滞后校正滞后

合集下载

滞后校正、滞后超前校正以及PID简介

滞后校正、滞后超前校正以及PID简介
校正前系统开环滞后l校正后系统开环校滞后校正装置正20所引40相起角的裕系60度统b明o显de增图90大的180变化?通常使滞后装置的交接频率1远小于已校正bt系统开环截止频率?c1?cbt510?滞后校正装置在?处所提供的相角为c???arctg01b?1约5?12?cc例
第六章 第三讲
6.3.3串联滞后校正的综合
Ti
20
0
-90。
11 Td Td
20

如果将滞后校正装置的零极点zi和pi设置为一对靠近 坐标原点的偶极子,即: Ti 1,β 1,α 1,Ti Td。
滞后超前网络的传递函数可改写为
Gc(s)≈βTTiiss 1( αTds 1)
(βαTd Ti
)
1 Tis
计算此时的幅穿频率:
20lgK 20(lg5 lg1) 40(lg10 lg5) 60(lgωco lg10)
解上式可得:ωco 3 50K 11.45 rad / s
校正前的相角裕度γ(o ωco):(o co) 25.28。
-20
ωco
-40
-60
5
1012
11.45
-20
-90 -180
校正前系统开环 校正后系统开环 滞后校正装置
-40
ω
-60
ω
在原系统的开环频率特性上寻找满足暂态指标 要求且具有下列相角裕度的频率点ωc。
γγ(o ωc) (i ωc)
γγ(o ωc) (i ωc)
γ(o ωc):校正前系统在ωc处所对应的相角裕量;
γ:指标所要求的相角裕度; (i ωc):滞后校正在ωc处造成的相角滞后量。
0.024
0.27
2.7 5

滞后-超前校正

滞后-超前校正

这一最大值发生在对数频率特性曲线的几何中心处, 对应的角频率为
m
1
T a
12
例6-1
图6-6
13
• 单位负反馈系统原来的开环渐近幅频特 性曲线和相频特性曲线如图6-6所示, 它可以看作是根据给定稳定精度的要求, 而选取的放大系数K所绘制的。
从以上的例子可以看出超前校正, 可以用在既要提高快速性,又要改善振 荡性的情况。
1 bTs 滞后校正传递函数为 G ( s ) (b 1) c 1 Ts (6-5)
17
例6-2
• 单位负反馈系统原有的开环Bode图如图6-9 中曲线所示。 • 曲线 L 1 可以看作是根据稳态精度的要求所 确定的开环放大系数而绘制。
系统动态响应的平稳性很差或不稳定, 对照相频曲线可知,系统接近于临界情 况。

18
图6-9 例6-2对应的波特图
19
注意:
由于校正环节的相位滞后主要发生在低频段,故 对中频段的相频特性曲线几乎无影响。
因此校正的作用是利用了网络的高频衰减 特性,减小系统的截止频率,从而使稳定裕度 增大,保证了稳定性和振荡性的改善。 因此可以认为,滞后校正是以牺牲快速性 来换取稳定性和改善振荡性的。
振荡度:
衰减度:η
图6-1 闭环极点的限制区域
7
二、几种校正方式
图6-2
8
三、校正设计的方法
1.频率法 2.根轨迹法 3.等效结构与等效传递函数法
由于前几章中已经比较详细地研究了单位负 反馈系统和典型一、二阶系统的性能指标,这 种方法充分运用这些结果,将给定结构等效为 已知的典型结构进行对比分析,这样往往使问 题变得简单。
21
图6-10 例6-3对应的波特图

