微积分产生的社会背景和数学渊源18页PPT
合集下载
人教高中数学微积分产生的历史背景PPT完美版

微积分的创立
牛顿的“流数术” 牛顿对微积分问题的研究始于1664年秋, 当时他反复阅读笛卡儿《几何学》,对笛 卡儿求切线的“圆法”发生兴趣并试图寻 找更好的方法。就在此时,牛顿首创了小 ○记号表示x的无限小且最终趋于零的增 量.
人教高中数学微积分产生的历史背景P PP PT完美 版
说牛顿发明了微积分。
人教高中数学微积分产生的历史背景P PT完美 版
人教高中数学微积分产生的历史背景P PT完美 版
莱布尼茨的微积分
莱布尼茨当时还没有微积分 的符号,他用语言陈述他的 特征三角形导出的第一个重 要结果:
“由一条曲线的法线形成 的图形,即将这些法线(在 圆的情形就是半径)按纵坐 标方向置于轴上所形成的图 形,其面积与曲线绕轴旋转 而成的立体的面积成正比”。
人教高中数学微积分产生的历史背景P PT完美 版
重心和引力等微积分基本问题的计算 被重新研究。
意大利数学家卡瓦列里在其著作《用新方 法促进的连续不可分量的几何学》(1635) 中发展了系统的不可分量方法。卡瓦列里 认为线是由无限多个点组成;面是由无限 多条平行线段组成;立体则是由无限多个 平行平面组成.他分别把这些元素叫做线、 面和体的“不可分量”.卡瓦列里建立了 一条关于这些不可分量的普遍原理,后以 “卡瓦列里原理”著称
人教高中数学微积分产生的历史背景P PT完美 版
人教高中数学微积分产生的历史背景P PT完美 版
在微积分的创立上,牛顿需要与莱布尼 茨分享荣誉
莱布尼茨通常假设曲线z通过原点,这 就将求积问题化成了反切线问题,即:为 了求出在纵坐标为y的曲线下的面积,只需 求出一条纵坐标为z的曲线,使其切线的斜 率为.如果是在区间上,由上的面积减去 上的面积 :
伯努利兄弟雅各布和约翰,他们的工作构成 了现今初等微积分的大部分内容。其中,约翰给 出了求未定式极限的一个定理,这个定理后由约 翰的学生罗比达编入其微积分著作《无穷小分 析》,现在通称为罗比达法则。
牛顿的“流数术” 牛顿对微积分问题的研究始于1664年秋, 当时他反复阅读笛卡儿《几何学》,对笛 卡儿求切线的“圆法”发生兴趣并试图寻 找更好的方法。就在此时,牛顿首创了小 ○记号表示x的无限小且最终趋于零的增 量.
人教高中数学微积分产生的历史背景P PP PT完美 版
说牛顿发明了微积分。
人教高中数学微积分产生的历史背景P PT完美 版
人教高中数学微积分产生的历史背景P PT完美 版
莱布尼茨的微积分
莱布尼茨当时还没有微积分 的符号,他用语言陈述他的 特征三角形导出的第一个重 要结果:
“由一条曲线的法线形成 的图形,即将这些法线(在 圆的情形就是半径)按纵坐 标方向置于轴上所形成的图 形,其面积与曲线绕轴旋转 而成的立体的面积成正比”。
人教高中数学微积分产生的历史背景P PT完美 版
重心和引力等微积分基本问题的计算 被重新研究。
意大利数学家卡瓦列里在其著作《用新方 法促进的连续不可分量的几何学》(1635) 中发展了系统的不可分量方法。卡瓦列里 认为线是由无限多个点组成;面是由无限 多条平行线段组成;立体则是由无限多个 平行平面组成.他分别把这些元素叫做线、 面和体的“不可分量”.卡瓦列里建立了 一条关于这些不可分量的普遍原理,后以 “卡瓦列里原理”著称
人教高中数学微积分产生的历史背景P PT完美 版
人教高中数学微积分产生的历史背景P PT完美 版
在微积分的创立上,牛顿需要与莱布尼 茨分享荣誉
莱布尼茨通常假设曲线z通过原点,这 就将求积问题化成了反切线问题,即:为 了求出在纵坐标为y的曲线下的面积,只需 求出一条纵坐标为z的曲线,使其切线的斜 率为.如果是在区间上,由上的面积减去 上的面积 :
伯努利兄弟雅各布和约翰,他们的工作构成 了现今初等微积分的大部分内容。其中,约翰给 出了求未定式极限的一个定理,这个定理后由约 翰的学生罗比达编入其微积分著作《无穷小分 析》,现在通称为罗比达法则。
《微积分发展史》PPT课件

中国古代数学家对微积分也作出了重大 的贡献.例如三国时期的刘徽,他对积分学 的贡献主要有两点:割圆术及求体积问题的 设想.
