究与工程应用中的重要作用第九章:数值计算软件与应用9.1 数值计算软件的基本概念介绍数值计算软件的概念及意义解释数值计算软件的原理和方法9.2 常用的数值计算软件介绍MATLAB、Mathematica、Python等软件的特点和应用领域9.3 数值计算软件的应用案例分析数值计算软件在科学研究与工程应用中的典型应用案例第十章:数值计算方法的改进与新发展10.1 数值计算方法的改进讨论现有数值计算方法的局限性介绍改进数值计算方法的研究现状和发展趋势10.2 新的数值计算方法介绍近年来发展起来的新型数值计算方法分析新型数值计算方法的优势和应用前景10.3 数值计算方法的未来发展探讨数值计算方法在未来可能的发展方向和挑战重点和难点解析一、数值计算概述难点解析:对数值计算概念的理解,误差来源及控制方法的掌握。

第三章基本数值计算方法一

第三章基本数值计算方法一

1.0000 0 0 -1.6757 1.0676
U0
0 1.0000
0
-1.8378
-1.2162
,
0 0 1.0000 0.9820 0.3018
0
0
0
0
0
这个最简行阶梯形式说明原 来的方程组是欠定的。
欠定方程组解的特点
它等价于下列方程组:
x1
-1.6757 x4 = 1.0676
1
0
3
0
0
(柠檬酸)x1
1 1
,(小苏打)x2
8 6
(, 碳酸钠)x3
0 6
,
(水)x4
2 0
,
(二氧化碳)x5
0 1
,
3
8
7
1
2
• 按四种元素左右平衡列出四个方程,得:
1 0 3 0 0 0
1
1
x1
8
6
x2
0 6
x3
2 0
x4
0 1
x5
0 0
Ax
=
b
=
0
3
8
7
1
2
0
化学方程配平程序
X4 = 8.66
为什么要提出这种新的计算方法?
把上例中第四个方程改为:
4x1 + 2x2 + 7x3 -778/222 x4 877 / 222
,求其解。
解:输入新参数
A=[6,1,6,-6;1,-1,9,9;-2,4,0,4;4,2,7,-778/222];
b=[7;5;-7;877/222]; 键入U=rref([A,b]),得到
4x1 + 2x2 + 7x3 -5x4 9

数值计算方法第01章误差

数值计算方法第01章误差

1.2 绝对误差、相对误差和有效数字
绝对误差/* Absolute error */
定义1. 设x为准确值 , x*为x的一个近似值 , 称 e(x*) x* x
为近似值x*的绝对误差 ,简称误差 ,可简记为E.
因为准确值 x 往往是未知甚至是无法 知道的
因此 E(x* ) x* x 往往也无法求出
例:计算
In

1 e
1 xne xdx ,
0
n 0,1, 2, ......
公式一:In 1 n In1
I0

1 e
1 e xdx
0
1
1 e

0.63212056
记为
I
* 0
则初始误差 E0 I0 I0* 0.5108
注意此公式精确成 立
1
e
1 0
x1=0.0315 x2=0.3015 x3=31.50 x4=5000
1.2.2 有效数字
有效数字是近似值的一种表示法。它既能表示近似值的大小,又能表示其精确程度。
若x*作为x的近似值, 其绝对误差的绝对值不 超过某一位数字的半个单位, 而该位数字到 x*的第 一位非零数字共有n位, 则称用x*近似x时具有n位 有效数字, 简称x*有n位有效数字.
1.3数值计算中误差的传播
1.3.1 基本运算中的误差估计 在数值运算中,参加运算的数若有误差,那
么一定会影响到计算结果的准确性.
例、设y=xn,求y的相对误差与x的相对误差之间的关 系。
1.3.2 算法的数值稳定性
计算一个数学问题,需要预先设计好由已知 数据计算问题结果的运算顺序,这就是算法。
且 x* x x* 准确值 x 的范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值计算方法》
实习报告
题目:
院系:
专业年级:
学生姓名:学号:
年月日
报告规范
一、报告格式基本要求
格式基本要求:
(1) 纸型:A4纸,单面打印;
(2) 页边距:上2.5cm,下2.5cm,左3cm、右2.5cm,左侧装订;
(3) 字体:正文全部宋体、小四;
(4) 行距:多倍行距:1.25,段前、段后均为0,取消网格对齐选项。

二、论文页脚的编排
一律用阿拉伯数字连续编页码。

页码应由正文首页开始,作为第1页。

页码必须标注在每页页脚底部居中位置,宋体,小五。

三、正文格式
正文手动设置成每段落首行缩进2字,字体:宋体,字号:小四,行距:多倍行距1.25,间距:前段、后段均为0行,取消网格对齐选项。

四、标题格式
正文各级标题编号的示例如下所示:
1.第一级标题选用中文的数字编号,如一、二、三……..,设置成字体:黑体,居左,字号:小三,1.5倍行距,段后11磅,段前为0。

