微积分的历史背景
微积分创立的背景与过程

微积分创立的背景与过程微积分是一门综合性的数学学科,它是由牛顿、莱布尼茨等数学家在17世纪末发明的。
微积分的发明是为了解决物理学中的一些问题,如速度、加速度等,因此,它是在物理学的研究中发展起来的。
微积分是研究函数和它们的变化率、极限、积分等的一门数学学科。
微积分的创立过程、背景和发展历程是非常复杂的,这篇文章将从以下几个方面进行介绍。
1. 微积分的背景微积分的发展背景是欧洲文艺复兴时期的科学繁荣。
在这个时期,人们开始追求自由和民主,同时也开始研究自然界和宇宙的规律。
牛顿、莱布尼茨等数学家在这个时期提出了微积分的概念,为物理学和其他科学领域的研究提供了新的数学工具。
2. 微积分的发展过程微积分的发展过程非常漫长,它由牛顿、莱布尼茨等数学家在不同的时间、不同的地方进行研究。
牛顿在1665年至1666年间,在农村避瘟疫的时候,开始研究运动的规律。
他发现物体的速度在不断变化,而速度的变化率就是加速度。
牛顿发明了微积分的基本概念,即导数和积分,从而解决了运动学中的很多问题。
莱布尼茨则在牛顿之后,于1675年左右独立发明了微积分。
他发现导数和积分是可以互相转换的,从而大大简化了微积分的运算。
莱布尼茨还发明了微积分符号,这使得微积分的表达更加简单和精确。
3. 微积分的应用微积分的应用非常广泛,它是物理学、工程学、经济学、生物学、化学等学科中不可或缺的工具。
在物理学中,微积分可以用来研究物体的运动、力学、电磁学等问题。
在工程学中,微积分可以用来设计建筑物、桥梁、道路等。
在经济学中,微积分可以用来研究市场供求关系、价格变动等。
在生物学中,微积分可以用来研究动植物的生长、繁殖等。
在化学中,微积分可以用来研究化学反应的速率、平衡等。
微积分的发明是人类智慧的结晶,它在解决物理学和其他科学领域的问题中发挥了重要作用。
微积分的发展历程是一个漫长而复杂的过程,但它对人类的进步和发展做出了巨大的贡献。
微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。
微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。
1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。
1661年牛顿进入剑桥大学三一学院,受教于巴罗。
笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。
牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。
1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。
在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。
这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。
正是在这种意义下,牛顿创立了微积分。
牛顿对于发表自己的科学著作持非常谨慎的态度。
1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。
而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。
1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。
1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。
这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。
中国微积分的发展历程

中国微积分的发展历程微积分是数学中的一个重要分支,也是物理、工程、经济学等学科中的基础知识之一,其发展经历了漫长而曲折的历程。
而中国微积分的发展历程更是充满了变化和发展的阵痛,下文将分步骤介绍中国微积分的发展历程。
一、受西方文化影响引入微积分近代以来,随着中国与西方国家的交往不断密切,西方文化开始在中国大地上广泛传播。
在这种背景下,西方的数学知识也渐渐传入中国,并在近代中国的各个领域得到了广泛的应用。
而微积分正是其中之一,最早引入中国的微积分知识可能要追溯到19世纪初。