刘徽
微分学早期史
上面概括地介绍了积分学的早期发展史,这段历史纵跨了二千年的时间.相对来说, 微分学的历史就短得多.原因是积分学研究的问题是静态的,而微分学则是动态的, 它涉及到运动.在生产力没有发展到一定阶段的时候,微分学是不会产生的.
Байду номын сангаас
微积分的创立首先是为了处理下列四类问题:
1.已知物体运动的路程与时间的关系,求物体在任意时刻的速度和加速度 .反过来,已知物体 运动的加速度与速度,求物体在任意时刻的速度与路程. 2 .求曲线的切线.这是一个纯几何的问题,但对于科学应用具有重大意义.例如在光学中,透 镜的设计就用到曲线的切线和法线的知识.在运动中也遇到曲线的切线问题. 3 .求函数的最大值和最小值问题.在弹道学中这涉及到炮弹的射程问题.在天文学中涉及到行 星和太阳的最近和最远距离. 4.求积问题.求曲线的弧长,曲线所围图形的面积,曲面所围立体的体积,物体的重心.
积分学早期史
从微积分成为一门学科来说,是在17世纪, 但是,积分的思想早在古代就已经产生 了. 公元前3世纪,古希腊的数学家、力学 家阿基米德(公元前287~前212)的著作《圆 的测量》和《论球与圆柱》中就已含有积分 学的萌芽,他在研究解决抛物线下的弓形面 积、球和球冠面积、螺线下的面积和旋转双 曲线的体积的问题中就隐含着近代积分的思 想.
1609年,他在《新天文学》一书中宣称火星的轨道不是圆而是 椭圆,太阳位于椭圆的两个焦点之一.他还发现火星的向径在相等 的时间内扫过相同的面积,并指出,这两定律也适用于其他行星和 月球.1619年开普勒在《宇宙和谐》一书中指出,行星公转周期的 平方与轨道半长轴的立方成正比.行星运动三定律为日后牛顿发现 万有引力定律奠定了基础.
刘徽
微分学早期史
上面概括地介绍了积分学的早期发展史,这段历史纵跨了二千年的时间.相对来说, 微分学的历史就短得多.原因是积分学研究的问题是静态的,而微分学则是动态的, 它涉及到运动.在生产力没有发展到一定阶段的时候,微分学是不会产生的.
Байду номын сангаас
微积分的创立首先是为了处理下列四类问题:
1.已知物体运动的路程与时间的关系,求物体在任意时刻的速度和加速度 .反过来,已知物体 运动的加速度与速度,求物体在任意时刻的速度与路程. 2 .求曲线的切线.这是一个纯几何的问题,但对于科学应用具有重大意义.例如在光学中,透 镜的设计就用到曲线的切线和法线的知识.在运动中也遇到曲线的切线问题. 3 .求函数的最大值和最小值问题.在弹道学中这涉及到炮弹的射程问题.在天文学中涉及到行 星和太阳的最近和最远距离. 4.求积问题.求曲线的弧长,曲线所围图形的面积,曲面所围立体的体积,物体的重心.
