第1天 力与物体的直线运动

合集下载

高一物理运动与力的关系知识点

高一物理运动与力的关系知识点

高一物理运动与力的关系知识点一、力的基本概念力是物体作用于物体上的一种相互作用,是描述物体之间相互作用强度的物理量。

力的大小用牛顿(N)表示,方向用箭头表示。

二、牛顿第一定律牛顿第一定律,也称为惯性定律,它表明当物体所受的合力为零时,物体将保持静止或匀速直线运动的状态。

三、牛顿第二定律牛顿第二定律,也称为加速度定律,它表明物体所受的合力等于物体质量乘以加速度。

四、力的合成与分解力的合成指两个或多个力共同作用在一个物体上,合成力的大小和方向由力的矢量和求得。

力的分解指一个力可以被分解为几个力的合成。

五、弹力弹力是物体表面的弹性变形所产生的力,它的方向与物体表面垂直。

六、摩擦力摩擦力是两个物体相互接触时由于相互之间的粗糙程度而产生的阻碍物体相对滑动的力。

七、重力重力是物体在地球或其他天体附近受到的吸引力,是由物体质量产生的。

八、平衡条件物体处于平衡状态时,合力和合力矩均为零。

平衡条件可以分为平衡在静力学平衡和平衡在动力学平衡两种情况。

九、滑动摩擦力和静止摩擦力物体静止时所受到的摩擦力称为静止摩擦力,物体滑动时所受到的摩擦力称为滑动摩擦力。

滑动摩擦力与物体之间的法向压力成正比,而与物体表面间的粗糙程度、润滑情况和接触面积等因素有关。

十、力的平行四边形法则力的平行四边形法则用于计算两个力合成后的大小和方向,将两个力按照平行四边形的两条邻边进行平行移动,连接起始点和结束点即可得到合力的大小和方向。

十一、张力张力是由绳子、弹簧、弦等伸长物体的内部相对分子间拉力产生的力。

十二、动摩擦力和静摩擦力的判定物体在受到外力作用之前处于静止状态时,所需的摩擦力最大值称为静摩擦力。

当外力逐渐增大,物体开始运动时,所受到的摩擦力减小,称为动摩擦力。

总结:物体运动与力的关系是物理学的基本内容之一。

通过牛顿的三大定律,我们可以清楚地了解到力与物体运动的密切关系。

除了基本的力的概念,我们还学习了力的合成与分解、弹力、摩擦力、重力、动摩擦力和静摩擦力等相关知识点。

八年级下册物理第一章力知识点

八年级下册物理第一章力知识点

八年级下册物理第一章力知识点八年级下册物理第一章力知识点第一节力1、力的概念:力是物体对物体的作用。

2、力产生的条件:①必须有两个物体。

②物体间必须有相互作用(可以不接触)。

3、力的性质:物体间力的作用是相互的(相互作用力在任何情况下都是大小相等,方向相反,作用在不同物体上)。

两物体相互作用时,施力物体同时也是受力物体,反之,受力物体同时也是施力物体。

4、力的作用效果:力可以改变物体的运动状态。

力可以改变物体的形状。

说明:物体的运动状态是否改变一般指:物体的运动快慢是否改变(速度大小的改变)和物体的运动方向是否改变。

当物体发生形变或运动状态改变时,可以判断受到了力的作用。

5、力的单位:国际单位制中力的单位是牛顿简称牛,用N 表示。

力的感性认识:拿两个鸡蛋所用的力大约1N。

6、力的三要素:力的大小、方向、和作用点。

7、力的表示法:力的示意图:用一根带箭头的线段把力的大小、方向、作用点表示出来,如果没有大小,可不表示,在同一个图中,力越大,线段应越长二、弹力1、弹性:物体受力发生形变,失去力又恢复到原来的形状的性质叫弹性。