二、创造性应用微积分研究国家实际问题20世纪初,中国开始走上了工业化的道路,这使得微积分理论的应用变得更加迫切。
此时一批数学家开始探索如何将微积分理论应用于工业、科学和经济领域,以带动国家的发展。
1927年,中国数学巨匠华罗庚发表了一篇《初等微积分教程》,为中国微积分的发展铺平了道路。
而后,华罗庚等一批中国数学名家,将微积分的理论与实际问题相结合,得到了大量成功的创新成果,其中最著名的便是华罗庚推导不等式和中国剩余定理。
三、微积分与现代科技紧密结合随着科学技术的不断发展,人们对微积分理论的应用越来越深入。
微积分理论不仅在数学中发挥着巨大的作用,而且在现代科技领域如工程、电子、通讯等方面也得到了广泛应用。
20世纪80年代以来,数学家们集中力量发展微积分理论,形成了微积分的“新发现”,如局部解析,调和分析,BVP理论等,为现代科技应用打下了坚实的理论基础。
四、探索大数据时代下的微积分进入21世纪,人类进入大数据时代,微积分理论的研究也跟随时代的变迁而变得更加深入和广泛。
在计算机技术高度发达的今天,微积分无疑是数据科学和人工智能等领域的重要基础知识。
微积分与数据科学的结合,可以为人们提供更快、更准确、更高效的数据分析和处理方法。
同时,微积分在人工智能领域也有重要应用,如深度学习、模式识别等技术,正是微积分理论的深入研究和开发让这些技术得以顺利推广。
微积分发展简史

微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。
在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。
在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。
但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。
他的"割圆术"开创了圆周率研究的新纪元。
刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。
用他的话说,就是:"割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。
大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。
其次明确提出了下面的原理:"幂势既同,则积不容异。
"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。
并应用该原理成功地解决了刘徽未能解决的球体积问题。
欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。
较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
但他的方法并没有被数学家们所接受。
后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。
之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。
第7讲微积分发展史

第7讲微积分发展史微积分是近代自然科学和工程技术中广泛应用的一种基本数学工具,它创立于17世纪后半叶的西欧,是适应当时社会生产发展和理论科学的需要而产生的,同时又深刻地影响着生产技术和自然科学的发展。
微积分堪称是人类智慧最伟大的成就之一。
一、微积分产生的背景微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊数学家、力学家阿基米德的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲面的体积等问题中就隐含着近代积分的思想。
极限理论作为微积分的基础,也早在我国的古代就有非常详尽的论述,但当时人们习惯于研究常量和有限的对象,遇到无穷时往往束手无策。
生产力和科学技术的不断发展,为微积分的诞生创造了条件。
1492年哥伦布发现了新大陆,由此证实了大地是球形;1543年,哥白尼发表的《天体运行论》确立了“日心说”;开普勒在1609年提出了有关行星绕日运动的第一、第二定律,1618年他又提出了第三定律;1609年,伽利略用自制的望远镜观察了月亮、金星、木星等星球,把人们的视野引向遥远的地方。
这些科学家拓展了人们对世界的认识,引起了人类思想上的巨变。
