余热回收设计方法

合集下载

空压机余热回收工程背景原理以及设计方案

空压机余热回收工程背景原理以及设计方案

空压机余热回收工程背景原理以及设计方案背景原理:空压机在工业生产中广泛应用,通过压缩空气的方式为生产设备提供所需的动力。

然而,空压机在工作过程中会产生大量余热,这些余热如果不经过合理的利用,将会造成能源的浪费和环境污染。

因此,空压机余热回收工程的背景意义在于提高能源利用效率,减少能源消耗,降低生产成本,保护环境。

空压机的工作原理是通过电机驱动压缩机运转,将大气中的空气压缩成高压气体,然后将高压气体进行冷却和分离,达到所需的气体质量。

在这个过程中,会产生两种余热:压缩热和冷却热。

压缩热是由于气体被压缩而产生的热量,通常在压缩机的排气管路中可以测量到。

这部分余热可以用来加热生产设备的热水,提高生产设备的热能利用效率。

冷却热是由于压缩空气冷却过程中产生的热量,通常在冷却水管路中可以测量到。

这部分余热可以用来加热车间的暖气和提供员工的热水,提高车间的舒适度和员工的工作效率。

设计方案:根据以上背景和原理,可以设计出以下的空压机余热回收工程方案:1.压缩热回收方案:a.安装热交换器:在空压机排气管路上安装热交换器,将排出的高温空气与需要加热的水进行热交换,将余热传递给水,从而提供热水供应。