2、塑性:在受力时发生形变,失去力时不能恢复原来形状的性质叫塑性。

3、弹力:物体由于发生弹性形变而受到的力叫弹力,弹力的大小与弹性形变的大小有关4、力的测量:⑴测力计:测量力的大小的工具。

⑵分类:弹簧测力计、握力计。

⑶弹簧测力计:A、原理:在弹性限度内,弹簧的伸长与所受的拉力成正比。

B、使用方法:“看”:量程、分度值、指针是否指零;“调”:调零;“读”:读数=挂钩受力。

C、注意事项:加在弹簧测力计上的力不许超过它的量程。

三、重力:⑴重力的概念:地面附近的物体,由于地球的吸引而受的力叫重力。

重力的施力物体是:地球。

1、物体受到的重力跟它的质量成正比。

2、重力跟质量的比值是个定值,为9.8N/Kg。

这个定值用g表示,g= 9.8N/Kg⑵重力大小的计算公式G=mg 其中g=9.8N/kg 它表示质量为1kg 的物体所受的重力为9.8N。

第四单元 《运动和力的关系》整体教学设计-高一物理(人教版2019必修第一册)

第四单元  《运动和力的关系》整体教学设计-高一物理(人教版2019必修第一册)

第四单元《运动和力的关系》整体教学设计【课程标准】1.2.3 通过实验,探究物体运动的加速度与物体受力、物体质量的关系。

理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。

通过实验,认识超重和失重现象。

1.2.4 知道国际单位制中的力学单位。

了解单位制在物理学中的重要意义。

一、单元教材概述本单元是质点的动力学内容,是在前面三章内容的基础上进一步研究运动和力的关系。

牛顿运动定律是动力学的核心内容,根据牛顿运动定律可以确定物体位置、速度的变化,控制物体的运动。

牛顿运动定律对直线运动、曲线运动都适用,为便于学生学习,本单元只讨论物体做直线运动的问题。

在学生对牛顿运动定律基本理解的基础上在以后的学习中,我们还要研究牛顿运动定律在曲线运动中的应用。

本单元先阐述牛顿第一定律,提到了在牛顿之前对力学研究的大能,特别是在伽利略的研究基础上建立了牛顿第一定律,它是牛顿第一定律的力学基础。

牛顿第一定律提出了两个重要的、基本的物理概念:力和惯性。

本单元在描述牛顿第二定律前设置了一个实验:探究加速度与力、质量的关系,让学生初步了解牛顿第二定律的实验基础,在实验的基础上引导学生认识牛顿第二定律。

牛顿第二定律是定量的规律,新教材在介绍了力学单位制和国际单位制后,通过用牛顿运动定律讨论两类基本问题,深化学生对定律的理解。

最后利用了牛顿第二定律研究了超重现象和失重现象。

本单元内容教学内容:《4.1 牛顿第一定律》本节内容分析并说明在牛顿之前,特别是在伽利略的研究基础上建立了牛顿第一定律,明确指出牛顿第一定律是牛顿力学的基石。

牛顿第一定律提出了两个重要的、基本的物理概念:力和惯性。

《4.2 实验:研究加速度与力、质量的关系》本节内容通过实验初步让学生了解牛顿第二定律;《4.3 牛顿第二定律》本节内容是对牛顿第二定律的定量规律的学习;《4.4 力学单位制》本节内容介绍了单位制和国际单位制;《4.5 牛顿定律的应用》本节内容学习了利用牛顿定律讨论运动学和动力学问题;《4.6 超重和失重》本节内容通过对生活实际中的超重、失重现象进行分析,进一步加深了解牛顿第二定律;【注意事项】1. 物理学的基石——牛顿第一定律牛顿第一定律揭示了运动和力的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因。

牛顿运动定律在高中物理中地位与作用

牛顿运动定律在高中物理中地位与作用

牛顿运动定律在高中物理中地位与作用牛顿运动定律是高中物理动力学的核心知识,是经典力学的基础,是天文学的研究基础,是动能定理和动量定理的推导支柱和研究能量问题的重要手段,是电磁学的研究方法的基石,是热学研究的基础,可以说只要是研究宏观低速,在惯性参考系中运动的一切物体,牛顿运动定律都有着不可撼动的重要地位。