16世纪,西欧出现资本主义的萌芽,产生了新的生产关系,社会生产力有了很大的发展。
从17世纪开始,随着社会的进步和生产力的发展,在航海、天文、矿山建设、军事技术等方面有许多课题需要解决,数学也开始进入了“变量数学”时代。
通过这些向数学提出了如下4个问题:(1)由距离和时间的关系求瞬时速度和瞬时加速度;反之,由速度求距离,由加速度求速度。
(2)确定物体运动方向(切线方向)或光学中曲线的切线问题。
(3)求最大、最小值问题。
(4)一般的求积(面积、体积)问题,曲线长问题,以及物体的质量、重心等问题。
在17世纪30年代创立的解析几何学里,可以用字母表示流动坐标,用代数方程刻画一般平面曲线,用代数演算代替对几何量的逻辑推导,从而把对几何图形性质的研究转化为对解析式的研究,使数与形紧密地结合起来。
分数阶微积分的历史背景

分数阶微积分的历史背景一、微积分学的创立微积分学作为一门高等数学的基础学科,是在十七世纪产生的。
微积分的基本概念和内容包微分学积分学。
但是早在公元前三世纪,就已经出现过利用微积分思想解决问题的实例了,如庄子在天下篇中曾记载“一尺之锤,日取其半,万世不竭”,阿基米德在研究解决抛物弓形的面积、球和球冠的面积以及旋转双曲体的体积问题中,都体现了极限的概念。
十七世纪,人们面临着许多新的数学问题,比如求瞬时速度的问题等,这些问题促成了微积分的产生,当时有许多著名的数学家都为了解决相关问题做了大量的研究,其中莱布尼茨和牛顿的成就尤为突出。
1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列0,1,4,9,16,…的性质,例如它的第一阶差为1,3,5,7,…,第二阶差则恒等于2,2,2,…等.他注意自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为1+3+5+7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列。
流数(fluxion)1665年5月20日,英国杰出物理学家牛顿第一次提出“流数术”(微积分),后来世人就以这天作为“微积分诞生日”。
牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。
所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。
导数和微分的概念产生的历史

3· 反函数的求导 由一个方程F(x,y)所确定的隐函数的 求导法就是将方程两边分别对x求导,在 求出dx/dy即可 常用的基本初等函数的n阶导数公式有: (x^n)^(n)=n! (e^x)^(n)=e^x (sinx)^(n)=sin(x+nπ/2) 现在新增的求导法则我们小组认 为基本和高中是一致的(仅代表 本小组意见),新增加了隐函数 求导和高阶求导 (cosx)^(n)=cos(x+nπ/2)
返回
牛顿在数学上最卓越的成就是创建微积分。 他超越前人的功绩在於,他将古希腊以来 求解无限小问题的各种特殊技巧统一为两 类普遍的算法--微分和积分,并确立了 这两类运算的互逆关系,如:面积计算可 以看作求切线的逆过程。 那时莱布尼兹刚好亦提出微积分研究报告, 更因此引发了一埸微积分发明专利权的争 论,直到莱氏去世才停熄。而後世己认定 微积是他们同时发明的。 微积分方法上,牛顿所作出的极端重要的 贡献是,他不但清楚地看到,而且大赡地 运用了代数所提供的大大优越於几何的方 法论。他以代数方法取代了卡瓦列里、格 雷哥里、惠更斯和巴罗的几何方法,完成 了积分的代数化。从此,数学逐渐从感觉 的学科转向思维的学科。 微积产生的初期,由於还没有建立起巩固 的理论基础,被有受别有用心者钻空子。 更因此而引发了着名的第二次数学危机。 这个问题直到十九世纪极限理论建立,才 得到解
