全等三角形判定条件一
三角形全等的判定1_模板

三角形全等的判定1_模板课题:全等三角形的判定(一)教学目标:1、知识目标:(1)熟记边角边公理的内容;(2)能应用边角边公理证明两个三角形全等.2、能力目标:(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;(2) 通过观察几何图形,培养学生的识图能力.3、情感目标:(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用公理证明两个三角形全等.教学难点:在较复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、微机教学方法:自学辅导式教学过程:1、公理的发现(1)画图:(投影显示)教师点拨,学生边学边画图.(2)实验让学生把所画的剪下,放在原三角形上,发现什么情况?(两个三角形重合)这里一定要让学生动手操作.(3)公理启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)作用:是证明两个三角形全等的依据之一.应用格式:强调:1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论.2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看.3、平面几何中常要证明角相等和线段相等,其证明常用方法:证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地.证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质.2、公理的应用(1)讲解例1.学生分析完成,教师注重完成后的总结.分析:(设问程序)“SAS”的三个条件是什么?已知条件给出了几个?由图形可以得到几个条件?解:(略)(2)讲解例2投影例2:例2如图2,AE=CF,AD∥BC,AD=CB,求证:学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书.教师强调证明格式:用大括号写出公理的三个条件,最后写出结论.(3)讲解例3(投影)证明:(略)学生分析思路,写出证明过程.(投影展示学生的作业,教师点评)(4)讲解例4(投影)证明:(略)学生口述过程.投影展示证明过程.教师强调证明线段相等的几种常见方法.(5)讲解例5(投影)证明:(略)学生思考、分析、讨论,教师巡视,适当参与讨论.师生共同讨论后,让学生口述证明思路.教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明. 3、课堂小结:(1)判定三角形全等的方法:SAS(2)公理应用的书写格式(3)证明线段、角相等常见的方法有哪些?让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构.6、布置作业a书面作业P56#6、7b上交作业P57B组1思考题:板书设计:探究活动如图,A、B两地隔山相望,要测它们之间的距离,可先在平地上取一个可直接到达A 和B的点C,连结AC并延长到D,使CD=CA;连结BC并延长到E,使CE=CB,最后再连结DE,这时量得DE长就是A、B的距离,说明为什么.提示: 利用三角形全等的判定(一)来说明.石佛镇素质教育研讨会教研课教案设计教者:龙秀明教学课题:合比性质和等比性质教学目标:1、掌握合比性质的等比性质,并会用它们进行简单的比例变形2、会将合比性质、等比性质用于比例线段。
(完整版)全等三角形证明方法(最新整理)

全等三角形的证明方法一、三角形全等的判定:(1)三组对应边分别相等的两个三角形全等(SSS);(2)有两边及其夹角对应相等的两个三角形全等(SAS) ;(3)有两角及其夹边对应相等的两个三角形全等(ASA) ;(4)有两角及一角的对边对应相等的两个三角形全等(AAS) ;(5)直角三角形全等的判定:斜边及一直角边对应相等的两个直角三角形全等(HL).二、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形的对应边上的高对应相等;(4)全等三角形的对应角的角平分线相等;(5)全等三角形的对应边上的中线相等;三、找全等三角形的方法:(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。
三角形全等的证明中包含两个要素:边和角。
①积极发现隐含条件:公共角对顶角公共边②观察发现等角等边:等边对等角同角的余角相等同角的补角相等等角对等边等角的余角相等等角的补角相等③推理发现等边等角:图1:平行转化图2 :等角转化图3:中点转化图4 :等量和转化图5:等量差转化图6:角平分线性质转化图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化图11:等段转化四、构造辅助线的常用方法:1、关于角平分线的辅助线:当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。
角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。
关于角平分线常用的辅助线方法:(1)截取构造全等:如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。
三角形全等的判定1[精选文档]
![三角形全等的判定1[精选文档]](https://img.taocdn.com/s3/m/762f4e5b6d85ec3a87c24028915f804d2b168724.png)
D
C
AD =AD ,
∴ △ABD ≌ △ACD ( SSS ).