对牛顿运动定律的学习是培养学生建立物理观念的重要的途径,同时引导学生建立科学思维,形成科学探究的方法,培养学生的科学态度与责任。

高中物理动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。

动力学研究的对象的运动速度远小于光速的宏观物体,高中物理学的动力学分支是大学物理学和天文学的研究基础,也是许多工程学科的研究基础。

作为选拔人才功能的高考,在物理学科的考查中更是对牛顿运动定律加大考查力度,是每一年高考物理的必考的重点知识,指导学生学好牛顿运动定律不仅可以为学生高考服务,更是对学生将来的终生发展奠定坚实的知识基础。

在运动学中我们学习了怎样描述物体的运动,但是没有讨论物体为什么会做这种或那种运动,要揭示物体运动原因,就要研究运动和力的关系。

在物理学中,只研究物体怎样运动而不涉及运动与力的关系的理论,称为运动学;研究运动与力的理论,称做动力学。

运动学是研究动力学的基础,但只有懂得了动力学的知识,才能根据物体所受的力确定物体的位置、速度变化是规律,才能够创造条件来控制物体的运动。

例如运动学只是使我们能够描述天体是怎样运动的,动力学则使我们能够把人造卫星和宇宙飞船送上太空,使人类登上月球,甚至奔向火星。

动力学的奠基者是英国科学家牛顿,他在1687年出版的《自然哲学的数学原理》中提出了三条运动定律,后人把它们总称为牛顿运动定律。

牛顿运动定律确定了力与运动是关系,它们是整个动力学的核心。

关于力与运动的关系,是一个延绵了两千年的问题。

公元前三世纪古希腊著名的哲学家、科学家、教育家亚里士多德认为“物体的运动需要力来维持”,例如马拉车,车才会持续地运动,马停止拉车,车就停止运动,他的观点与人们的生活经验相符合,以至于在此后两千多年的时间里,人们把他的观点奉为经典,没有人怀疑。

