函数、极限、连续与导数练习题
经济数学第一章练习题

经济数学第一章练习题一、函数与极限1. 判断下列函数的单调性:(1) f(x) = 2x + 3(2) f(x) = x^2 + 4x + 1(3) f(x) = e^x 2x2. 求下列极限:(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→+∞) (1 + 1/x)^x3. 讨论下列函数在指定区间内的连续性:(1) f(x) = |x|,区间为[1, 1](2) f(x) = sqrt(4 x^2),区间为[2, 2]二、导数与微分1. 求下列函数的导数:(1) f(x) = 3x^2 2x + 1(2) f(x) = ln(x + 1)(3) f(x) = e^x sin x2. 计算下列函数的微分:(1) f(x) = x^3 2x^2 + 3x 4(2) f(x) = arcsin(x/2)3. 求下列隐函数的导数:(1) y = e^(x + y)(2) x^2 + y^2 = 4三、高阶导数与微分方程1. 求下列函数的二阶导数:(1) f(x) = x^4 3x^3 + 2x^2(2) f(x) = ln(x^2 + 1)2. 求下列微分方程的通解:(1) y' + y = x(2) y'' 2y' + y = e^x3. 求下列微分方程的特解:(1) y' = 2x + y,初始条件为y(0) = 1(2) y'' + y = sin x,初始条件为y(0) = 0,y'(0) = 1四、泰勒公式与应用1. 将下列函数在指定点处展开成泰勒级数:(1) f(x) = e^x,展开点为x = 0(2) f(x) = sin x,展开点为x = π/22. 利用泰勒公式求下列极限:(1) lim(x→0) (1 cos x) / x^2(2) lim(x→0) (e^(x^2) 1 x^2) / x^43. 计算下列函数的近似值:(1) f(x) = sqrt(1 + x),当x = 0.01时(2) f(x) = ln(1 + x),当x = 0.1时五、多元函数微分法1. 计算下列多元函数的偏导数:(1) z = x^2 + y^2,对x和y求偏导数(2) u = sin(xy) + e^z,对x、y和z求偏导数2. 求下列函数的全微分:(1) z = x^2y + y^2x(2) u = ln(xyz)3. 验证下列函数是否满足拉格朗日中值定理:(1) f(x, y) = x^2 + y^2,在直线y = x上(2) f(x, y) = e^(x^2 + y^2),在圆x^2 + y^2 = 1上六、极值与条件极值1. 求下列函数的极值:(1) f(x) = x^3 3x^2 + 2(2) f(x, y) = x^2 + y^2 2x 4y + 52. 求下列函数在给定区间上的最大值和最小值:(1) f(x) = x^2 + 4x,区间为[0, 3](2) f(x, y) = x^2 + y^2,在圆x^2 + y^2 = 4内3. 求下列条件极值问题:(1) max f(x, y) = x + y,约束条件为x^2 + y^2 = 1(2) min f(x, y, z) = x + y + z,约束条件为x^2 + y^2 + z^2 = 4,x + y + z = 1七、积分与定积分的应用1. 计算下列不定积分:(1) ∫(3x^2 2x + 1)dx(2) ∫(e^x sin x)dx2. 计算下列定积分:(1) ∫_{0}^{1} (x^2 + 1)dx(2) ∫_{π/2}^{π/2} (cos x)dx3. 利用定积分求解下列实际问题:(1) 计算由曲线y = x^2与直线x = 1,y = 0围成的平面图形的面积(2) 计算由曲线y = e^x,直线x = 0,y = e及y轴围成的平面图形的体积八、多元积分1. 计算下列二重积分:(1) ∬_D (x^2 + y^2)dxdy,其中D为圆x^2 + y^2 ≤ 1(2) ∬_D (e^(x + y))dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 22. 计算下列三重积分:(1) ∭_E (x + y + z)dV,其中E为长方体0 ≤ x ≤ 1,0 ≤ y ≤ 2,0 ≤ z ≤ 3(2) ∭_E (xyz)dV,其中E为球体x^2 + y^2 + z^2 ≤ 13. 