滞后校正

滞后校正

此校正网络的对数频率特性:
2
特点:
1. 幅频特性小于或等于0dB。是一个低通滤波器。
2. ()小于等于零。可看作是一阶微分环节与惯性环
节的串联,但惯性环节时间常数T大于一阶微分环节时间 常数T(分母的时间常数大于分子的时间常数),即积分效 应大于微分效应,相角表现为一种迟后效应。
3. 最大负相移发生在转折 L ( )
(1) 根据稳态误差要求确定开环增益K。绘制未校正 系统的伯德图,并求出其相位裕量和增益裕量。
确定K值。因为
Kv
lim
s0
sG
0
(s)
lim
s0
sk s(s 1)(0.5s1)
K
所以
Kv=K=5
作出原系统的伯德图,见图6-13。求得原系统的相位裕
量: 0 = - 200,系统不稳定。
4
.
L( ) d B
校正后系统的开环传递函数
5(10s1) G(s) G 0 (s) G c (s) s(100s1)(s1)(0.5s1)
(6) 检验。
作出校正后系统的伯德图,求得=400,KV=5。所 以,系统满足要求。
9
由上分析可知:在迟后校正中,我们利用的是迟 后校正网络在高频段的衰减特性,而不是其相位的 迟后特性。对系统迟后校正后: ① 改善了系统的稳态性能。
不变。
(1)在相对稳定性不变的情况下,系统的稳
态精度提高了。
(2)系统的增益剪切频率ωc 下降,闭环带 宽减小。
(3)对于给定的开环放大系数,由于ωc 附 近幅值衰减,使γ、Kg 及谐振峰值 Mr 均 得到改善。
缺 (1)频带加宽,对高频抗干扰能力下降。

(2)用无源网络时,为了补偿校正装置的幅 值衰减,需附加一个放大器。

滞后-超前校正

滞后-超前校正
21
图6-10 例6-3对应的波特图
22
通常式(6-5)的传递函数可以通过图6-11所示 的无源网络来实现。
U c ( s) R2Cs 1 Gc (s) U r (s) ( R1 R2 )Cs 1
23
三、滞后-超前校正
• 为了全面提高系统的动态品质,使稳态精 度、快速性和振荡性均有所改善,可同时 采用滞后与超前的校正,并配合增益的合 理调整。 • 鉴于超前校正的转折频率应选在系统中频 段,而滞后校正的转折频率应选在系统的 低频段,因此可知滞后—超前串联校正的 传递函数的一般形式应为
4.熟练掌握串联校正(串联超前、串联滞后)的频率域设 计步骤和方法。了解串联校正的根轨迹设计步骤和 方法。
3
返回子目录
5.正确理解反馈校正的特点和作用。能通过传递函数 分解为典型环节的方法,比较说明加入反馈局部 校正的作用。 6.正确理解对控制作用和对干扰作用的两种附加前置 校正的特点、使用条件及其作用,会使用等效系 统开环频率特性分析或用闭环零、极点比较分析 来说明前置校正的作用。 7.了解其他一些改善系统性能的手段与方法。
第六章
控制系统的校正
1
主要内容
6-1 系统校正设计基础 6-2 串联校正 6-3 串联校正的理论设计方法
6-4 反馈校正
6-5 复合校正
返回主目录
2
基本要求
1.正确理解串联超前、串联滞后、串联滞后-超前三种校 正的特性及对系统的影响。 2.掌握基本的校正网络及运算电路。
3.熟练掌握运用(低、中、高)三频段概念对系统校正前、 后性能进行定性分析、比较的方法。
Ta R1C1
(6-10)
Tb R2C2
Tb Ta
a 1

滞后-超前校正

滞后-超前校正
System: untitled1 Frequency (rad/sec): 1.43 Magnitude (dB): -13
Magnitude (dB)
-150
Phase (deg)
-200 90
45
System: untitled1
0
Frequency (rad/sec): 0.0414
Phase (deg): -51.5 -45
Phase (deg): -135
-225
-270
-4
-3
-2
-1
0
1
2
3
10
10
10
10
10
10
10
10
Frequency (rad/sec)
8
Magnitude (dB)
校正后的伯德图
Bode Diagram 150
100
50
System: untitled1 Frequency (rad/sec): 1.04 Magnitude (dB): 0.523 0
1
7.4.1 滞后—超前校正网络
Gc (s)
M (s) E(s)
R2
1 sC2
R1
1 sC1
R1
1 sC1
R2
1 sC2
(R1
1 sC1
)(R2
1 sC2
)
R1 sC1
Байду номын сангаас
(R1
1 sC1
)(R2
1 sC2
)
(1 R1C2s
R1C1s)(1 R2C2s) (1 R1C1s)(1 R2C2s)
1
(R1C1
-225