初三物理第一课

初三物理第一课

初三物理第一课物理是一门研究自然界中物质运动和能量转化的学科,是自然科学中的一支重要学科。

初中物理作为学生接触物理学的第一门学科,具有重要的教育意义。

本文将介绍初三物理第一课的内容,包括力的概念、力的计算和测量、力的合成和分解。

在初三物理的第一课中,我们将学习到力的概念。

力是物体相互作用的结果,它可以改变物体的状态或运动。

我们常常用力来推动物体、拉动物体、阻止物体运动或改变物体的形状。

力的作用使物体发生运动或停止运动,力的方向与物体运动的方向有关。

力的计算和测量是物理学中的基本内容。

在初三物理的第一课中,我们将学习如何计算力的大小。

力的大小可以用物体的质量和加速度来计算。

力的计算公式为:力 = 质量 ×加速度。

在物理学中,力的单位是牛顿(N)。

我们还将学习如何使用弹簧测力计来测量物体的力的大小。

弹簧测力计是一种常用的测力工具,它可以通过弹簧的伸缩程度来测量力的大小。

力的合成和分解也是初三物理第一课的重要内容。

力的合成是指当两个或多个力作用在同一个物体上时,它们的合力是多个力的矢量和。

合力的大小和方向可以通过矢量相加来计算。

力的分解是指将一个力分解为两个或多个力的过程。

力的分解可以帮助我们更好地理解力的作用和运用。

力的分解可以使用三角函数的知识来进行计算。

初三物理第一课的内容涵盖了力的概念、力的计算和测量、力的合成和分解。

通过学习力的相关知识,我们可以更好地理解物体的运动和力的作用。

力的概念是物理学的基础,它在生活中无处不在。

通过力的计算和测量,我们可以量化力的大小。

力的合成和分解的概念可以帮助我们解决实际问题。

初三物理的第一课是我们学习物理学的第一步,它为我们后续的学习奠定了基础。

总结起来,初三物理的第一课是力的概念、力的计算和测量、力的合成和分解。

通过学习这些内容,我们可以更好地理解力的作用和运用。

物理学的知识将伴随我们一生,帮助我们更好地理解自然界和解决实际问题。

初三物理的第一课是我们学习物理学的第一步,它为我们后续的学习打下了坚实的基础。

2022年苏科版物理八下第九章《牛顿第一定律 力与运动关系》知识点附练习讲义

2022年苏科版物理八下第九章《牛顿第一定律  力与运动关系》知识点附练习讲义

牛顿第一定律力与运动关系【学习目标】1、知道牛顿第一定律的内容;2、理解惯性是物质的一种属性,会解释常见的惯性现象;3、理解力与运动的关系。

【要点梳理】要点一、牛顿第一定律一切物体,在没有受到力的作用时,总保持静止或匀速直线运动状态,这就是牛顿第一定律。

要点诠释:对定律的理解:1、“一切〞说明该定律对于所有物体都适用,不是特殊现象。

2、“没有受到力的作用〞是定律成立的条件。

“没有受到力的作用〞有两层含义:一是该物体确定没有受到任何力的作用,这是一种理想化的情况(实际上,不受任何力的作用的物体是不存在的);二是该物体所受合力为零,它的作用效果可以等效为不受任何力的作用时的作用效果。

3、“或〞指两种状态必居其一,不能同时存在,也就是说物体在不受力的作用时,原来静止的物体仍保持静止状态,原来运动的物体仍保持匀速直线运动状态。

4、牛顿第一定律的内涵:物体在不受力的情况下依旧可以保持原有的运动状态,说明力不是维持物体运动的原因,而是使物体运动状态发生改变的原因。

或者说:物体的运动不需要力来维持,要改变物体的运动状态,必须对物体施加力的作用。

5、牛顿第一定律不能用实验直接验证,而是在实验的根底上通过分析、概括、推理总结出来的。

6、牛顿第一定律是关于力与运动关系的规律,它反映了物体在不受力(或受合力为零)时的运动规律,在不受任何力时,物体要保持原有的运动状态不变。

要点二、惯性物体具有保持静止或匀速直线运动状态不变的性质,叫做惯性。

要点诠释:对惯性的理解。

1、一切物体都有惯性,一切物体是指无论是气体、液体、还是固体;无论是静止还是运动;无论受力还是不受力都具有惯性。

惯性是物体本身的一种属性。

2、惯性指物体保持静止状态或匀速直线运动状态不变的性质。

即静止的物体总要保持静止状态,运动的物体总要保持匀速直线运动状态。

3、惯性是物体的属性,不是力。

因此在提到惯性时,只能说“物体具有惯性〞,或“由于惯性〞,而不能说“受到惯性作用〞或“惯性力〞等。

专题09-1 力 运动和力 第1节 力 牛顿第一定律(解析版)

专题09-1  力 运动和力  第1节 力  牛顿第一定律(解析版)

第九课力运动和力第1节力牛顿第一定律基础知识过关一、力1.定义:力是物体对物体的作用。

发生作用的两个物体,一个是施力物体,另一个是受力物体。

力不能离开物体单独存在。

2.符号和单位:在物理学中,力用符号F表示,它的单位是牛顿,简称牛,符号是N。

3.力的作用效果:①力能改变物体的形状;②力能改变物体的运动状态,物体运动的快慢和方向改变都叫做物体的运动状态发生改变。

4.力的描述:①力的三要素:大小、方向、作用点,它们都可以影响力的作用效果;②力的示意图:用一条带箭头的线段表示力,箭头表示力的方向,线段的起点或终点表示力的作用点,线段的长度表示力的大小。

