信号与系统123章习题课
信号与系统课后习题与解答第三章

3-1 求图3-1所示对称周期矩形信号的傅利叶级数(三角形式和指数形式)。
图3-1解 由图3-1可知,)(t f 为奇函数,因而00==a a n2112011201)cos(2)sin(242,)sin()(4T T T n t n T n Edt t n E T T dt t n t f T b ωωωπωω-====⎰⎰所以,三角形式的傅利叶级数(FS )为T t t t E t f πωωωωπ2,)5sin(51)3sin(31)sin(2)(1111=⎥⎦⎤⎢⎣⎡+++=指数形式的傅利叶级数(FS )的系数为⎪⎩⎪⎨⎧±±=-±±==-= ,3,1,0,,4,2,0,021n n jE n jb F n n π所以,指数形式的傅利叶级数为T e jE e jE e jE e jE t f t j t j t j t j πωππππωωωω2,33)(11111=++-+-=--3-2 周期矩形信号如图3-2所示。
若:图3-22τT-2τ-重复频率kHz f 5= 脉宽 s μτ20=幅度 V E 10=求直流分量大小以及基波、二次和三次谐波的有效值。
解 对于图3-2所示的周期矩形信号,其指数形式的傅利叶级数(FS )的系数⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛====⎰⎰--22sin 12,)(1112212211τωττωππωττωωn Sa T E n n E dt Ee T T dt e t f T F tjn TT t jn n则的指数形式的傅利叶级数(FS )为∑∑∞-∞=∞-∞=⎪⎭⎫ ⎝⎛==n tjn n tjn n e n Sa TE eF t f 112)(1ωωτωτ其直流分量为TE n Sa T EF n ττωτ=⎪⎭⎫ ⎝⎛=→2lim100 基波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-2sin 2111τωπEF F 二次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-22sin 122τωπEF F 三次谐波分量的幅度为⎪⎭⎫ ⎝⎛⋅=+-23sin 32133τωπE F F 由所给参数kHz f 5=可得s T s rad 441102,/10-⨯==πω将各参数的值代入,可得直流分量大小为V 110210201046=⨯⨯⨯--基波的有效值为())(39.118sin 210101010sin 210264V ≈=⨯⨯⨯- πππ二次谐波分量的有效值为())(32.136sin 251010102sin 21064V ≈=⨯⨯⨯- πππ三次谐波分量的有效值为())(21.1524sin 32101010103sin 2310264V ≈=⨯⨯⨯⨯- πππ3-3 若周期矩形信号)(1t f 和)(2t f 的波形如图3-2所示,)(1t f 的参数为s μτ5.0=,s T μ1= ,V E 1=; )(2t f 的参数为s μτ5.1=,s T μ3= ,V E 3=,分别求:(1))(1t f 的谱线间隔和带宽(第一零点位置),频率单位以kHz 表示; (2))(2t f 的谱线间隔和带宽; (3))(1t f 与)(2t f 的基波幅度之比; (4))(1t f 基波与)(2t f 三次谐波幅度之比。
信号与系统123章习题课

十、信号f1(t),f2(t)的波形如图(a)、(b)所示,设f(t)= f1(t)*f2(t),求f(t)分别在t=4,6,8时的数值。
f 1(t) 2 1 2 f 2(t)
0
2
4
6
t
0
1
3
t
十一、某LTI连续系统,初始状态一定,已知当输入f1(t) = (t)时,系统的全响应y1(t)= –e – t(t);当输入f2(t)= (t) 时,系统的全响应y2(t)= (1–5e – t)(t); 求当输入f3(t) = t(t)时,系统的全响应y3(t)。
六、(2)一LTI连续系统,当输入f1(t)时的零状态响应 yzs1(t)如图(a)所示,求输入f2(t)[如图(b)所示]时系统的 零状态响应yzs2(t)(写出表达式或画出图形均可)。
yzs1(t) f1(t) 1 0 2 t 0 (a) 1 2 t -1 0 2 2 1 1 (b) 2 t f2(t)
求系统的单位序列响应h(k)。
十七、线性时不变系统输入f(t)与零状态响应y(t)之间 的关系为: t y(t ) e (t ) f ( 2) d
(1)求系统的单位冲激响应h(t); (2)求当f(t)=(t+1)–(t–2)时的零状态响应。
-1 f1(k) 2 1 -2 0 1 (a) 2 3 k -1 0 -1 (b) 1 2 3 k 1 f2(k)
十四、已知某LTI离散系统,当输入为(k–1)时,系统的 零状态响应为 1 k
(k 1) 2
试计算输入为f(k)=2(k)+(k)时,系统的零状态响应y(k)。
七、一连续LTI系统的输入、输出方程为 2y'(t) + 3y(t) = f'(t) 已知 f(t)=ε(t) ,y(0-) =1,则y(0+)=_______________。 八、(1)试求图示系统的冲激响应h(t)。
信号与系统(习题课)