牛顿和莱布尼茨建立微积分的出发点是直观的无 穷小量,因此这门学科早期也称为无穷小分析, 这正是现在数学中分析学这一大分支名称的来源。 牛顿研究微积分着重于从运动学来考虑,莱布尼 茨却是侧重于几何学来考虑的。 牛顿在1671年 写了《流数法和无穷级数》,这本书直到1736年 才,出版它在这本书里指出,变量是由点、线、 面的连续运动产生的,否定了以前自己认为的变 量是无穷小元素的静止集合。他把连续变量叫做 流动量,把这些流动量的导数叫做流数。牛顿在 流数术中所提出的中心问题是:已知连续运动的 路径,求给定时刻的速度(微分法);已知运动 的速度求给定时间内经过的路程 给定时间内经过的路程(积分法)。 微积分学的创立,极大地推动了数学的发展, 过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分 学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必 定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人 总结完成的。微积分也是这样。
微积分产生的历史背景

微积分产生的历史背景数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是有牛顿和莱布尼兹大体上完成的,但不是由他们发明的。
恩格斯从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现出一个完全斩新的面貌。
而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。
科学对数学提出的种种要求,最后汇总成车个核心问题:(1)运动中速度与距离的互求问题(几何演示)即,已知物体移动的距离S表为时间的函数的公式S=S(t),求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。
这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。
比如,计算物体在某时刻的瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬间,物体移动的距离和所用的时间是0,而0/0是无意义的。
但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。
已知速度公式求移动距离的问题,也遇到同样的困难。
因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。
(2)求曲线的切线问题(几何演示)这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。
由于研究天文的需要,光学是时十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律,这里重要的是光线与曲线的法线间的夹角,而法线是垂直于切线的,所以总是就在于求出法线或切线;另一个涉及到曲线的切线的科学问题出现于运动的研究中,求运动物体在它的轨迹上任一点上的运动方向,即轨迹的切线方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
光学研究中,由于透镜的设计需要运用折射定 律、反射定律,就涉及切线、法线问题。这方面的 研究吸引了笛卡儿、惠更斯、牛顿、莱布尼兹等人。 而在运动学研究中,要确定运动物体在某一点的运 动方向,就是求曲线上某一点的切线方向,这就需 要求作切线。
5
如:古希腊的阿基米德(公元前287―212)用 边数越来越多的正多边形去逼近圆的面积,称为 “穷竭法”。
中国魏晋时代的刘徽在其《九章算术注》(公 元263年)中,对于计算圆面积提出了著名的“割 圆术”,他解释说:“割之弥细,所失弥少。割之 又割,以至于不可割,则与圆周合体,而无所失 矣。”这些都是原始的积分思想。
阳时的最远和最近距离等。)
求曲线长;曲线围成的面积;曲面围成的 体积;物体的重心;一个体积相当大的物 体(如行星)作用于另一物体上的引力等。
11
17世纪前期微积分的工作
费尔马 (Fermat)是在牛顿和莱布尼兹之前,在 微分和积分两个方面作出贡献最多的一个数学家。
费尔马《求极大值与极小值的方法》 (写于 1636年以前)在求曲线的切线问题和函数的极大、 极小值问题上做出了重要贡献。用现代语言来说, 他都是先取增量,而后让增量趋于0。这正是微分 学的实质之所在。
0
dx
(2)如果z dy ,则
x
zdx y.
dx
0
巴罗的确已经走到了微积分基本定理的大门口。
但在巴罗的书中,这两个定理相隔二十余个别的定理,
并且没有把它们对照起来,也几乎没有使用过它们。
这说明,巴罗并没有从一般概念意义下理解
15
他们。但是我们知道,只有一般概念才能阐明问题 的本质,才能开拓广阔的应用道路。
第九讲 微积分的历史 (背景、发展与意义 )