5.力的相互性:物体间力的作用是相互的,施力物体同时也是受力物体。

二、弹力1.定义:物体由于发生弹性形变而产生的力。

2.弹簧测力计三、重力1.定义:由于地球的吸引而使物体受到的力叫做重力。

通常用字母G表示。

地球附近的所有物体都受到重力的作用。

2.大小:物体所受重力跟它的质量成正比。

3.公式:G=mg。

4.方向:竖直向下。

5.重心:形状规则、质量分布均匀的物体重心在它的几何中心。

四.牛顿第一定律1.阻力对物体运动的影响:物体的运动并不需要力来维持,运动的物体之所以停下来,是因为受到阻力的作用。

2.牛顿第一定律:一切物体在没有受到力的作用时,总保持静止状态或匀速直线运动状态。

3.惯性:(1)定义:一切物体都有保持原来运动状态不变的性质。

(2)影响因素:惯性是物体自身的属性,它的大小只与物体的质量有关,与物体运动的状态和是否受力等因素无关。

(3)理解:①一切物体在任何情况下都具有惯性;②惯性不是力,只能说“具有惯性”或“由于惯性”。

高频考点过关考点一:力的作用效果1.(2022•鄂州)物理知识在生产生活中的应用极大地激发了同学们学习物理的兴趣,同学们课后开始联想一些生活中与物理相关的情景。

乒乓球是我国的国球,在世界级比赛中,我国运动员基本包揽所有乒乓球项目的金牌,为国争光,扬我国威。

八年级物理第一章第三节知识点

八年级物理第一章第三节知识点

八年级物理第一章第三节知识点一、力和力的表示方法1.力的概念力是一种可以改变物体状态的物理量,通常用箭头表示,箭头的长度表示力的大小,箭头的方向表示力的作用方向。