2.第二级标题选用1、2、3……..作为编号,设置成字体:黑体,居左,字号:四号,1.5倍行距,段后为0,段前0.5行。

3.第三级标题选用(1)、(2)……..作为编号,设置成字体:黑体,居左,字号:小四,1.5倍行距,段后为0,段前0.5行。

4.第四级标题选用①、②…….. 作为编号,设置成字体:黑体,居左,字号:小四,1.5倍行距,段后为0,段前0.5行。

五、图的格式
1.图的绘制方法
(1)插图、照片应尽量通过扫描粘贴进本文。

(2)简单文字图可用WORD直接绘制。

2.图的位置
(1)图居中排列。

(2)图与上文应留一行空格。

(3)图中若有附注,一律用阿拉伯数字和右半圆括号按顺序编排,如注1),附注写在图的下方。

3.图的版式
(1)“设置图片格式”的“版式”为“上下型”或“嵌入型”,不得“浮于文字之上”。

(2)图的大小尽量以一页的页面为限,不要超限,一旦超限要加续图。

4.图名的写法
(1)图名居中并位于图下,编号以全文连续编号,如图1、图2。

(2)图名与下文留一空行。

(3)图及其名称要放在同一页中,不能跨接两页。

(4)图内文字清晰、美观。

(5)中文图名设置为宋体,五号,居中。

六、表格的格式
1.表的绘制方法
表要用WORD绘制,不要粘贴。

(1)表的位置
(2)表格居中排列。

(3)表格与下文应留一行空格。

(4)表中若有附注,一律用阿拉伯数字和右半圆括号按顺序编排,如注1),附注写在表的下方。

2.表的版式
表的大小尽量以一页的页面为限,不要超限,一旦超限要加续表。

3.表名的写法
(1)表名应当在表的上方并且居中。

如表1、表2。

(2)表名与上文留一空行。

(3)表及其名称要放在同一页中,不能跨接两页。

(4)表内文字全文统一,设置为宋体,五号。

(5)中文表名设置为宋体,五号,且居中。

七、参考文献的格式说明
1.参考文献在正文中引用的示例
关于主题法的起源众说不一。

国内有人认为“主题法检索体系的形式和发展开始于1856年英国克雷斯塔多罗(Crestadoro)的《图书馆编制目录技术》一书”,“国外最早采用主题法来组织目录索引的是杜威十进分类法的相关主题索引……”[1]。

也有人认出为“美国的贝加逊·富兰克林出借图书馆第一个使用了主题法”[2-4]。

2.参考文献在正文中引用的书写格式
引用的文献在正文中用方括号和阿拉伯数字按顺序以右上角标形式标注在引用处。

3.参考文献的书写格式
(1) 参考文献按照在正文中引用的顺序进行编码。

(2) 作者一律姓前名后(外文作者名应缩写),作者间用“,”间隔。

作者少于3
人应全部写出,3人以上只列出前3人,后加“等”或“et al”。

(3) 标题“参考文献”选用模板中的样式所定义的“标题1”,再居中;或者
手动设置成字体:黑体,居中,字号:小三,1.5倍行距,段后11磅,段前为0。

(4) 参考文献正文设置成字体:宋体,居左,字号:五号,多倍行距1.25行,
段后、段前均为0。

(5) 按照引用的文献类型不同使用不同的表示方法。

①学术著作(注意应标明出版地及所参阅内容在原文献中的位置),表示方法为:
[序号] 作者.专著名. 版次(首版免注).翻译者.出版地:出版社,出版年.
起页-止页.
②学术期刊中析出的文献(注明应标明年、卷、期,尤其注意区分卷和期) ,
表示方法为:
[序号] 作者.题(篇)名.刊名,出版年,卷号(期号): 起页-止页.
③会议论文,表示方法为:
[序号] 作者.篇名.会议名,会址,开会年: 起页-止页.
④有ISBN号的论文集中析出的文献,表示方法为:
[序号] 作者.题名.见:(In:)主编.(,eds.) 论文集名.出版地:出版社,出版年.起页-止页.
⑤学位论文,表示方法为:
[序号] 作者.题(篇)名:[博(硕)士学位论文].授学位地:授学位单位,授学位年.
⑥专利文献,表示方法为:
[序号] 专利申请者.专利题名.专利国别,专利文献种类,专利号.出版日期.
⑦技术标准,表示方法为:
[序号] 起草责任者.标准代号.标准顺序号—发布年.标准名称.出版地:出版社,出版年.
⑧报纸文献,表示方法为:
[序号] 作者. 文献题名. 报纸名, 出版日期(版面次序).
⑨电子文献,表示方法为:
[序号] 作者. 文献题名.电子文献类型标示/载体类型标示.文献网址或出处,更新/引用日期.
4.参考文献的书写格式举例
参考文献
标题“参考文献”不可省略,选用模板中的样式所定义的“标题1”,然后居中,或者手动设置成字体:黑体,居中,字号:小三,1.5倍行距,段后11磅,段前为0。

参考文献内容设置成字体:宋体,居中,字号:五号,多倍行距 1.25,段前、段后均为0,取消网格对齐选项。

参考文献的著录,按论文中引用顺序排列。

示例如下:
[1] 薛华成.管理信息系统[M].北京:清华大学出版社,1993.
[2] 徐滨士,欧忠文,马世宁等.纳米表面工程[J].中国机械工程,2000,11(6):707-712.
[3] 惠梦君,吴德海,柳葆凯等.奥氏体—贝氏体球铁的发展.全国铸造学会奥氏体—贝氏体球铁专业学术会议[C],武汉,1986.
[4] 姜锡洲.一种温热外敷药制备方法[P].中国专利,881056073.1989-07-26.
八、报告封面
报告的封面按照提供样张。

归档文件目录
1.程序设计实习课程小结
2.程序设计实习进度表
3.程序设计实习任务书
4.程序设计实习报告规范
5.程序设计实习实践教学自查表
6.上海电力学院非笔试课程考核方案申请表7.上海电力学院成绩登记表
8.上海电力学院考试及成绩分析表。

相关文档
最新文档