积分学早期史
从微积分成为一门学科来说,是在17世纪, 但是,积分的思想早在古代就已经产生 了. 公元前3世纪,古希腊的数学家、力学 家阿基米德(公元前287~前212)的著作《圆 的测量》和《论球与圆柱》中就已含有积分 学的萌芽,他在研究解决抛物线下的弓形面 积、球和球冠面积、螺线下的面积和旋转双 曲线的体积的问题中就隐含着近代积分的思 想.
1609年,他在《新天文学》一书中宣称火星的轨道不是圆而是 椭圆,太阳位于椭圆的两个焦点之一.他还发现火星的向径在相等 的时间内扫过相同的面积,并指出,这两定律也适用于其他行星和 月球.1619年开普勒在《宇宙和谐》一书中指出,行星公转周期的 平方与轨道半长轴的立方成正比.行星运动三定律为日后牛顿发现 万有引力定律奠定了基础.
《微积分发展史》课件

更加注重数学与其他学科 的交叉融合
随着科技的发展,微积分将与物理学、工程 学、经济学等领域更加紧密地结合,推动跨 学科的研究和应用。
数学建模和计算方法的创新
未来微积分的发展将更加注重数学建模和计算方法 的创新,以解决复杂的问题和现象。
数学教育的普及和提高
随着教育水平的提高,微积分将更加普及, 并成为更多人学习和掌握的数学工具。
微积分与其他学科的交叉发展
与物理学的结合
微积分在物理学中有广泛的应用 ,如力学、电磁学等领域。未来 将进一步深化微积分与物理学的 交叉研究,推动理论和实践的结 合。
与工程学的结合
微积分在工程学中发挥着重要的 作用,如流体动力学、控制理论 等。未来将进一步加强微积分在 工程实践中的应用和创新。
与经济学的结合
19世纪的发展
总结词
微积分的严格化
实数理论的建立
实数理论的建立为微积分提供了更加严密的数学 基础,进一步推动了微积分的发展。
ABCD
极限理论的建立
19世纪,极限理论得到了深入的研究和探讨, 为微积分的严格化奠定了基础。
变分法的兴起
19世纪,变分法得到了广泛的应用和发展,为 解决优化和极值问题提供了重要的工具。
03
微积分的发展
18世纪的发展
总结词
微积分的基础建立
牛顿和莱布尼茨的贡献
牛顿的《自然哲学的数学原理》和莱布尼茨的《微积分学 》分别从不同角度奠定了微积分的基础。
微分学的发展
18世纪,微分学在函数、导数、微分等方面取得了重要 进展,为后续的数学和科学领域提供了强大的工具。
积分学的发展
积分学也在18世纪得到了深入的研究和发展,包括定积 分、不定积分以及积分的应用等方面。
随着科技的发展,微积分将与物理学、工程 学、经济学等领域更加紧密地结合,推动跨 学科的研究和应用。
数学建模和计算方法的创新
未来微积分的发展将更加注重数学建模和计算方法 的创新,以解决复杂的问题和现象。
数学教育的普及和提高
随着教育水平的提高,微积分将更加普及, 并成为更多人学习和掌握的数学工具。
微积分与其他学科的交叉发展
与物理学的结合
微积分在物理学中有广泛的应用 ,如力学、电磁学等领域。未来 将进一步深化微积分与物理学的 交叉研究,推动理论和实践的结 合。
与工程学的结合
微积分在工程学中发挥着重要的 作用,如流体动力学、控制理论 等。未来将进一步加强微积分在 工程实践中的应用和创新。
与经济学的结合
19世纪的发展
总结词
微积分的严格化
实数理论的建立
实数理论的建立为微积分提供了更加严密的数学 基础,进一步推动了微积分的发展。
ABCD
极限理论的建立
19世纪,极限理论得到了深入的研究和探讨, 为微积分的严格化奠定了基础。
变分法的兴起
19世纪,变分法得到了广泛的应用和发展,为 解决优化和极值问题提供了重要的工具。
03
微积分的发展
18世纪的发展
总结词
微积分的基础建立
牛顿和莱布尼茨的贡献