b.温度控制系统:根据生产设备对热水温度的要求,安装温度控制系统来控制热交换器的工作,在达到所需温度后停止工作,以避免能源浪费。

2.冷却热回收方案:a.安装冷却系统:在冷却水管路上安装热交换器,将冷却水与需要加热的水进行热交换,将冷却水的余热传递给需要热水的系统,提供暖气和热水供应。

b.温度控制系统:根据车间的温度要求,安装温度控制系统来控制热交换器的工作,在达到所需温度后停止工作,以避免能源浪费。

3.综合管理系统:a.监测系统:安装温度、压力和流量传感器来监测热交换器的工作状态和能源利用效率,实时监控能源消耗和节能效果。

b.控制系统:根据监测系统的反馈信息,采用自动控制或人工干预的方式调整热交换器的工作状态,以达到最佳的能源利用效果。

余热回收工艺设计

余热回收工艺设计

余热回收工艺设计一、前言余热回收是一种重要的节能技术,可以有效地减少工业生产中的能源消耗和环境污染。

本文将从余热回收的原理、工艺设计、设备选型等方面进行详细介绍。

二、余热回收原理余热回收是指在工业生产过程中,将产生的废气、废水等含有高温高压的热能通过特定的设备进行回收利用,以达到节能减排的目的。

三、工艺设计1. 确定余热来源:首先需要确定哪些工序会产生余热,以及这些余热的温度和流量等参数。

通常情况下,高温高压蒸汽和废气是主要的余热来源。

2. 设计余热回收系统:根据不同的余热来源和需求,选择合适的余热回收系统。

常见的有换热器、蒸汽发生器、蒸汽涡轮发电机组等。

3. 设计管道布局:设计合理有效的管道布局可以最大化地提高余热回收效率。

需要考虑管道长度、直径、弯头数量及角度等因素。

4. 安装调试:根据设计方案进行设备安装和调试,确保余热回收系统能够正常运行。

四、设备选型1. 换热器:根据余热的温度和流量等参数,选择合适的换热器类型。

常见的有壳管式、板式、管式等。

2. 蒸汽发生器:根据需要产生的蒸汽量和压力等参数,选择合适的蒸汽发生器类型。

常见的有自然循环式、强制循环式等。

3. 蒸汽涡轮发电机组:如果需要将余热转化为电能,可以选择蒸汽涡轮发电机组。

根据需要产生的电能容量和负荷特性等参数,选择合适的蒸汽涡轮发电机组。

五、注意事项1. 安全性:在设计和使用过程中,需要考虑安全因素,避免因操作不当或设备故障导致事故发生。

2. 维护保养:定期对余热回收系统进行检查和维护保养,确保设备正常运行,并及时处理可能出现的故障问题。

3. 经济效益:在进行余热回收工艺设计时,需要考虑经济效益问题。

要综合考虑投资成本、运行维护成本、能源节约效益等因素,确保余热回收系统的经济效益最大化。

六、结论余热回收是一种有效的节能减排技术,可以在工业生产过程中实现能源的高效利用。

在进行余热回收工艺设计时,需要考虑余热来源、系统设计、设备选型等因素,并注意安全性、维护保养和经济效益等问题。

锅炉烟气余热回收系统设计计算方法及应用

锅炉烟气余热回收系统设计计算方法及应用

锅炉烟气余热回收系统设计计算方法及应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着工业化进程的不断推进,能源资源的消耗日益加剧,节能减排成为各行各业关注的焦点。

定型机余热回收设计方案【分散式气气换热】

定型机余热回收设计方案【分散式气气换热】

定型机废气余热回收工程LQDR型定型机余热回收设备↑LQDR型余热回收设备外观一:综 述定型机废气余热回收利用是一项多收益工程,项目实施后在节能降耗、织物品质提升、车间环境改善等方面均可产生显著的经济效益和社会效益。

热定型机是纺织染整行业中主要耗能设备之一。

热定型机是利用热空气对织物进行干燥和整理并使之定型的装置。

热空气的供给方式有多种途径,可以直接在定型机内燃烧煤气或轻柴油,也可以用循环导热油或蒸汽加热,或者电加热。

一般热定型机烘箱工作温度化纤类为200℃左右,废气温度160℃左右;棉织物为140℃左右,废气温度100℃左右。

单台定型机耗能60-100万大卡,经估算,织物加工定型所消耗的热能仅占其29%,机体热损失约占10%,其余大量热能(60%以上)随废气散失到大气中。

散失的热量不仅浪费能源而且造成环境污染,热定型机的余热回收势在必行。

定型机热能损耗饼状图二、余热回用方式热定型机的余热回用通常有“气-气”换热和“气-水”换热两种方式。

“气-气”换热(补风)原理:就是从排出的废热气体中回收热能,用以加热新鲜空气再返入定型机烘箱内从而实现节能之目的。

“气-水”换热原理:对于需要热水的企业,可以从废烟气中回收热能加热洁净冷水,用于生产或生活需要,从而实现节能目的。

LQDR定型机余热回收原理图(气-气换热)三、LQDR型定型机余热回收设备LQDR系列余热回收设备是杭州力强环境工程有限公司工程技术人员针对定型机的特殊工况(纤维、油污),精心开发的新一代改进型产品。