串联超前校正和滞后校正的不同之处

串联超前校正和滞后校正的不同之处

串联超前校正和滞后校正的不同之处在控制系统中,超前校正和滞后校正是两种常见的校正方法。

它们都是为了提高系统的稳定性和性能而采取的措施。

然而,它们的实现方式和效果却有很大的不同。

本文将从理论和实践两个方面,分别探讨串联超前校正和滞后校正的不同之处。

一、理论分析1. 超前校正超前校正是指在控制系统中,通过提前控制信号的相位,使得系统的相位裕度增加,从而提高系统的稳定性和响应速度。

具体来说,超前校正是通过在控制信号中加入一个比例项和一个积分项,来提高系统的相位裕度。

这样,系统就能更快地响应外部干扰和变化,从而提高系统的性能。

2. 滞后校正滞后校正是指在控制系统中,通过延迟控制信号的相位,使得系统的相位裕度减小,从而提高系统的稳定性和抗干扰能力。

具体来说,滞后校正是通过在控制信号中加入一个比例项和一个微分项,来减小系统的相位裕度。

这样,系统就能更好地抵抗外部干扰和变化,从而提高系统的性能。

二、实践应用1. 超前校正超前校正在实践中的应用非常广泛。

例如,在电力系统中,超前校正可以用来提高电力系统的稳定性和响应速度。

在机械控制系统中,超前校正可以用来提高机械系统的精度和响应速度。

在化工生产中,超前校正可以用来提高化工生产的稳定性和生产效率。

2. 滞后校正滞后校正在实践中的应用也非常广泛。

例如,在飞行控制系统中,滞后校正可以用来提高飞行器的稳定性和抗干扰能力。

在汽车控制系统中,滞后校正可以用来提高汽车的稳定性和安全性。

在医疗设备中,滞后校正可以用来提高医疗设备的精度和稳定性。

总之,串联超前校正和滞后校正是两种常见的校正方法,它们都是为了提高系统的稳定性和性能而采取的措施。

然而,它们的实现方式和效果却有很大的不同。

在实践中,我们需要根据具体的应用场景和需求,选择合适的校正方法,以达到最佳的控制效果。

温度控制系统滞后校正环节设计

温度控制系统滞后校正环节设计

温度控制系统滞后校正环节设计一、引言在工业生产过程中,温度控制是一个非常重要的环节。

为了保持生产过程的稳定性和质量,需要对温度进行精确的控制。

然而,由于温度传感器存在滞后问题,控制系统输出的温度信号将滞后于实际测量值。

为了解决这个问题,需要设计一个滞后校正环节,用于补偿温度的滞后。

二、滞后校正原理温度传感器的滞后现象主要是由于传感器自身的响应速度和传输延迟引起的。

传感器的响应速度是指传感器从接收输入信号到产生输出信号的过程中所需要的时间。

传输延迟是指信号从传感器到控制系统的传输时间。

滞后校正的原理是在温度控制系统的反馈回路中增加一个补偿环节,通过对输出信号进行滞后处理,实现对温度的滞后校正。

具体的滞后校正算法可以根据传感器的响应速度和传输延迟来确定。

1.滞后校正器的位置:滞后校正器应该放置在温度控制系统的反馈回路中,通常放在控制器的输出端。

2.滞后校正算法:滞后校正算法的设计需要考虑传感器的响应速度和传输延迟。

一种常用的滞后校正算法是通过对输出信号进行延迟处理,使得输出信号与实际温度值保持一致。

具体的算法可以根据实际需求来确定。

3.滞后校正器的参数调试:一旦滞后校正器的算法确定,就需要通过实验来调试滞后校正器的参数。

参数调试包括滞后时间和补偿幅度的确定。

滞后时间是指滞后校正器对输出信号的延迟时间,补偿幅度是指滞后校正器对输出信号的增益。

通过不断调试参数,使得滞后校正器对温度的滞后校正达到最佳效果。

4.稳定性分析:在设计滞后校正环节时,还需要进行稳定性分析。

稳定性分析是指分析滞后校正环节对温度控制系统稳定性的影响。