2.力的单位力的单位是牛顿(N),1N是使质量为1千克的物体产生1米每平方秒的加速度的力。

3.力的表示方法通常用矢量图表示力的大小和方向,也可以用字母F表示,如F=10N。

二、力的性质1.力的效果力可以改变物体的状态,使物体运动、停止运动或改变其运动状态的方向。

2.力的合成若有多个力作用在物体上,可以通过合力和分解力的原理来理解物体的受力情况。

三、平衡条件1.平衡状态当物体受到的合力为零时,物体处于静止或匀速直线运动状态,这种状态称为平衡状态。

2.平衡条件物体处于平衡状态时,合力和合力矩均为零,可以利用平衡条件来分析物体处于平衡状态时的受力情况。

四、摩擦力及其性质1.摩擦力的概念当物体相对运动或相互接触时,会产生摩擦力,摩擦力可以使物体减速或停止运动。

2.摩擦力的性质摩擦力的大小与物体接触面的粗糙程度相关,摩擦力的方向与物体的相对运动方向相反。

五、力的作用点1.力的作用点力的作用点是力作用的具体位置,力会使物体发生变形或产生转动。

2.力臂在计算力矩时,需要考虑力的作用点与转动轴之间的距离,这个距离称为力臂。

六、静力的平衡条件1.静力平衡当物体处于静止状态时,受到的合外力和合外力矩均为零,这种状态称为静力平衡。

2.静力平衡条件利用静力平衡条件可以分析物体在静止状态时所受的外力和外力矩,进而求解静力平衡问题。

七、习题训练1.多种力的合成与分解可以通过练习多种力的合成与分解来提高对力的理解和运用能力。

2.平衡条件的应用通过练习使用平衡条件来解决力的平衡问题,提高解题技巧和分析能力。

3.摩擦力的计算通过练习摩擦力的计算问题,加深对摩擦力概念的理解和应用。

以上即为八年级物理第一章第三节的知识点,希望同学们能够认真学习并掌握这些内容,提高物理学习能力和解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二 知识方法 精彩回扣 第一天 力与物体的直线运动[知识回扣]1.匀变速直线运动的基本规律速度公式:v =v 0+at位移公式:x =v 0t +12at 2速度与位移关系公式:v 2-v 20=2ax 位移与平均速度关系公式:x =v t =v 0+v2t2.匀变速直线运动的两个重要推论(1)匀变速直线运动某段时间内的平均速度等于该段时间中间时刻的瞬时速度.即v =v t2.(某段位移的中点速度v x2=v 21+v 222,且v t 2<v x2)(2)任意两个连续相等的时间间隔(T )的运动位移之差是一恒量.即x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2,或Δx =aT 2.3.初速度为零的匀加速直线运动的推论(1)1t 末、2t 末、3t 末、…nt 末的瞬时速度比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n(2)1t 内、2t 内、3t 内、…nt 内的位移比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2(3)第一个t 内、第二个t 内、第三个t 内、…第n 个t 内的位移比为 Δx 1∶Δx 2∶Δx 3∶…∶Δx n =1∶3∶5∶…∶(2n -1)(4)第一个x 内、第二个x 内、第三个x 内、…第n 个x 内的时间比为:t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1) 4.自由落体运动(1)运动特点:物体由静止开始,只在重力作用下的运动;加速度为g 、初速度为零的匀加速直线运动.(2)运动规律:v t =gt ,h =12gt 2,v 2t =2gh .特别提醒:①自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;②a =g =9.8 m/s 2≈10 m/s 2(重力加速度在赤道附近较小,高山处比平地小,方向竖直向下). 5.竖直上抛运动(1)运动特点:物体以某一初速度竖直向上抛出,只在重力作用下的运动;初速度为v 0、加速度为-g 的匀变速直线运动.(2)运动规律:v t =v 0-gt ,h =v 0t -12gt 2,v 2t -v 20=-2gh .(3)结论:上升至最高点时间t 上=v 0g ,从最高点下降到抛出点的时间t 下=v 0g,上升最大高度H m =v 202g.6.弹力是相互接触的发生弹性形变的物体之间的作用力.判断弹力是否存在有两种方法:①假设法.②根据物体的状态由平衡条件或牛顿第二定律进行判断. 7.杆对物体的弹力可能沿杆方向,也可能不沿杆方向.8.摩擦力的产生条件:①两物体相互接触且相互挤压.②两物体有相对运动或相对运动的趋势.③接触面粗糙. 9.物体平衡的条件和推论(1)物体受共点力作用处于平衡状态(静止或匀速直线运动状态)的条件是物体所受合力为0,即F 合=0.若在x 轴或y 轴上的力平衡,那么,这一方向上的合力为0,即F x 合=0或F y 合=0. (2)常用推论:①二力作用下物体平衡时,两个力等值、反向、共线.