利用二重积分求解下列实际问题:(1) 计算由抛物线y = x^2与直线x = 1,y = 0围成的平面图形绕x轴旋转一周所形成的旋转体的体积(2) 计算由曲面z = x^2 + y^2与平面z = 4围成的立体图形的体积答案一、函数与极限1. (1) 单调递增(2) 单调递减(3) 单调递增2. (1) 1(2) 2(3) e3. (1) 在[1, 1]上连续(2) 在[2, 2]上连续,但在x = ±2处不连续二、导数与微分1. (1) f'(x) = 6x 2(2) f'(x) = 1 / (x + 1)(3) f'(x) = e^x sin x + e^x cos x2. (1) df(x) = (6x^2 4x + 3)dx(2) df(x) = (1 / sqrt(1 (x/2)^2))dx3. (1) y' = (e^(x + y) y') / e^(x + y)(2) y' = x / y三、高阶导数与微分方程1. (1) f''(x) = 12x^2 12x(2) f''(x) = 2 / (x^2 + 1)^22. (1) y = C e^(x) + x(2) y = C1 e^x + C2 e^(x)3. (1) y = x + 1(2) y = (1/2) sin x (1/2) cos x四、泰勒公式与应用1. (1) e^x = 1 + x + x^2/2! + x^3/3! +(2) sin x = 1 (x π/2)^2/2! + (x π/2)^4/4!2. (1) 1/2(2) 1/23. (1) f(0.01) ≈ 1.005(2) f(0.1) ≈ 0.09516五、多元函数微分法1. (1) ∂z/∂x = 2x,∂z/∂y = 2y(2) ∂u/∂x = y cos(xy),∂u/∂y = x cos(xy),∂u/∂z = e^z2. (1) dz = (2xy + y^2)dx + (x^2 + 2xy)dy(2) du = (1/x + 1/y + 1/z)dx + (1/x + 1/y + 1/z)dy + (1/x + 1/y + 1/z)dz3. (1) 满足(2) 满足六、极值与条件极值1. (1) 极大值f(1) = 0,极小值f(2/3) = 4/27(2) 极小值f(1, 2) = 52. (1) 最大值f(3) = 3,最小值f(1) = 1(2) 最大值f(0, 2) = 4,最小值f(0, 2) = 03. (1) 最大值f(√2/2, √2/2)= √2(2) 最小值f(1, 0, 0) = 1七、积分与定积分的应用1. (1) (x^3 x^2 + x) + C(2) (e^x + cos x) + C2. (1) 5/3(2) 23. (1) 1/3 π(2) (e^2 e)π八、多元积分1. (1) π(2) e^2 12. (1) 3(2) 0(因为积分区域关于y轴对称,被积函数关于x为奇函数)3. (1) (2/3)π(2) (π/6)。
微积分复习题集带参考答案(二)

微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
高三数学第2、3章《极限》《导数》测试及答案

高三数学第2、3章《极限》《导数》测试及答案一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中只有一个选项正确 1.(理)若复数z 满足方程022=+z ,则=3z( )A .22±B . 22-C .i 22-D . i 22±(文)曲线y=4x -x 3在点(-1,-3)处的切线方程是( )A . y=7x+4B . y=7x+2C . y=x -4D . y=x -22.函数y=x 2(-21≤x ≤21)图像上一点P,以点P 为切点的切线为直线l,则直线l 的倾斜角的范围是( )A .[0,4π]∪[43π,π]B .[0,π]C .[4π,43π]D .[0,4π]∪(2π,43π) 3.(理)若2lim →x 434222=--+x ax x ,则a 的值为( )A .0B .1C .-1D .21(文)在曲线y=x 2+1的图像上取一点(1,2)及邻近一点(1+Δx ,2+Δy ),则yx∆∆为( ) A .Δx+x∆1+2 B .Δx -x ∆1-2 C .Δx+2D .2+Δx -x ∆14.曲线y=51x 5+3x 2+4x 在x =-1处的切线的倾斜角是( )A .-4πB .4πC .43πD .45π5.函数f(x)=x 3-ax 2-bx+a 2在x=1时,有极值10,则a 、b 的值为( )A .⎩⎨⎧=-=⎩⎨⎧-==1143,3b a b a 或 B .⎩⎨⎧==⎩⎨⎧=-=1141,4b -a b a 或 C .⎩⎨⎧=-=51b aD .以上皆错6.(理)已知()23,12,1x x f x x +≠⎧=⎨=⎩,下面结论正确的是( )A .()f x 在1x =处连续B .()5f x =C .()1lim 2x f x -→= D .()1lim 5x f x +→=(文)设f (x )=a x 3+3x 2+2,若f ′(-1)=4,则a 的值等于A .319B .316 C .313 D .3107.