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (1)以点O 为圆心,任意长为半径画弧,分别交OA,
OB 于点C、D; B
D
O
C
A
应用所学,例题解析
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法: (2)画一条射线O′A′,以点O′为圆心,OC 长为半
• 学习重点: 构建三角形全等条件的探索思路,“边边边”判定 方法.
创设情境,导入新知
已知△ABC ≌△ A′B′ C′,找出其中相等的边与
角:
A
A′
B
AB =A′B′ ∠A =∠A′
C B′
BC =B′C′ ∠B =∠B′
C′
AC =A′C′ ∠C =∠C′
思考 满足这六个条件可以保证△ABC≌△A′B′C′ 吗?
先任意画出一个△ABC,再画出一个△A′B′C′, 使A′B′= AB,B′C′= BC,A′C′= AC.把画好的 △A′B′C′剪下,放到△ABC 上,它们全等吗?
画法: (1)画线段B′C′=BC ;
(2)分别以B′、C′为圆心,BA、BC 为半径画弧,两
弧交于点A′;
(3)连接线段A′B′,A′C′.
径画弧,交O′A′于点C′; B
D
O
C
A O′
C′
A′
应用所学,例题解析Байду номын сангаас
用尺规作一个角等于已知角. 已知:∠AOB.求作: ∠A′O′B′=∠AOB. 作法:
(3)以点C′为圆心,CD 长为半径画弧,与第2 步中 所画的弧交于点D′;
三角形全等的判定

三角形全等的判定三角形全等的判定类型之一:已知:如图,点B、E、C、F在同一直线上,AB=DE、AC=DF、BE=CF。
求证:△ABC≌△DEF。
类型之二:已知:如图,∠1=∠2,∠ABC=∠DCB。
求证:AB=DC。
ABC证明:类型之三:已知:在△ABC中,AD为BC边上的中线,CE⊥AD,BF⊥AD。
求证:CE=BF类型之四:综合已知:如图,AB=DE,BC=EF,CD=FA,∠A= ∠D。
求证:∠B= ∠E。
证明:1. 已知:如图,AB=DC,AE=DF,CE=FB,求证:AF=DE。
证明:2. 已知:如图,△ABC中,D是BC的中点,∠1=∠2,求证:AB=AC。
AECDB1.如图两根长度相同的绳子,一端系在旗杆上,另一端分别固定在地面的木桩上,两个木桩离旗杆底部的距离相等吗?说明你的理由.审好题目相当于做对这道题的一半!所以,实际应用的题目一定要仔细审清题目,找出各个量之间的关系.本题关键是要将实际生活的语言说明转化为数学上的各个量的关系.“由长度相同的绳子”可知AB=AC,而要求的是木桩B、C与O之间的距离关系,即求证BO=CO.有了明确的已知、求证,剩下的就是纯粹的全等证明了.相等.证明:∵由题意AO⊥BC ∴∠AOB=∠AOC=90°∴Rt△AOB≌Rt△AOC(HL)∴BO=CO2.已知:如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC。
本题考察“HL”公理的应用。
要证BE⊥AC,可∠1=90°,只需证∠2=∠C。
从而转化为证明它们所在的△BDF“HL”公理不难得证。
DCE证∠C+∠1=90°,而∠2+与△ADC全等,而这由证明:∵AD⊥BC∴∠BDA=∠ADC=90°∴∠1+∠2=90°在R t△BDF和Rt△ADC中BF ACFD CD∴Rt△BDF≌Rt△ADC(HL)∴∠2=∠C∴∠1+∠C=90°∴∠BEC=90°∴BE⊥AC1. 已知:如图AC=BD,∠CAB=∠DBA。
三角形全等的判定方法(5种)例题+练习(全面)

教学内容全等三角形的判定教学目标掌握全等三角形的判定方法重点全等三角形的判定探索三角形全等的条件(5种)1 边角边(重点)两边及其夹角分别分别相等的两个三角形全等,可以简写成“边角边”或“SAS”. 注:必须是两边及其夹角,不能是两边和其中一边的对角.原因:如图:在∆ABC和∆ABD中,∠A=∠A,AB=AB,BC=BD,显然这两个三角形不全等. 例1 如图,AC=AD,∠CAB=∠DAB,求证:∆ACB≌∆ADB.例2 如图,在四边形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC,AE=DF求证:BF=CE.例3.(1)如图①,根据“SAS”,如果BD=CE, = ,那么即可判定△BDC≌△CEB;(2) 如图②,已知BC=EC,∠BCE=ACD,要使△ABC≌△DEC,则应添加的一个条件为例4.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌,理由是;△ABE≌,理由是.例5.如图,在△ABC和△DEF中,如果AB=DE,BC=EF,只要找出∠ =∠或∥,就可得到△ABC≌△DEF.例6.如图,已知AB∥DE,AB=DE,BF=CE,求证:△ABC≌△DEF.例7.