马克思和恩格斯非常重视微积分的 创建,恩格斯曾有这的赞誉:“在一切 理论成就中,未必再有什么像十七世纪 下半叶微积分的发明那样看作人类精神 的最高胜利了。”
1
一、微积分名称的由来
在变量数学中,决定性的一步是17世纪后半叶 由牛顿和莱布尼兹创始的微分法和积分法。微积分 的诞生,与其说是全部数学史上的一个伟大的创举, 不如说是整个人类历史的一个伟大的创举。
1665年初,伦敦发生了严重的鼠疫。剑桥大学 出于慎重考虑而把学生遣返回家。这样,牛顿于 1665年6月到1666年12月在家乡伍尔索普呆了一年 半的时间。
23
在科学史上,这段时期具有非同寻常的重要性, 因为牛顿在此期间几乎完成了他平生所有的重要发现。 下面这段话来自牛顿的个人回忆:
1665年初,我发现了级数逼近法和把二项式的 任意次幂展开成这一级数的规则。同年5月,我发 现了格里高利(James Gregory,1638-1675) 和司罗斯(Rene-Francois de Slues, 16221685)的切线方法。11月,得到了直接流数法。 次年1月,提出了光的颜色理论。5月,我开始学 会反流数方法……
9
导致微积分创立的几类基本问题
已知物体移动的距离表示为时间的函数, 求物体在任意时刻的速度和加速度;反 之,已知物体运动的加速度表为时间的 函数,求速度和距离。 (这一问题不久人们发现,这一问题 是计算一个变量对另一个变量的变化率 问题以及它的逆问题的特例。)
求曲线的切线。
10
求函数的最大值和最小值。 (如抛射体获得最大射程时的发射角,行星离开太
8
意大利科学家伽利略主张自然科学研究必须进 行系统的观察与实验,充分利用数学工具去探索大 自然的奥秘。这些观点对科学(特别是物理和数学) 的发展有巨大的影响。他的学生卡瓦列里创立了 “不可分原理”。依靠这个原理他解决了许多现在 可以用更严格的积分法解决的问题。“不可分”的 思想萌芽于1620年,深受开普勒和伽利略的影响, 是希腊欧多克索斯的穷竭法到牛顿、莱布尼茨微积 分的过渡。
25
怪异的牛顿
牛顿并不善于教学,他在讲授新近发现的微积分 时,学生都接受不了。但在解决疑难问题方面的能力, 他却远远超过了常人。还是学生时,牛顿就发现了一 种计算无限量的方法。他用这个秘密的方法,算出了 双曲面积到二百五十位数。他曾经高价买下了一个棱 镜,并把它作为科学研究的工具,用它试验了白光分 解为的有颜色的光。
18
法国数学家和天文学家拉普拉斯(Pierre Laplace,1749-1827)曾经这样说过:“不会产生 两个牛顿,因为要发现的世界只有一个。”
在牛顿的墓志铭上刻着著名诗人波普 (Alexander Pope,1688-1744)优美的赞美诗句:
自然和她的法则在黑暗中隐藏//上帝说,让牛顿 去吧//于是一切都已照亮
过程 牛顿、莱布尼茨工作的简单比较 微积分的历史意义
4
古代至中世纪的有关工作
早在古代数学中,就产生了微分和积分这两个 概念的思想萌芽,形成两种基本的数学运算。两者 分别地被人们加以研究和发展。
历史上,积分思想先于微分思想出现,而不象今 天的《数学分析》所讲授的那样,先微分后积分。
积分思想出现在求面积、体积等问题中,在古 中国、古希腊、古巴比伦、古埃及的早期数学文献 中都有涉及这类问题的思想和方法。
又如,中国清代著名数学家李善兰独创的“尖 锥术”,已使中国步入了微积分的大门。但还未形 成多大影响时,西方的微积分就传入了中国。
6
16世纪以后,欧洲数学家们仍沿用阿基米德的 方法求面积、体积等问题,并不断加以改进。天文 学家兼数学家开普勒的工作是这方面的典型。他注 意到,酒商用来计算酒桶体积的方法很不精确,他 努力探求计算体积的正确方法,写成《测量酒桶体 积的新科学》一书,他的方法的精华就是用无穷多 小元素之和来计算曲边形的面积或体积。
1669年,他辞去了他的教授席位,并推荐牛 顿取得此席位。1673年他被任命为剑桥三一学院 院1699-1670年发表的《光
学和几何学讲义》,在这本书中我们能够找到非常
接近近代微分过程的步骤。他把作曲线的切线和曲
线的求积联系了起来,用现代符号表示就是:
(1)如果y x zdx,则 dy z;
到此为止,微积分这门学科的基础已经具备, 但象现在这样的微积分还没有。正如后来莱布尼兹 确切表达的:“在这样的科学成就之后,所缺少的 知识引出问题的迷宫的一条线。即依照代数样式的 解析计算法。”
在创建微积分的过程中究竟还有多少事情要做 呢?