牛顿的《自然哲学的数学原理》和莱布尼茨的《微积分学 》分别从不同角度奠定了微积分的基础。
微分学的发展
18世纪,微分学在函数、导数、微分等方面取得了重要 进展,为后续的数学和科学领域提供了强大的工具。
积分学的发展
积分学也在18世纪得到了深入的研究和发展,包括定积 分、不定积分以及积分的应用等方面。
微积分建立的时代背景和历史意义ppt 人教课标版18页文档

46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
微积分建立的时代背景和历 史意义ppt 人教课标版
26、机遇对于有准备的头脑有特别坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
《微积分的发展》课件

19世纪的综合
高斯、黎曼等数学家对微积分进行了深入研究和综合,推 动了数学的发展。
微积分在各个领域的应用
物理学
工程学
微积分被广泛应用于力学、电磁学等领域 ,如计算物体运动轨迹、电流强度等。
在机械工程、航空航天、土木工程等领域 ,微积分用于解决各种实际问题,如优化 设计、控制系统分析等。
经济学
计算机科学
03
随着数学理论的发展,微积分 的理论体系将进一步完善,为 解决更复杂的问题提供更强大 的工具。
系。
03
非标准分析
非标准分析是一种对传统微积分的补充和扩展,通过引入非标准实数系
统,对微积分的基础理论进行重新审视和改进。
微积分对未来科技发展的影响
科技突破
微积分作为数学的一个重要分支,将继续为未来的科技发展提供 重要的理论支撑和方法论指导,推动各领域的科技创新和突破。
学科交叉
微积分的发展将促进数学与其他学科的交叉融合,如物理 学、工程学、经济学等,推动多学科的协同创新和发展。
微积分在经济学、工程学、物理学、计算机科学等领域有着广
03
泛的应用,为这些领域的发展提供了重要的支撑。
微积分的未来展望
01ห้องสมุดไป่ตู้
随着科学技术的发展,微积分 的应用领域将进一步扩大,其 在解决实际问题中的作用将更 加突出。
02
随着数学和其他学科的交叉融 合,微积分将与其他学科产生 更多的联系和互动,推动相关 领域的发展。
物理学和天文学的需求
为了解决运动和变化的问题,科学家们开始研究微积分的基本概念。
微积分发展的历史过程
牛顿和莱布尼茨的贡献
牛顿在《自然哲学的数学原理》中提出了微积分的基本思 想和方法,而莱布尼茨则独立发展了微积分的符号系统和 理论体系。
高斯、黎曼等数学家对微积分进行了深入研究和综合,推 动了数学的发展。
微积分在各个领域的应用
物理学
工程学
微积分被广泛应用于力学、电磁学等领域 ,如计算物体运动轨迹、电流强度等。
在机械工程、航空航天、土木工程等领域 ,微积分用于解决各种实际问题,如优化 设计、控制系统分析等。
经济学
计算机科学
03
随着数学理论的发展,微积分 的理论体系将进一步完善,为 解决更复杂的问题提供更强大 的工具。
系。
03
非标准分析
非标准分析是一种对传统微积分的补充和扩展,通过引入非标准实数系
统,对微积分的基础理论进行重新审视和改进。
微积分对未来科技发展的影响
科技突破
微积分作为数学的一个重要分支,将继续为未来的科技发展提供 重要的理论支撑和方法论指导,推动各领域的科技创新和突破。
学科交叉
微积分的发展将促进数学与其他学科的交叉融合,如物理 学、工程学、经济学等,推动多学科的协同创新和发展。
微积分在经济学、工程学、物理学、计算机科学等领域有着广
03
泛的应用,为这些领域的发展提供了重要的支撑。
微积分的未来展望
01ห้องสมุดไป่ตู้
随着科学技术的发展,微积分 的应用领域将进一步扩大,其 在解决实际问题中的作用将更 加突出。