②三力作用下物体平衡时,任意两个力的合力与第三个力等值、反向、共线;任一个力沿另外两个力方向所在直线分解,分解所得的两个分力与原来两个力分别等值、反向、共线. ③多力作用下物体平衡规律可参考以上两条做推广性的理解.比如,受四个力作用下平衡时,任意三个力的合力与第四个力等值、反向、共线;或任意两个力的合力与其余两个力的合力等值、反向、共线等. 10.牛顿运动定律(1)牛顿第二定律 ①公式:a =F 合m. ②意义:力的作用效果是使物体产生加速度,力和加速度是瞬时对应关系. (2)牛顿第三定律 ①表达式:F 1=-F 2.②意义:明确了物体之间作用力与反作用力的关系. 11.超重和失重的实质(1)实重与视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力,此时弹簧测力计的示数或台秤的示数即为视重.[方法回扣]1.解决匀变速直线运动问题的常用方法(1)一般公式法:应用匀变速直线运动规律的三个重要公式解题,若题目中不涉及时间,使用v 2t -v 20=2ax 解答.(2)中间时刻速度法:公式v t 2=v =v 0+v t2适用于任何匀变速直线运动,有些题目应用它可避免应用位移公式中含有t 2的复杂方程,从而简化解题. (3)平均速度法:涉及初末速度、运动时间、位移,可应用v =v 0+v t2和x =v t 解答.(4)比例法:对于初速度为零的匀加速直线运动可采用比例关系求解. ①前1秒、前2秒、前3秒…内的位移之比为1∶4∶9∶… ②第1秒、第2秒、第3秒…内的位移之比为1∶3∶5∶… ③前1 m 、前2 m 、前3 m…所用的时间之比为1∶2∶3∶…④第1 m 、第2 m 、第3 m…所用的时间之比为1∶(2-1)∶(3-2)∶…(5)图象法:应用v -t 图象,可以把较复杂的直线运动问题转化为较为简单的数学问题.尤其是利用图象定性分析选择题,可避开繁杂的数学计算.(6)逆向思维法:把运动过程的“末态”作为“初态”的反向研究问题的方法.一般应用于末态速度为零的情况,把末态速度为零的匀减速直线运动反演为初速度为零的匀加速直线运动.(7)巧用隔差公式x m -x n =(m -n )aT 2解题.对一般的匀变速直线运动问题,若题目中出现两个相等的时间间隔对应的位移(尤其是处理纸带、频闪照片或类似的问题),应用隔差公式x m -x n =(m -n )aT 2解题更加快捷方便. 2.竖直上抛运动的特性和分析方法 (1)上升阶段与下降阶段具有对称性①速度对称:上升和下降过程经过同一位置时速度等大反向.②时间对称:上升和下降过程经过同一段高度的上升时间和下降时间相等. (2)常见的处理方法①分段法:将整个竖直上抛运动分为向上的匀减速直线运动和自由落体运动.②整体法:将整个过程看成是初速度向上、加速度向下的匀变速直线运动(规定初速度的方向为正方向,则a =-g ).即v t =v 0-gt ;h =v 0t -12gt 2;v 2t -v 20=-2gh .3.“追及、相遇”类问题的分析方法(1)基本思路(2)常用分析方法①物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,认真审题,挖掘题中的隐含条件,在头脑中建立起一幅物体运动关系的图景.②相对运动法:巧妙地选取参照系,然后找两物体的运动关系.③极值法:设相遇时间为t,根据条件列方程,得到关于t的一元二次方程,用判别式进行讨论,若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相遇.④图象法:将两者的速度—时间图象在同一坐标系中画出,然后利用图象求解.4.力的合成法则和正交分解法在牛顿第二定律问题中的应用当物体只受两个力作用时,可用力的合成法来解牛顿第二定律问题,即应用平行四边形定则确定合力,它一定与物体的加速度方向相同,大小等于ma.当物体受两个以上的力作用时,一般采用正交分解法,依具体情况建立直角坐标系,将各力和加速度往两坐标轴上分解,建立牛顿第二定律的分量式,即∑F x=ma x和∑F y=ma y,然后求解.一种常见的选取坐标轴方向的方法,是以加速度的方向为x轴的正方向,y轴与加速度方向垂直.此时,牛顿第二定律的分量式为∑F x=ma,∑F y=0.有时物体所受的几个力分别在互相垂直的两个方向上,且与加速度方向不同.此时也可以沿力所在的两个方向建立直角坐标系,这样就不必再做力的分解,而只分解加速度,建立牛顿第二定律分量式,可以简化运算.5.瞬时问题的分析方法利用牛顿第二定律分析物体的瞬时问题(1)明确两种基本模型的特点:①轻绳不需要形变恢复时间,在瞬时问题中,其弹力可以突变,即弹力可以在瞬间成为零或别的值;②轻弹簧(或橡皮绳)需要较长的形变恢复时间.在瞬时问题中,其弹力不能突变,即弹力的大小往往可以看成不变.(2)明确解此类问题的基本思路:①确定该瞬时物体受到的作用力,还要注意分析物体在这一瞬时前、后的受力及其变化情况;②由牛顿第二定律列方程求解.[习题精练]1.在灭火抢险的过程中,有时要借助消防车上的梯子进行救人或灭火作业,如图1所示.