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E例8.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.2.角边角两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)例1.如图,在△ABC中,点D是BC的中点,作射线AD,线段AD及其延长线上分别取点E,F,连接CE,BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是:.(不添加辅助线)例2.如图,已知AD平分∠BAC,且∠ABD=∠ACD,则由“AAS”可直接判定△≌△.例3.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,那么AE= cm.例4.如图,AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,作PE⊥AB于点E.若PE=2,则两平行线AD与BC间的距离为.例5.如图,已知EC=AC,∠BCE=∠DCA,∠A=∠E.求证:BC=DC.例6.如图,在△ABC中,D是BC边上的点 (不与B,C重合),F,E分别是AD及其延长线上的点,CF∥BE.请你添加一个条件,使△BDE≌△CDF (不再添加其他线段,不再标注或使用其他字母),并给出证明.(1) 你添加的条件是:;(2) 证明:例7.如图,A在DE上,F在AB上,且BC=DC,∠1=∠2=∠3,则DE的长等于 ( ) A.DC B.BCC.AB D.AE+AC【基础训练】1.如图,已知AB=DC,∠ABC=∠DCB,则有△ABC≌_______,理由是_______;且有∠ACB=_______,AC=_______.2.如图,已知AD=AE,∠1=∠2,BD=CE,则有△ABD≌_______,理由是_______;△ABF≌_______,理由是_______.3.如图,在△ABC和△BAD中,因为AB=BA,∠ABC=∠BAD,_______=_______,根据“SAS”可以得到△ABC≌△BAD.4.如图,要用“SAS”证△ABC≌△ADE,若AB=AD,AC=AE,则还需条件( ).A.∠B=∠D B∠C=∠EC.∠1=∠2 D.∠3=∠45.如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC等于( ).A.60°B.50°C.45°D.30°6.如图,如果AE=CF,AD∥BC,AD=CB,那么△ADF和ACBE全等吗?请说明理由.7.如图,已知AD与BC相交于点O,∠CAB=∠DBA,AC=BD.求证:(1)∠C=∠D;(2)△AOC≌△BOD.8.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE、AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.9.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.10.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.A BC DEF角角边两角分别相等且其中一组等角的对边相等的两个三角形全等,可以简写成“角角边”或“AAS ”. 例1、如图,在△ABC 中,∠ABC =45°,H 是高AD 和高BE 的交点,试说明BH =AC .例2、如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,AD=2.5cm ,DE=1.7cm . 求BE 的长.例3、如图, 在△ABC 中, AC ⊥BC, CE ⊥AB 于E, AF 平分∠CAB 交CE 于点F, 过F 作FD ∥BC 交AB 于点D. 求证:AC =AD.例4、如图, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC与∠C的度数;(2)求证:BC=2AB.边边边三边分别相等的两个三角形全等,可以简写成“边边边”或“SSS”.例1、如图,在四边形ABCD中,AB=CB,AD=CD.你能说明∠C=∠A吗? 试一试.例2、如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在E移动过程中.BE和DE是否相等? 若相等,请写出证明过程;若不相等,请说明理由.例3.如图,AB=CD ,AE=CF ,BO=DO ,EO=FO .求证:OC=OA .斜边、直角边斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL ”。
三角形全等的判定1——边边边

D
A B C
2.如课本图11.2-3,△ABC是一个钢架,AB=AC,AD是 连接点A与BC中点D的支架。求证:AD垂直于 BC。 .