利用超导热管从热定型机排出的废热气体中回收热能再返入定型机烘箱内实现节能之目的。

LQDR系列余热回收设备的显著特点是无需加装风机、换热元件(超导热管)可以单根拆卸清洗修换。

比较当前市场上运行的同类产品存在的漏风、漏油以及热管启动温度过高等缺点,LQDR系列余热回收设备具有以下显著优点。

可拆卸式结构。

定型机废气含有大量纤维、油污,在热交换过程中极易黏附在热管表面,严重影响传热效果,如不及时清理,更会造成烟气堵塞,使得定型机无法正常工作。

锅炉烟气余热回收方案

锅炉烟气余热回收方案

锅炉烟气余热回收方案引言在传统锅炉中,燃料的燃烧会产生大量的烟气,其中包含大量的热能。

然而,在传统的锅炉运行中,烟气中的余热往往被直接排放至大气中,导致能源的浪费和环境的污染。

为了充分利用和回收这部分烟气余热,提高能源利用效率和减少环境污染,研发锅炉烟气余热回收方案成为工程技术领域的热点之一。

本文将介绍几种常见的锅炉烟气余热回收方案及其工程应用。

1. 锅炉烟气余热回收原理锅炉烟气余热是指在锅炉燃烧过程中,未能被充分利用的热能。

烟气中的余热主要包括高温烟气和烟气中的水蒸气。

回收锅炉烟气余热的原理是通过烟气与工作介质(如水、空气等)的热交换,将烟气中的热能传递给工作介质,在回收烟气余热的同时实现能量的转换和利用。

2. 锅炉烟气余热回收方案2.1 烟气余热锅炉烟气余热锅炉是常见的一种烟气余热回收设备。

它通过在锅炉尾部增设余热回收器,在烟气经过锅炉尾部时,将高温烟气中的余热传递给工作介质,实现烟气余热的回收和再利用。

烟气余热锅炉可以将烟气中的余热转化为蒸汽、热水或其他工质,用于供热、发电或其他生产用途。

这种方案具有回收效果好、能源利用率高的优点,目前在工业领域得到广泛应用。

2.2 烟气换热器烟气换热器是另一种常见的烟气余热回收设备。

它通过在烟气管路上增设换热器,将烟气中的余热传递给工作介质,实现余热的回收和再利用。

烟气换热器可以将烟气中的高温热能转化为低温热能或其他形式的能量,例如热水、蒸汽等。

这种方案适用于烟气温度较高的情况,可以有效提高热能利用率和能源利用效率。

2.3 烟气余热发电系统烟气余热发电系统是将烟气余热转化为电能的一种方案。

它通过在锅炉系统中增设烟气余热发电装置,将烟气中的余热转化为蒸汽,并通过蒸汽发电机组发电。

这种方案适用于需要大量电能的场景,如工业厂房、发电厂等。

烟气余热发电系统可以充分利用烟气中的余热,提高能源利用效率,同时减少对传统能源的依赖,具有良好的经济和环境效益。

3. 烟气余热回收方案的应用案例3.1 石化行业在石化行业中,烟气余热回收方案得到了广泛应用。

余热回收的原理与设计

余热回收的原理与设计

余热回收的原理与设计余热回收是一种能源利用的方式,通过回收工业过程中产生的废热,将其转化为可用的热能,实现能源资源的高效利用。

本文将介绍余热回收的原理与设计,以及其在实际应用中的一些关键问题。

一、余热回收的原理工业生产过程中,往往会产生大量的废热,这些废热如果不加以利用,将会浪费大量的能源资源。

余热回收的原理就是通过一系列的热交换和能量转化过程,将废热转化为可用的热能,以满足其他工艺过程或提供供暖等热能需求。

余热回收的原理主要包括以下几个方面:1.热交换:余热回收系统通过热交换器将废热与冷却介质进行热交换,将高温的废热传递给冷却介质,使其升温,同时冷却介质的温度下降,实现能量的转移。