∴ y(t) = e-3t + t e-3t = (1+ t) e-3t
by wky
习题 3-6 (1)
已知系统的微分方程为 y’’(t) +5 y’(t) + 4 y(t) =2 f ’(t) + 5f(t), t >0; 初始状态y(0-) =1,y’(0-) =5, 求系统的零输入响应yx(t)。 解:系统特征方程为 s2+5s+4=0 , 解得特征根 s1=-1, s2=-4
特解 (强迫响应)
比较:完全响应=零输入响应 + 零状态响应 = e-t + (1 - 1/2e-t -1/2e-3t)
by wky
习题 3-4
已知微分方程为 y’(t) + 3 y (t) = f(t),t >0; y(0) =1,
求系统的固有响应(齐次解) yh(t)、强迫响应 (特解) yp(t)和完全响应(全解) y(t) 解:系统特征方程为 s+3=0,
f(t)
f(-t)
2
2
1
1
-3 -2 -1 0 1 2 3 t -3 -2 -1 0 1 2 3 t
2 f(t+2)
f(-3t)
2
1
1
-3 -2 -1 0 1 2 3 t -3 -2 -1 0 1 2 3 t by wky
2-10 已知信号波形, 绘出下列信号波形
f(t)
f(-t)
2
2
1
1
-3 -2 -1 0 1 2 3 t -3 -2 -1 0 1 2 3 t
信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
信号与线性系统分析习题答案

信号与线性系统课后答案第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t (5))tf=r(sin)(t(7))tf kε(k=(2)(10))f kεk-=(k+]()1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。
又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。
∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。
2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。
信号与系统习题课(傅里叶变换