判断两个三角形全等的推理过程,叫做证明三角形 全等。
思考:你能用“边边边”解释三角形具 有稳定性吗?
例2:如图,AB=AC,AE=AD,BD=CE, 求证:△AEB ≌ △ ADC。
三、教学目标设计
三、教学目标设计
1.知识与技能:
(1)掌握三角形全等的判定方法,能够用文字语言、图 形语言和符号语言分别表述三角形全等的四种判定方法 (2)通过自主探究,提高合情推理能力和表达能力。
2.过程与方法:
通过用几何画板探索三角形全等条件的过程, 提高学生分析问题、解决问题的能力。
3.情感、态度、价值观:
A
B 方法构想
E
D
C
两个三角形中已经的两组边对应 相等,只需要再证第三条边对应相 等就行了.
小结归纳
1
全等三角形证明的基本步骤:
①分析已有条件,准备所缺条件:
证全等时要用的间接条件要先证好; ②三角形全等书写三步骤: • 写出在哪两个三角形中 • 摆出三个条件用大括号括起来
• 写出全等结论
2、如图,AB=CD,AC=BD, 随堂练习 △ABC和△DCB是否全等?试 说明理由。 1、已知:如图,AB=AD,BC=CD, 解:△ABC与△DCB全等, 求证:△ABC≌ △ADC 理由如下:
证明:在△ABC与△ADC中 A AB=AD
BC=DC AC=AC ∴ △ABC≌ △ADC C B D
在△ABC与△DCB中 AB=CD
BC=CB
AC=BD ∴ △ABC≌ △DCB
A
全等三角形判定定理一:SSS.2.等三角形的判定定(sss)

想一想:从这个结果反映了什么规律?
三边分别相等的两个三角形全等
( 可以简写为“边边边”或“SSS”)。
三角形全等判定的方法1:
三边分别相等的两个三角形全等 ( 可以简写为“边边边”或 “SSS”)。
三边分别相等的两个三角形全等( 可以简写为“边 边边”或“SSS”)。 几何语言表述:
验证
(1)给一个条件时 ②一个角相等(∠B= ∠ B') A
A'
400
B
C
400
B'
C'
结论:只有一个角对应相等的两个三角 形不一定全等.
验证
(2)给两个条件时
①一个边、一条角相等(BC=B'C' , ∠B= ∠B')
A
A'
B
300
300
9cm
C
B'
9cm
C'
结论:一条边、一个角对应相等的两
个三角形不一定全等.
练习(第37页第2题) 工人师傅常用角尺平分一个任 意角, 做法如下:如图,∠AOB是一个任意角,在 边OA,OB上分别取OM=ON,移动角尺,使角尺两 边相同的刻度分别与M、N重合,过角尺顶点C的射 线OC便是∠AOB的平分线。为什么?
(课本第37页第1题)如图,C是AB的中点,AD=CE, CD=BE。求证: △ ACD≌ △ CBE。
证明: ∵C是AB的中点,
∴AC=CB. 在△ACD和△CBE中, AC=CB, AD=CE,
CD=BE. ∴ △ABD ≌△ ACD(SSS).