函数f(x )=x 3-3x +1,x ∈[-3,0]的最大值、最小值分别是( )A .1,-1B .1,-17C .3, -17D .9,-198.(理)数列{a n }中,a 1=1,S n 是前n 项和.当n ≥2时,a n =3S n ,则∞→n lim311-++n n S S 的值是( )A .-31B .-2C .1D .-54(文)曲线y=x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y=3x -4B .y=-3x+2C .y=-4x+3D .y=4x -5 9.(理)2+23i 的平方根是( )A .3+iB .3±iC .±3+iD .±(3+i)(文)已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对10.已知函数)(x f x y '=的图像如右图所示(其中 )(x f '是函数)(x f 的导函数),下面四个图像中)(x f y =的图像大致是11.设f(x)、g(x)分别是定义在R 上的奇函数和偶函数,当x <0时,)()()()(x g x f x g x f '-' >0.且g(3)=0.则不等式f(x)g(x)<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0, 3)C .(-∞,- 3)∪(3,+∞)D .(-∞,- 3)∪(0, 3)12.已知两点O (0,0),Q (a ,b ),点P 1是线段OQ 的中点,点P 2是线段QP 1的中点,P 3是线段P 1P 2的中点,┅,2+n P 是线段n P 1+n P 的中点,则点n P 的极限位置应是( ) A .(2a ,2b) B .(3,3b a ) C .(32,32b a ) D . (43,43ba )二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.垂直于直线2x -6y+1=0且与曲线y=x 3+3x 2-1相切的直线方程的一般式是__________.14.(理) (2006年安徽卷)设常数0a >,42ax ⎛ ⎝展开式中3x 的系数为32,则2lim()n n a a a →∞++⋅⋅⋅+=_____.(文)(2006福建高考)已知直线10x y --=与抛物线2y ax =相切,则______.a = 15.函数f(x)=2x 3+3x 2-12x -5,则函数f(x)的单调增区间是______. 16.(理)用数学归纳法证)"(212111211214131211"*N n nn n n n ∈+++++=--++-+- 的过程中,当n=k 到n=k+1时,左边所增加的项为_______________.(文)若函数f (x )=x 3+x 2+mx+1是R 上的单调递增函数,则m 的取值范围是______________.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)(理)设函数⎪⎪⎩⎪⎪⎨⎧≥-<≤-+-<≤<=)3(4)31(24)10()0(0)(2x xx x x x x x x f(1)画出函数的图像;(2)在x=0,x=3处函数)(x f 是否连续; (3)求函数)(x f 的连续区间. (文)已知函数ax ax x f 313)(23-+-=. (1)讨论函数)(x f 的单调性;(2)若曲线)(x f y =上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实数a 的取值范围.18.(本题满分12分)(理)已知复数z 1=cosθ-i ,z 2=sinθ+i ,求| z 1·z 2|的最大值和最小值.(文)(2006福建高考)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区间[]1,4-上的最大值是12。
高等数学作业题及参考答案

高等数学作业题(一)第一章 函数1、填空题(1)函数1142-+-=x x y 的定义域是 2、选择题(1)下列函数是初等函数的是( )。
A.3sin -=x y B.1sin -=x y C.⎪⎩⎪⎨⎧=≠--=1,01,112x x x x yD. ⎩⎨⎧≥<+=0,0,1x x x x y (2)xy 1sin =在定义域内是( )。
A. 单调函数 B. 周期函数 C. 无界函数 D. 有界函数3、求函数2)1ln(++-=x x y 的定义域4、设,1)(2+-=x x x f 计算xf x f ∆-∆+)2()2(5、要做一个容积为250立方米的无盖圆柱体蓄水池,已知池底单位造价为池壁单位造价的两倍,设池底单位造价为a 元,试将总造价表示为底半径的函数。