才有
F
(ω
)
=
(
1 jω
)2
F
⎡ d2
⎢ ⎣
dt
2
f
( t ) ⎤⎥
⎦
Signals and Systems, Tsinghua University
7
强调
由
F
⎡d ⎢⎣ dt
f
( t )⎤⎥⎦
= Φ(ω)
得到
F
⎡⎣
f
(t )⎤⎦
=
1 jω
Φ (ω )
实际上是引用了FT的积分性质.
因此要考虑 f (−∞) = 0
法二,频移
F(ω) = F0(ω +ω0)+ F(ω −ω0)
求出f0(t)后,
1 F0(ω)
ω
−ω1 0 ω1
[ ] f (t) = f0(t) ejωt +e−jωt =2f0(t)cosω0t
如何求f0S(igt)na?ls
and
定义、对称性、查表。
Systems, Tsinghua University
−2
−1
1
( ) ejω −e−jω ejω +e−jω − ej2ω +e−j2ω
=2
+
jω
ω2
= ......
(1)计算量大;(2)一些函数积分不收敛。
Signals and Systems, Tsinghua University
法二,利用FT的微积分性质
4 1 f(t)
思路:
f
(t
)
d
⎯⎯dt→δ
Φ(0) = 0
Signals and Systems, Tsinghua University
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出
和
的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:
和
可化简为
故
,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
123习题课
一、计算下列积分或和:
t 4 (1) (t 2)( )dt ______________ 2
2
( 2)
k
t
δ(t)+ε(t) (1 x)( x)dx ______________
1 2ε(t) (3) 2t (1 2 ) d _____________
(k 1) 2
试计算输入为f(k)=2(k)+(k)时,系统的零状态响应y(k)。
第0-11页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
十五、某LTI离散系统的单位脉冲响应 h(k)= (k) –2 (k –1) +3 (k –2) ,系统的输入 f(k)= 3(k) +2 (k –1) – (k –2) ,求yzs(k),并画图形。
1 , k 0 f (k ) 4 , k 1,2 0 , 其余 0 , k 0 时,其零状态响应 y(k ) 9 , k 0
十六、若已知某LTI系统的输入为
求系统的单位序列响应h(k)。
第0-12页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 十七、线性时不变系统输入f(t)与零状态响应y(t)之间 的关系为: t y(t ) e (t ) f ( 2) d
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
三、(1)已知f(t)的波形如图所示, 画出 d f (1 2t ) 的波形。
dt
f(t) 4 2
-2
0
2
t
(2)已知f(–2t+1)波形如图所示,试画出f(t)的波形。
f(-2t+1) 1 0 -1 (2)
-0.5
0.5
1
t
第0-3页
(b) f2(t)
2
t
(a) f1(t)及其零状态响应
第0-6页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 七、一连续LTI系统的输入、输出方程为 2y'(t) + 3y(t) = f '(t) 已知 f(t)=ε(t) ,y(0–) =1,则y(0+)=_______________。 八、(1)试求图示系统的冲激响应h(t)。
第0-9页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 十二、描述某LTI离散系统的差分方程为 y(k) + 3y(k –1)+ 2y(k –2) = 2f(k) +3f(k –1) 求该系统的单位脉冲响应h(k)。 十三、离散序列f1(k)和f2(k)如题图(a)、(b)所示。设 y(k) = f1(k)﹡f2(k),则y(2)等于
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 四、用下列微分方程描述的系统为线性时变系统是 (A) y"(t) + 2y'(t) y(t) = 2 f (t) (B) y"(t) + 2y'(t)+ y(t) = 2 f (1 – t) (C) y"(t) + 2 y'(t)+ 5y(t) = 2 f 2(2t) (D) y"(t) + 2y'(t)+ y(t) = 2 f (t –1) 五、某离散系统的全响应为
2
f(t)
∑
1
∫
∑
y (t)
第0-7页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 八、(2)某线性时不变系统的输入输出方程为 y〃(t) + 2y'(t) + 2y(t) = f '(t)+3f(t) (a) 求该系统的冲激响应h(t)。 (b) 若f(t)=ε(t),y(0+)=1,y'(0+)=3,求系统的零输入响 应yzi(t)。 九、(1)已知f(t)=e2t(–t),h(t)=(t–3),计算卷积 y(t)=f(t)﹡h(t),并绘出y(t)的波形。 (2)一线性时不变连续系统的阶跃响应 g(t)=(1.5 – t – 1.5e –2t)ε(t) 输入信号f(t) = et,–∞<t<∞,求系统的零状态响应yzs(t)。
(A) -1 (C) 1 (B) 0 (D) 3
-1 f1(k) 2 1 -2 0 1 2 3 k -1 0 -1 1 2 3 k 1 f2(k)
第0-10页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 十四、已知某LTI离散系统,当输入为(k–1)时,系统的 零状态响应为 1 k
信号与系统 电子教案 二、试确定下列信号周期: (1)f(t)=3cos (4t+ ) 3 (A) 2 (B) (C) /2 (D) 2/
(2)f(k)=2cos ( k)+sin ( k)+sin ( k) 8 4 2
(A) 8 (B) 16 (C) 2 (D) 4
第0-2页
第0-5页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案 六、(2)一LTI连续系统,当输入为f1(t)时的零状态响 应yzs1(t)如图(a)所示,求输入为f2(t)[如图(b)所示]时系统 的零状态响应yzs2(t)(写出表达式或画出图形均可)。
f1(t) 1 0 2 t 0 1 2 t -1 0 yzs1(t) 2 2 f2(t) 1 1
第0-8页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
十、信号f1(t),f2(t)的波形如图所示,设f(t)= f1(t)﹡f2(t), 求f(t)分别在t=4,6,8时的数值。
f 1(t) 2 1 2 f 2(t)
0
2
4
6
t
0
1
3
t
十一、某LTI连续系统,初始状态一定,已知当输入f1(t) = (t)时,系统的全响应y1(t)= –e – t(t);当输入f2(t)= (t) 时,系统的全响应y2(t)= (1–5e – t)(t); 求当输入f3(t) = t(t)时,系统的全响应y3(t)。
6
( 4) ( 5) ( 6)
第0-1页
n
(2 n) k Βιβλιοθήκη ε( k–2) _______
2 ( k 2 4k 5)(k 1) _____
1
3
e [(t ) (1 0.5t )]d t
2t
2 _______
复合
■
©西安电子科技大学电路与系统教研中心
(1)求系统的单位冲激响应h(t); (2)求当f(t)= (t+1) – (t–2)时的零状态响应。
第0-13页
■
©西安电子科技大学电路与系统教研中心
y(k ) a k x(0) b f (k )
,k≥0
式中,a,b为常数,x(0)为初始状态,在k=0时接入激 励f(k);试分析该系统是否是线性系统?是否是时不 变系统?(写出分析过程。)
第0-4页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
六、(1)某LTI因果连续系统,起始状态为x(0–),输入、 输出分别为f(t)、y(t)。已知当x(0–) = 1,输入因果信号f1(t) 时,全响应y1(t) = e–t + cos t,t≥0;当x(0–) = 2,输入信号 为f2(t)=3f1(t)时,全响应y2(t) = –2e–t + 3cos t,t≥0;求当 x(0–) = 3,输入f3(t)=5f1(t –1)时,系统的全响应y3(t),t≥0。