02
随着数学和其他学科的交叉融 合,微积分将与其他学科产生 更多的联系和互动,推动相关 领域的发展。
物理学和天文学的需求
为了解决运动和变化的问题,科学家们开始研究微积分的基本概念。
微积分发展的历史过程
牛顿和莱布尼茨的贡献
牛顿在《自然哲学的数学原理》中提出了微积分的基本思 想和方法,而莱布尼茨则独立发展了微积分的符号系统和 理论体系。
微积分的创立数学史课件

重要的数学工具。
古希腊时期,数学家们就开始研究无穷 小的问题,为微积分的产生奠定了基础。
牛顿和莱布尼茨是微积分的创立者,他 们在17世纪末分别独立地创立了微积分。
02
古代微积分思想的萌芽
古希腊时期的微积分思想
03
阿基米德的方法
通过穷竭法计算面积和体积,体现了微积 分的核心思想。
欧多克索斯的穷竭法
微积分学的基本概念与定理
01
02
函数
导数
描述两个变量之间关系的数学表达式。
函数在某一点处的切线斜率,表示函数在该点的变化率。
微积分学的基本概念与定理
• 积分:求一个函数在某个区间内与x轴围成的面积。
微积分学的基本概念与定理
微分基本定理
若函数f(x)在点x处可导,则其导数f'(x)表示f(x)在x处的变化率。
01
工程应用
02
微积分在建筑、机械等领域有广泛应用,如计算面 积、体积、长度等。
03
通过微积分可以优化工程设计,降低成本和提高效 率。
微积分学在17世纪的应用
01
经济应用
02 微积分在经济学中用于分析成本、收益、利润等 问题。
03 通过微积分可以求解最大利润、最小成本等经济 问题。
04
18世纪微积分学的发展与 完善
THANKS
微积分学与其他数学分支的联系
01
与分析学的联系
04
与代数学的联系
02
微积分学是分析学的重要组成部分,与分析学中的其他分支 如实分析、复分析和泛函分析等有着密切的联系。
03
分析学中的许多概念和定理都与微积分学密切相关,如连续 性、可微性、可积性和收敛性等。
05
微积分学与代数学在多个领域有交叉,如代数几何、代数拓 扑和抽象代数等。
古希腊时期,数学家们就开始研究无穷 小的问题,为微积分的产生奠定了基础。
牛顿和莱布尼茨是微积分的创立者,他 们在17世纪末分别独立地创立了微积分。
02
古代微积分思想的萌芽
古希腊时期的微积分思想
03
阿基米德的方法
通过穷竭法计算面积和体积,体现了微积 分的核心思想。
欧多克索斯的穷竭法
微积分学的基本概念与定理
01
02
函数
导数
描述两个变量之间关系的数学表达式。
函数在某一点处的切线斜率,表示函数在该点的变化率。
微积分学的基本概念与定理
• 积分:求一个函数在某个区间内与x轴围成的面积。
微积分学的基本概念与定理
微分基本定理
若函数f(x)在点x处可导,则其导数f'(x)表示f(x)在x处的变化率。
01
工程应用
02
微积分在建筑、机械等领域有广泛应用,如计算面 积、体积、长度等。
03
通过微积分可以优化工程设计,降低成本和提高效 率。
微积分学在17世纪的应用
01
经济应用
02 微积分在经济学中用于分析成本、收益、利润等 问题。
03 通过微积分可以求解最大利润、最小成本等经济 问题。
04
18世纪微积分学的发展与 完善
THANKS
微积分学与其他数学分支的联系
01
与分析学的联系
04
与代数学的联系
02
微积分学是分析学的重要组成部分,与分析学中的其他分支 如实分析、复分析和泛函分析等有着密切的联系。
03
分析学中的许多概念和定理都与微积分学密切相关,如连续 性、可微性、可积性和收敛性等。
05
微积分学与代数学在多个领域有交叉,如代数几何、代数拓 扑和抽象代数等。
人教A版高中数学选修3-1--5.1-微积分产生的历史背景-课件(共23张PPT)