6、把一个圆形铁片,自中心处剪去中心角为α的一扇形后,围成一个无底圆锥,试将此圆锥体积表达成α的函数。
第二章 极限与连续1、填空题(1)32+=x y 的间断点是 (2)0=x 是函数x x y +=1的第 类间断点。
(3)若极限a x f x =∞→)(lim 存在,则称直线a y =为曲线=y ()x f 的 渐近线。
(4)有界函数与无穷小的乘积是(5)当0→x ,函数x 3sin 与x 是 无穷小。
(6)xx x 1)21(lim 0+→= (7)若一个数列{}n x ,当n 时,无限接近于某一个常数a ,则称a 为数列{}n x 的极限。
(8)若存在实数0>M ,使得对于任何的R x ∈,都有()M x f <,且()0lim 0=→x g x , 则()()=→x g x f x 0lim (9)设x y 3sin =,则=''y(10) x x x)211(lim -∞→=2、选择题(1)xx x sin lim 0→的值为( )。
A.1 B.∞ C.不存在 D.0 (2)当x →0时,与3100x x +等价的无穷小量是( )。
微积分综合练习题与参考答案完美版

微积分综合练习题与参考答案完美版综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k 2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e2)(='')0(f 2-(1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=-答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-=综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .xe C .2xD .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
高等数学习题及解答(极限,连续与导数)

高等数学习题库淮南联合大学基础部2008年10月第一章 映射,极限,连续习题一 集合与实数集基本能力层次:1: 已知:A ={x|1≤x ≤2}∪{x|5≤x ≤6}∪{3},B={y|2≤y ≤3} 求:在直角坐标系内画出 A ×B解:如图所示A ×B ={(x,y )| ,x A y B ∈∈ }.2:证明:∵ P 为正整数,∴p =2n 或p =2n+1,当p =2n+1时,p 2=4n 2+4n+1,不能被2整除,故p =2n 。
即结论成立。
基本理论层次:习题二 函数、数列与函数极限基本能力层次1:解:2:证明:由得cxy ay ax b -=+即 ay bx cy a+=-,所以 ()x f y = 所以命题成立3:(1)22x y -= (2)lg(sin )y x x =+(3 []y x = (4)0,01,0x y x ≥⎧⎫=⎨⎬<⎩⎭解:4:用极限定义证明: 1lim1n n n →∞-=(不作要求)证明:因为 ω∀ 有11|1|n n n ω--=<成立,只要1n ω>取N =[1ω],则当n>N 时,就有11|1|n n nω--=<有定义变知1lim 1n n n →∞-=成立5:求下列数列的极限(1)lim 3n n n→∞ (2)222312limn n n →∞+++(3)(4)1lim 1n n→∞+解:(1) 233nn n n <,又2lim 03n n x →∞=,所以 0lim 03n n n →∞≤≤ , 故:lim 3n n n →∞=0 (2)由于2223312(1)(21)111(1)(2)6n n n n n n n n n+++++==++又因为:1111lim (1)(2)63n n n n →∞++=,所以:2223121lim3n n n →∞+++ (3)因为:所以:(4) 因为:11111n n n ≤+≤+,并且1lim(1)1n n →∞+=, 故由夹逼原理得111n n+=6:解:由于7:解:8:9:习题三无穷小与无穷大、极限运算法则及两个重要极限基本理论层次1:解:同理:(3),(4)习题四无穷小的比较、函数的连续及性质基本理论层次1:(1)(2)2:第二章一元微分学及应用习题一导数及求导法则、反函数及复合函数的导数.基本理论层次21,1,,,,1()(1)(1)lim lim 1x a b x bx x f x f bx x ⎧+≥⎪⎨-+<⎪⎩-+-==-2222-ax 1.设f(x)=试求常数使f(x)在x=1处可导。
微积分练习1

C.非奇非偶函数
函数奇, 偶性定义 : 1.若对任意x, 恒有f ( x) = f ( x), 则称f ( x)为偶函数.