16
1)需要以一般形式建立新计算法的基本概念 及其相互联系,创立一套一般的符号体系,建立 计算的正确程序或算法。
22
刚到剑桥大学的时候,牛顿依靠将食物与饮料 递送外卖这种勤工俭学方式来换取一日三餐。后来, 牛 顿 得 到 了 奖 学 金 。 在 著 名 几 何 学 家 巴 罗 ( Isaac Barrow , 1630-1677 ) 教 授 的 指 导 下 , 牛 顿 阅 读 了 开 普 勒 ( Kepler , 1570-1630 ) 、 笛 卡 尔 ( René Descartes,1596-1650)、伽利略等人的科学书籍。 1665年,牛顿顺利地拿到了学士学位(Bachelor of Art)。
2)为这门学科重建逻辑上的一致的、严格的 基础。
第1)项由牛顿和莱布尼兹各自独立完成。 第2)项由法国伟大的分析学家A.L柯西 (Cauchy,1789_1857)及其他19世纪数学家完成。
17
牛顿的微积分
牛顿(Isaac Newton, 1642-1727)是历史上伟大 的物理学家和数学家。
他和莱布尼茨(Gottfried Leibniz,1646-1716) 一起发明了微积分,在光的色散和光的本质方面取得 了重要成就,更重要的是他建立了万有引力理论,把 天体的运动和地球上的运动统一起来,整个近代力学 和天体力学都是在他的基础上发展起来的。
13
巴罗的贡献
另一个对微积分作出预言的是牛顿的老师巴 罗 (I.Barrow,1630——1677),他于1630年生于伦 敦,毕业于剑桥大学,他在物理、数学、天文和 神学方面都有造诣。他也是当时研究古希腊数学 的著名学者。他翻译了欧几里得的《几何原本》, 也是第一个担任剑桥大学卢卡斯讲座教授的人。
24
1668年,牛顿返回剑桥不久,获得了硕士学位 (Master of Art)。之后牛顿成为三一学院的一名 成员。1669年,牛顿完成了关于流数法(微积分) 的论文,受到其导师巴罗的极力肯定,但牛顿并没 有把这一成果发表,这造成了日后他和莱布尼茨关 于微积分发明权的长期争论。同年,巴罗决定放弃 自己的卢卡斯(Lucas)讲座教授席位,专心从事 神学研究,并且由于欣赏牛顿的才能,而推荐27岁 的牛顿继任这一职位。这在科学史上被传为一段佳 话,剑桥大学三一学院前至今还树立着这对师徒的 雕像。
他在致胡克(Robert Hooke,1635-1703)的 一封信中也说过这样一句广泛流传的话:“如果我 曾比别人看得更远一些,那是因为我站在巨人的肩 膀上。”
20
牛顿 生平
历史的发展有时候充满了戏剧性。1642年1月 8 日 , 伟 大 的 意 大 利 物 理 学 家 伽 利 略 ( Galileo Galilei , 1564-1642 ) 逝 世 。 就 像 中 国 藏 族 的 转 世灵童一样,不到一年,牛顿于1642年12月25日 (这是儒略历的日子,对应于现在公历的1643年1 月4日)出生于英国林肯郡(Lincolnshire)的伍 尔索普 (Woolsthope)镇。
牛顿是个遗腹子,在出生前两个多月,他父亲 就去世了。三岁的时候,他母亲改嫁,牛顿就和他 祖母一起生活。在11岁时,牛顿的继父又去世了, 于是他母亲就带着他的一个弟弟和两个妹妹回到沃 斯索普。从此以后,他们就在一起生活。
21
大约5岁的时候,牛顿被送到了邻近的乡村小学。 在那里,牛顿平静地度过了9年的日子,家里人似乎 对于他没有什么太大的指望。牛顿有个舅舅叫艾司 考,他发现了牛顿的聪慧,在1656年送他到格兰珊 公学学习。可是,到那里不久,母亲就把他招回来 帮助料理继父留下的田产。经过艾司考与格兰珊公 学校长斯托克斯(J. Stokes)极力恳求他母亲,牛顿 才于1658年重返格兰珊公学。和当时英国的皇家中 学一样,格兰珊公学也是以教授希腊文与拉丁文文 法为主要科目的学校。在格兰珊公学的3年中,牛顿 学习十分努力,目的是为了考取当时最好的大学— —剑桥大学。1661年,牛顿如愿以偿地进入了剑桥 大学的三一学院(Trinity College)。