通过稳定性分析,可以确定滞后校正环节的参数范围,以保证温度控制系统的稳定性。

四、实验验证设计完成滞后校正环节后,还需要进行实验验证。

实验验证可以通过对比滞后校正前后的温度数据来评估滞后校正环节的性能。

实验结果应该接近滞后校正前的实际温度值,以验证滞后校正环节的效果。

五、总结滞后校正环节的设计是温度控制系统中非常重要的一个环节。

相位滞后校正

相位滞后校正

(3)根据题目给出的 40的要求,并取 6 ,则
(c ) 46
由校正前系统的相频特性曲线知,在 2.7rad/s附近 时, 0 ( ) 134 ,即相角裕度 46,故选 c 2.7rad/s。 (4)求滞后网络的 值。未校正系统在 c 2.7rad/s处的对数 幅频值 L0 (c ) 21dB,则
ui (t )
uo (t )
C

R1 R2 ( 1) ,则有 设 T R2C 及 R2
Ts 1 Gc ( s) Ts 1
滞后网络的频率特性为
j T 1 1 2T 2 Gc ( j ) (arctanT arctan T ) 2 2 2 j T 1 1 T
21 20 lg 0 11
(5)求校正网络的传递函数
1 1 2 2.7 0.27 rad/s T 10
T 3.7s
T 41.7s
1 (1 0.024 rad/s) T
滞后校正装置的传递函数为
Ts 1 3.7 s 1 Gc ( s) Ts 1 41.7 s 1
例:已知一单位反馈最小相位控制系统,其固定不变部分传递 函数 G0 ( s)和串联校正装置 Gc (s) 如图所示。要求: (1)写出校正前后各系统的开环传递函数; (2)分析 Gc (s)各对系统的作用,并比较其优缺点。
20 G0 ( s) s(0.1s 1) 2s 1 Gc ( s) 10 s 1
(4)求滞后网络的 值。找到原系统在 c 处的对数幅频 值 L0 (c ) ,并由下式求出网络的 值。
L(c ) 20 lg 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

校正的实质表现为修改描述系统运动规律的数学 模型。
设计方法:时域法、频率法。
3
§6-1
系统校正的设计基础
一、系统的性能指标
1. 时域性能指标
(1) 稳态指标: 静态位置误差系数Kp 静态速度误差系数Kv (2) 动态指标: 上升时间tr 峰值时间tp
静态加速度误差系数Ka
稳态误差ess
调整时间ts
最大超调量σ% 振荡次数N
4
2. 频域性能指标
(1) 开环频域指标 开环截止频率ω c (rad/s) ; 相角裕量γ(°) ; 幅值裕量h 。 (2) 闭环频域指标 谐振频率ω r ; 谐振峰值 Mr ; 带宽频率ωb与闭环带宽0~ωb : 一般规定 L(ω) 由 20lgA(0) 下降到- 3dB 时的频率,亦 即 A(ω) 由 A(0) 下降到 0.707A(0) 时的频率叫作系统的带宽
8
高频段
L(ω)在中频段以后的频段。
高频段的形状主要影响时域响应的起始段。 在分析时,将高频段做近似处理,即把多个小惯性环 节等效为一个小惯性环节去代替,等效小惯性环节的时间 常数等于被代替的多个小惯性环节的时间常数之和。 高频段的幅值,直接反映系统对高频干扰信号的抑制能 力。高频部分的幅值愈低,系统的抗干扰能力愈强。
16
ωm: 是 ω1 = 1/aT 和 ω2 = 1/T 的几何中
心,也是最大超前角发生处。
ωm
1和 2的几何中心为:
1 1 1 1 (lg lg ) lg 2 aT T T a
lg m
ωm
1 d c ( ) 令 0 m T a d
最大超前相角: 发生在 m m
9