2.若对任意x, 恒有f ( x) = f ( x), 则称f ( x)为奇函数.
解: 设f ( x) = x sin x, 则 f ( x) = ( x) sin( x) = ( x)( sin x) = x sin x = f ( x)
说明 : 函数的间断点一般是使 分母为0的点.
解 : 令x + 1 = 0 x = 1
导数基本公式
(1) ( 2) (3) ( 4) (5) ( 6) (7 ) (8) (9 ) (10 ) (c )' = 0 (c为常数 ) (α为任意实数 ) ( a > 0, a ≠ 1) ( a > 0, a ≠ 1) ( x α ) ' = α xα 1 ( a x ) ' = a x ln a (e x ) ' = e x (log a x ) ' = 1 x ln a
2
ax + bx+ c < 0
2
(a, b, c均为常数 且a > 0) , x > x2或 x < x1 x <x<x
1
2
( x位于两根之外 )
( x位于两根之内)
堂上练习: 1 1 函数f ( x) = , 的定义域是 (2,3) U (3,+∞) . ln( x 2) 1 2, 函数f ( x) = + 5 x的定义域是 ( 1,0 ) U (0,5] . ln( x + 1)
x →0 x →0
.
B .2
C.1
D .0
高等数学第一章测试题

高等数学第一章测试题测试题一:导数与求导法则1. 求以下函数的导数:(a) $y = 3x^4 - 2x^3 + 5x^2 - 7x + 4$(b) $y = \sqrt{2x^3 + 5x^2 - 3x + 1}$(c) $y = e^x \cdot \ln{x} + \frac{1}{\sqrt{x}}$2. 利用导数的定义计算以下函数在给定点处的导数:(a) $f(x) = 3x^2 + 2x + 1$,在点$x = 2$处的导数(b) $g(x) = \frac{1}{x^2}$,在点$x = -1$处的导数(c) $h(x) = \sin{x}$,在点$x = \frac{\pi}{4}$处的导数3. 根据给定函数的导数,确定函数的表达式:(a) 已知函数$f'(x) = 2x^3 - 3x^2 + 5x - 1$,求$f(x)$。
(b) 已知函数$g'(x) = \frac{1}{x^2} - 3x$,求$g(x)$。
(c) 已知函数$h'(x) = e^x \cdot \cos{x}$,求$h(x)$。
测试题二:微分与应用1. 计算以下函数在给定点处的微分:(a) $y = \sqrt{x^2 + 3x + 2}$,在点$x = 2$处的微分(b) $y = e^x \cdot \ln{x}$,在点$x = 1$处的微分(c) $y = \sin{x} \cdot \cos{2x}$,在点$x = \frac{\pi}{6}$处的微分2. 使用微分,求以下函数的近似值:(a) $f(x) = \sqrt[3]{x}$,当$x$接近于$8$时的近似值(b) $g(x) = \ln{(1 + x)}$,当$x$接近于$0$时的近似值(c) $h(x) = e^{2x}$,当$x$接近于$0$时的近似值3. 利用微分进一步求解以下问题:(a) 当物体从起点开始以速度$v(t) = 5t - 2$移动时,求$t = 3$时的位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、函数、极限、连续练习题
1.01lim sin x x x
→⋅=( ). A .1 B . 0
C .不存在
D .∞ 2. 设()f x 的定义域是[0,1],则(tan )f arc x 的定义域为( ).
A.[0,1]
B.[0,]4π
C.[0,tan1]
D.(,)22
ππ-
3.1()arctan f x x
=的连续区间为( ). A .(,3)-∞ B .(,3]-∞ C .(,0)(0,3]-∞和 D .(,0)(0,3)-∞和
4.当x →+∞时,对数函数ln x 、幂函数()n x n 为正整数、指数函数(0)x e λλ> 增大速度最快的是( ).