二、微积分的萌芽
(2)外国数学家的极限、积分思想
◆ 欧几里得(公元前330年~前275年)是古希腊数 学家,以其所著的《几何原本》闻名于世,其中 对不可约量及面积与体积的研究,包含了穷竭法 的萌芽。
◆ 公元前三世纪,古希腊的阿基米德在研究解决 抛物弓形的面积、球和球冠面积、螺线下面积和 旋转双曲体的体积的问题中,就隐含着近代积分 学的思想。
五、微积分创立的历史意义
4、其实,牛顿和莱布尼茨分别是自己 独立研究,在大体上相近的时间里先后完成 的。比较特殊的是牛顿创立微积分要比莱布 尼茨早10年左右,但是正式公开发表微积分 这一理论,莱布尼茨却要比牛顿发表早三年。 他们的研究各有长处,也都各有短处。那时 候,由于民族偏见,关于发明优先权的争论 竟从1699年始延续了一百多年。
由点、线、面的连续运动产生的,
否定了以前自己认为的变量是无穷
小元素的静止集合。他把连续变量
叫做流动量,把这些流动量的导数
叫做流数。牛顿在流数术中所提出
的中心问题是:已知连续运动的路
径,求给定时刻的速度(微分法);
已知运动的速度求给定时间内经过
的路程(积分国数学家、哲学家,和牛顿同为微积分 的创始人;1646年7月1日生于莱比锡,1716年11月14日卒于
布
怪的名字《一种求极大极小和切线的新方
尼
法,它也适用于分式和无理量,以及这种 新方法的奇妙类型的计算》。就是这样一
茨
片说理也颇含糊的文章,却有划时代的意
义。他以含有现代的微分符号和基本微分
法则。1686年,莱布尼茨发表了第一篇积
分学的文献。他是历史上最伟大的符号学
者之一,他所创设的微积分符号,远远优
于牛顿的符号,这对微积分的发展有极大
数学史-第五讲-微积分的创立课件

计算机科学中的应用:微积分在计 算机科学中也有应用,如数值计算、 图像处理、机器学习等领域。
微积分的发展历程
微积分思想的萌芽
牛顿与莱布尼茨的 贡献
微积分在19世纪 的进一步发展
现代微积分的应用 与影响
微积分的创立过程
牛顿的贡献
牛顿对微积分创立的贡献 牛顿的微积分理论体系 牛顿的微积分应用 牛顿的微积分对后世的影响
际分析等
计算机科学: 算法设计、数 据结构、图像
处理等
微积分的未来发展
微积分在未来的应用前景
微积分在科学计算中的应用 微积分在金融领域的应用 微积分在人工智能领域的应用 微积分在物理和工程领域的应用
微积分与其他学科的交叉发展
微积分与计算机科学:数值计算、算法设计、数据科学等领域的应用 微积分与物理学:经典力学、电磁学、量子力学等领域的基础工具 微积分与经济学:边际分析、弹性分析、最优控制等领域的应用 微积分与生物学:细胞动力学、生态学、流行病学等领域的研究工具 微积分与金融学:资产定价、风险管理、投资组合优化等领域的应用 微积分与工程学:机械工程、土木工程、电子工程等领域的基础工具
微积分的思想方法
极限思想的起源
极限思想
极限思想在微积分中的应用
极限思想在数学中的重要性
极限思想在其他领域的应用
导数的定义与几何意义
导数思想
导数在函数分析中的应用
导数在优化问题中的应用
导数在其他领域的应用
积分思想
积分概念:通过求 解总和来描述变量 之间的关系
积分方法:通过求 和、求积等方式来 解决问题
添加副标题
数学史-第五讲-微积分的创立
汇报人:PPT
目录
CONTENTS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
微积分产生的社会背景和数学渊源
6
、
露
凝
无
游
氛
,
天
高
风
景Байду номын сангаас
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散