已知消防车梯子的下端用摩擦很小的铰链固定在车上,上端靠在摩擦很小的竖直玻璃墙上.消防车静止不动,被救者沿梯子匀速向下运动的过程中,下列说法正确的是( )图1A.铰链对梯子的作用力不变B.墙对梯子的弹力不变C.地面对车的摩擦力逐渐增大D.地面对车的弹力不变答案 D解析 人在梯子上爬行时,将人和梯子看作一个整体,墙壁对梯子的作用力F N 水平向左,整体受重力G 竖直向下,根据三力汇 交原理,铰链对梯子的作用力F 斜向上,如图所示,当人匀速向 下运动时,F 与G 的夹角减小,因为整体的重力G 不变,所以F 、F N 减小,选项A 、B 错误.将人、梯子、车看作一个整体,则地面对车的摩擦力等于墙壁对梯子的作用力F N (逐渐减小),地面对车的弹力等于车和人的 重力(不发生变化),所以选项C 错误,D 正确.2.某校一课外活动小组自制一枚火箭,设火箭从地面发射后,始终在垂直于地面的方向上运动.火箭点火后可认为做匀加速直线运动,经过4 s 到达离地面40 m 高处时燃料恰好用完,若不计空气阻力,取g =10 m/s 2,求: (1)燃料恰好用完时火箭的速度. (2)火箭上升离地面的最大高度.(3)火箭从发射到残骸落回地面过程的总时间. 答案 (1)20 m/s (2)60 m (3)(6+23) s 解析 设燃料用完时火箭的速度为v 1,所用时间为t 1.火箭的上升运动分为两个过程,第一个过程为做匀加速上升运动,第二个过程为做竖直上抛运动至最高点.(1)对第一个过程有h 1=v 12t 1,代入数据解得v 1=20 m/s.(2)对第二个过程有h 2=v 212g,代入数据解得h 2=20 m所以火箭上升离地面的最大高度h =h 1+h 2=40 m +20 m =60 m. (3)解法一 分段分析法从燃料用完到运动至最高点的过程中,由v 1=gt 2得t 2=v 1g =2010s =2 s 从最高点落回地面的过程中h =12gt 23,而h =60 m ,代入得t 3=2 3 s故总时间t 总=t 1+t 2+t 3=(6+23) s 解法二 整体分析法考虑火箭从燃料用完到落回地面的全过程,以竖直向上为正方向,全过程为初速度v 1=20m/s ,加速度g =-10 m/s 2,位移h ′=-40 m 的匀变速直线运动,即有h ′=v 1t +12gt 2,代入数据解得t =(2+23) s 或t =(2-23) s(舍去),故t 总=t 1+t =(6+23) s 3.如图2所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上的A 点由静止释放,最终停在水平面上的C 点.已知A 点距水平面的高度h =0.8 m ,B 点距C 点的距离L =2.0 m .(滑块经过B 点时没有能量损失,g =10 m/s 2),求:图2(1)滑块在运动过程中的最大速度;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.答案(1)4 m/s (2)0.4 (3)3.2 m/s解析(1)滑块先在斜面上做匀加速运动,然后在水平面上做匀减速运动,故滑块运动到B点时速度最大为v m,设滑块在斜面上运动的加速度大小为a1,则有mg sin 30°=ma1v2m=2a1·hsin 30°解得:v m=4 m/s(2)滑块在水平面上运动的加速度大小为a2μmg=ma2v2m=2a2L解得:μ=0.4(3)滑块在斜面上运动的时间为t1v m=a1t1得t1=0.8 s由于t>t1,滑块已经经过B点,做减速运动的时间为t-t1=0.2 s设t=1.0 s时速度大小为vv=v m-a2(t-t1)解得v=3.2 m/s4.如图3所示,传送带与地面夹角θ=37°,A到B长度为16 m,传送带以10 m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5 kg的物体,它与传送带之间的动摩擦因数为0.5.求物体从A运动到B所需时间是多少?(sin 37°=0.6,cos 37°=0.8)图3答案 2 s解析物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一个沿传送带向下的滑动摩擦力F,物体受力情况如图甲所示.物体由静止开始加速,由牛顿第二定律有mg sin θ+μmg cos θ=ma1,得a1=10×(0.6+0.5×0.8) m/s2=10 m/s2物体加速至与传送带速度相等需要的时间t1=va1=1010s=1 s,t1时间内物体的位移x=12a1t21=5 m.由于μ<tan θ,物体在重力作用下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F ′.此时物体受力情况如图乙所示,由牛顿第二定律有mg sin θ-μmg cos θ=ma 2,得a 2=2 m/s 2.设后一阶段物体滑至B 所用的时间为t 2,由L -x =vt 2+12a 2t 22解得t 2=1 s ,t 2=-11 s(舍去).所以物体由A 运动到B 所需时间t =t 1+t 2=2 s .。

相关文档
最新文档