A. ln x
B. n x C . x e λ D. 一样快
5.当0x →时,2cos x x x e e -是n x 的同阶无穷小,则n 为( ).
A .5
B .4
C .52
D .2 6.已知2
lim()01
x x ax b x →∞--=+,其中a,b 是常数,则( )。
()1,1()1,1()1,1()1,1A a b B a b C a b D a b ===-===-=-=-
7. 设函数22132
x y x x -=-+,则1x =是它的( ). A .跳跃间断点 B .可去间断点 C .无穷间断点 D .振荡间断点
8.设函数11,0()ln(1),10
x e x f x x x -⎧⎪>=⎨⎪+-<≤⎩ 则0x =是( ).
A .可去间断点
B .跳跃间断点
C .无穷间断点
D .振荡间断点 9.设()f x 在2x =连续,且2()3lim 2
x f x x →--存在,则(2)f =________. 10.设22,0,0(),()2,0,0x x x x g x f x x x x x -≤⎧<⎧==⎨⎨+>-≥⎩⎩
,则[()]g f x =_____________.
11.已知()2
cos ,0(),0x x x f x a x -⎧≠⎪=⎨=⎪⎩在0x =连续,则a = .
12.设函数21sin ,01(),0ln(12),0x x x x e f x b x x a x x ⎧⎪<⎪-⎪⎪==⎨⎪+⎪+>⎪⎪⎩
在(,)-∞+∞上是连续函数,则
a =____,b=_____.
13.设,1()2,1x x f x x x ⎧≤⎪=⎨->⎪⎩
,试讨论11lim ()lim ()x x f x f x →→-及 14、讨论函数221()lim 1n
n
n x f x x x →∞-=+的连续性。
若有间断点,判别其类型。
15. 求极限30tan sin lim sin x x x x →-;123
0(1)1lim cos 1x x x →+--; sin 0lim x x x +→; 123lim()6x
x x x -→∞++;
21lim 2
x x x →+- 二.导数练习题
1.函数sin y x =在0x =点( ).
A. 连续且可导
B. 连续但不可导
C. 既不连续也不可导
D.以上说法都不对
2.设函数3()1()f x x x ϕ=-,其中()x ϕ在x=1处连续,则(1)0ϕ=是()f x 在x=1处可导的( )条件.
A.充分必要
B.必要不充分
C.充分不必要
D.既不充分也不必要
3.下列函数中,在0x =处可导的是( ).
A .221,0()1,0x x h x x x ->⎧=⎨-≤⎩ B
.()g x =C .1()1f x x =- D .223,0()3,0x x s x x x -≤⎧=⎨+>⎩
4.设 322,1()3,1x x f x x x ⎧≤⎪=⎨⎪>⎩
,则函数在1x =的( ).
A .左、右导数都存在
B .左、右导数都不存在
C .左导数不存在,右导数存在
D .左导数存在,右导数不存在
5.函数()f x 为可导函数,且满条件12)1()1(lim
0-=--→x
x f f x ,则曲线在点(1,(1))f 处的切线斜率是( ).
A .2
B .1-
C .12
D .2- 6.设(0)2f '= 且(0)0f =, 则2lim ()h hf h
→∞=( ). A. 4 B. 3 C. 2 D. 1
7.设1arctan |_____x
x dy y e dx ==-=则 8.设函数()f x 在x=0可导,且()(0)2()f x f x x α=++,又0()lim 0x x x α→=, 则(0)f '=__________.
9.已知(0)1f '=,则0(2)()lim h f h f h h
→--= . 10.已知()(1)(12)
(1)f x x x nx =+++,则()(0)n f = . 11.函数sin y x =的n 阶导数公式为 .
12.设函数2x y x e =,则(10)y = .
13.设()()(),().f x x a x x x a f a ϕϕ'=-=其中()在连续,求
14.求(ln x y e =的微分dy .
15.求函数y =.
16.求参数方程32ln(1)x t t y t t
=-+⎧⎨=+⎩所确定的函数的二阶导数22d y dx . 17.求由方程1sin 02
x y y -+=所确定的隐函数的二阶导数22d y dx .
184位数字.。