应用提高
已知:AC=AD,BC=BD, 求证:AB是∠DAC的平分线. 证明:在△ABC和△ABD中 AC=AD( 已知 )
三角形全等的判定——AAS教学设计

三角形全等的判定——AAS教学设计教学设计:三角形全等的判定,AAS一、教学目标:1.知识与技能目标:a.了解三角形全等的判定条件之一,AAS(两角对应相等,且一边对应相等);b.掌握使用AAS进行三角形全等判定的方法;c.能够运用AAS判定条件,解决实际问题;2.过程与方法目标:a.引导学生观察、发现并总结AAS判定全等的规律;b.能够解答关于AAS的相关问题、完成相关练习;c.引导学生通过对比、组合进行归纳总结。
二、教学重点与难点:教学重点:AAS判定全等的理论与方法。
教学难点:如何运用AAS判定条件进行证明。
三、教学过程:1.导入(5分钟):a.引入本节课的主题:三角形全等的判定,AAS;b.展示两个全等的三角形,让学生观察并找出它们的相同之处;c.引导学生思考:这两个三角形有哪些角是相等的?有哪些边是相等的?2.观察与总结(15分钟):a.展示多个已知全等的三角形,引导学生观察这些三角形之间的共同特征;b.引导学生自主探索,通过对比找到AAS判定全等的规律;c.学生个体或小组讨论,总结AAS判定三角形全等的条件;d.学生报告、老师点评,确保学生对AAS的判定条件有正确的理解。
3.示例与分析(15分钟):a.给学生展示两个需要判定全等的三角形,同时给出两个已知的条件;b.引导学生运用AAS条件判断这两个三角形是否全等;c.学生个体或小组讨论,解答问题并给出说明;d.老师点评、纠正错误,确保学生能正确使用AAS进行判定。
4.练习与巩固(15分钟):a.学生进行练习,使用AAS判定条件判断给出的三组三角形是否全等;b.学生个体或小组讨论,解答问题并给出说明;c.老师点评、纠正错误,帮助学生更好地理解与应用。
5.拓展与应用(15分钟):a.学生进行拓展性练习,解答更复杂的问题,例如:给定一个已知条件,判断是否可以通过AAS条件得出全等;b.学生展示解题方法与结果,进行讨论与总结;c.老师点评、总结掌握,帮助学生理解并灵活应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做一做 (1)已知一个三角形的三个内角分别为40° , 60°和80° ,你能画出这个三角形吗?把你画的 三角形与同伴画的进行比较,它们一定全等吗?
800
800
400
600
400
600
结论:三个内角对应相等的两个三角形不一定全等.
(2)已知一个三角形的三条边分别为4 cm,5cm 和7cm,你能画出这个三角形吗?把你画的三角形 与同伴画的进行比较,它们一定全等吗?
3cm
3cm
(2)三角形的两个内角分别为30°和50° ;
30◦
50◦
30◦
50◦
(3)三角形的两条边分别为4cm,6cm.
4cm 6cm
4cm 6cm
结论:只给出一个条件或两个条件时,都不能保 证所画出的三角形一定全等.
议一议 如果给出三个条件画三角形,你能说出有哪几 种可能的情况?
有四种可能:三条边、三个角、两边一角和两角 一边.
两角及一边
两角及其中一角的对边
两边及一角
小结 通过本节课的内容,你有哪些收获? 1.三角形全等的判定方法; 2.会运用判定方法解决实际问题.角形被墨迹污染了,她想 画一个与原来完全一样的三角形,她该怎么办?请 你帮助小颖想一个办法,并说明你的理由? 注意:与原来完全一样的三角形,即是与原来三角 形全等的三角形.
导入
要画一个三角形与小明画的三角形全等.需 要几个与边或角的大小有关的条件呢?一个条件? 两个条件?三个条件? 让我们一起来探索三角形全等的条件
4
5
7
三边分别相等的两个三角形全等,简写为“边边 边”或“SSS”.
由上面的结论可知,只要三角形三边的长度确 定了,这个三角形的形状和大小就完全确定了. 用三根木条钉成的一个三角形框架,它的大 小和形状是固定不变的,三角形的这个性质叫做三 角形的稳定性.用四根木条钉成的框架, 它的形状是可以改变的,它不具有稳定性.
做一做 1.只给一个条件(一条边或一个角)画三角形时,
大家画出的三角形一定全等吗?
3cm
3cm
3cm
45◦
45◦
45◦
2.给出两个条件画三角形时,有几种可能的情况? 每种情况下作出的三角形一定全等吗?分别按照 下面的条件做一做. (1)三角形的一个内角为30° ,一条边为3cm;
30◦
30◦
3cm
在生活中,我们经常会看到应用三角形稳定性 的例子.
由前面的讨论我们知道,如果给出一个三角形 三条边的长度,那么由此得到的三角形都是全等 的.如果已知一个三角形的两角及一边,那么有几 种可能的情况呢?每种情况下得到的三角形都全等 吗?
如果给出三个条件画三角形,有
三边(SSS)
四
种 可 能
三个角
两角夹一边