总结 为了使系统满足一定的稳态和动态要求,对开环对数幅
频特性的形状有如下要求: 1)低频段要有一定的高度和斜率; 2)中频段的斜率最好为–20dB/dec,且有足够的宽度;
3 )高频段采用迅速衰减的特性,抑制不必要的高频干
扰。
10
三联在系统的前向通道中,一般接在测量点之 后放大器之前,如图a所示。
Gc(s):校正装置。可以设计成超前、滞后、滞后-超前的形式。 可以用无源校正装置或有源校正装置。
11
2.反馈校正(又称“并联校正”)
校正装置串联在系统的前向通道与某个环节组成的局 部反馈回路之中,如图b所示。 可以削弱系统非线性特性的影响,提高响应速度,降 低对参数变化的敏感性及抑制噪声的影响。
2
e j ( arc tan aT arctanT )
( ) 20 lg ( aT )2 1 20 lg (T )2 1 Lc
(a 1)T > 0 c ( ) arctan aT arctan T arctan 1 a(T )2
相频曲线具有正相角,即网络在正弦信号作用 下的稳态输出在相位上超前于输入,故称为超前校 正网络。
3. 前馈校正
前馈校正又称为顺馈校正,是在系统反馈回路之外 采用的校正方式之一,包括对输入信号进行补偿(如图 c 所示)和对干扰信号进行补偿两种形式。
12
4. 复合校正
在反馈控制回路中加入前馈校正通路,分为按输入补
偿和按干扰补偿两种形式。
13
§6-2
一、超前校正装置
校正装置及其特性 ★
1、超前校正装置传递函数
U0 ( s) R2 Gc ( s ) U i ( s ) R1 R2 1 R1Cs R2 R1 1 Cs R1 R2
1 1 aTs a 1 Ts
R1 R2 R1 R2 其中:a (a 1), T C R2 R1 R2
14
超前校正网络串入一个放大倍数Kc=a的放大器后,传 递函数变为:
20lg a
20lga 10lga
1 Lc (2 ) 20lg Gc ( j ) T
7
中频段
L(ω)在开环截止频率ωc(0分贝附近)的区段。
频率特性反映闭环系统动态响应的平稳性和快速性。
时域响应的动态特性主要取决于中频段的形状。
反映中频段形状的三个参数为:开环截止频率 ωc、中
频段的斜率、中频段的宽度。 为了使系统稳定,且有足够的稳定裕度,一般希望: 中频段开环对数幅频特性斜率为-20dB/dec的线段, ωc 较大,且有足够的宽度;
频率。频率由0~ωb的范围称为系统的闭环带宽。
5
二、频率法校正
6
低频段
L(ω)在第一个转折频率以前的频段。
频率特性完全由积分环节和开环放大倍数决定。
低频段对数幅频特性: Ld ( ) 20lg K 20 lg 低频段的斜率愈小,位置愈高,对应系统积分环节的 数目ν愈多、开环放大倍数K愈大。则在闭环系统稳定的条 件下,其稳态误差愈小,动态响应的跟踪精度愈高。
s 1 aT 1 aTs a , (a 1) Gc ( s ) aGc ( s ) s1 T 1 Ts
'
2、超前校正的零、极点分布
zc
1 aT
1 pc = T
15
3、超前校正装置的频率特性
1 jaT Gc ( j ) 1 jT
1 (aT )2 1 (T )
1 T a
处,将ωm带入 c '( ) 。
a 1 a 1 sin m m arctan arcsin 1 sin m a 1 2 a 60 j m µ a, 实际选用的a≤20,单级超前网络最大正相角 m 17 a 1
对数幅频特性
Lc′ (ωm )
第六章 线性系统的校正方法
6-1 6-2
系统校正的设计基础 常用的校正装置及其特性
1
原理方框图
n 扰动 r 给定值 e 偏差 执行机构 测量信号 测量装置 被控对象 c 被控量
2
为改善系统的动态性能和稳态性能,常在系统中 附加一些其参数可以根据需要而改变的机构或装置 , 使系统整个特性发生变化,从而满足给定的各项性能 指标,这就是系统校正。 按校正装置在系统中的连接方式不同,系统校正 分为串联校正、反馈校正、前馈校正和复合校正。 根据校正装置的特性,可分为超前校正、滞后校 正、滞后-超前校正。
相关文档
最新文档