2.能量转化:通过热交换过程,废热中的热能被传递给冷却介质,使其温度升高。

然后,利用热能转换设备(如蒸汽发生器、热泵等)将热能转化为其他形式的能量,如蒸汽、热水、电能等。

3.能量利用:转化后的能量可用于其他工艺过程,例如用蒸汽发生器产生蒸汽,用于供暖、发电或工艺加热等。

二、余热回收的设计余热回收系统的设计需要考虑多个因素,包括废热的温度、流量、性质等,以及回收后的能量利用方式等。

以下是一些常见的余热回收系统设计要点:1.热交换器的选择:热交换器是余热回收系统的核心部件,其性能直接影响回收效果。

根据废热的温度和流量等参数,选择合适的热交换器类型,如板式热交换器、管壳式热交换器等。

2.热能转化设备的选型:根据回收后的能量利用需求,选择合适的热能转化设备。

如需产生蒸汽,可选用蒸汽发生器;如需产生热水,可选用热水锅炉;如需产生电能,可选用热电联供系统等。

3.系统的热平衡:在设计余热回收系统时,需要考虑废热与冷却介质之间的热平衡问题,以确保能量的有效转移。

合理选择冷却介质的流量、温度等参数,以实现废热的高效回收。

4.系统的安全性:余热回收系统应考虑安全因素,包括防止废热泄漏、冷却介质的腐蚀等。

选择适当的材料和设计合理的系统结构,以确保系统的安全运行。

热泵余热回收的原理与设计

热泵余热回收的原理与设计

热泵余热回收的原理与设计热泵余热回收的原理与设计热泵是一种高效节能的供暖设备,其工作原理是通过压缩制冷剂来吸收室外空气中的热量,然后将热量传递到室内供暖。

在这个过程中,热泵会产生大量的余热,如果能够将这些余热回收利用,就可以进一步提高热泵的能效。

热泵余热回收的原理比较简单,就是利用余热传热器将热泵产生的余热传递给需要加热的介质,例如热水或者空气。

传热器通常采用板式或者管式结构,通过传导、对流和辐射等方式将余热传递给介质。

传热器的设计需要考虑介质的流量、温度、压力等因素,以及传热器的材料、结构、表面积等因素,以确保传热效率和安全性。

热泵余热回收的设计需要考虑以下几个方面:1. 余热回收的介质选择:热泵余热可以回收利用的介质有很多种,例如热水、空气、地暖等。

选择合适的介质需要考虑介质的热容量、流量、温度等因素,以及介质的使用需求和成本等因素。

2. 传热器的设计:传热器的设计需要考虑介质的流量、温度、压力等因素,以及传热器的材料、结构、表面积等因素。

传热器的设计需要满足传热效率高、安全可靠、维护方便等要求。

3. 控制系统的设计:热泵余热回收的控制系统需要考虑余热回收的启停、介质的流量、温度等参数的控制,以及传热器的清洗、维护等问题。

控制系统需要具备可靠性、稳定性、智能化等特点。

热泵余热回收的优点是显而易见的,它可以提高热泵的能效,减少能源消耗,降低环境污染。

同时,热泵余热回收也可以为用户提供更加舒适的室内环境,例如提供更加稳定的热水、改善室内空气质量等。

总之,热泵余热回收是一种非常有前途的节能技术,它可以为用户节约能源、降低成本,同时也可以为环境保护做出贡献。

在未来的发展中,热泵余热回收技术将会得到更加广泛的应用和推广。

热泵余热回收的原理与设计

热泵余热回收的原理与设计

热泵余热回收的原理与设计热泵余热回收是一种利用热泵技术将废热转化为有用热能的方法。

它可以在工业生产和日常生活中起到节能减排的作用。

本文将介绍热泵余热回收的原理和设计。

热泵余热回收的原理是基于热力学中的热力平衡原理。

热泵是一种能够将低温热源中的热能转移到高温热源中的设备。

它通过循环工作介质的相变过程,实现热能的转移。

在热泵系统中,工作介质通过蒸发、压缩、冷凝和膨胀等过程,将低温热源中的热能吸收并释放到高温热源中。

热泵余热回收系统通常由四个主要组件组成:蒸发器、压缩机、冷凝器和膨胀阀。

首先,低温热源的热能通过蒸发器传递给工作介质,使其蒸发。

然后,压缩机将蒸发后的工作介质压缩,提高其温度和压力。

接下来,高温热源的热能通过冷凝器传递给工作介质,使其冷凝成液体。

最后,膨胀阀将液体工作介质膨胀,降低其温度和压力,使其重新进入蒸发器循环。

在热泵余热回收系统中,通过调整蒸发器和冷凝器的温度差,可以实现对废热的回收利用。

废热是指工业生产或日常生活中产生的高温热源的剩余热能。

通过将废热作为低温热源输入热泵系统,可以利用热泵的工作原理将其转化为有用热能,并将其释放到高温热源中。

这样就实现了对废热的回收利用,达到了节能减排的目的。

设计一个热泵余热回收系统需要考虑多个因素。

首先,需要确定废热的温度和热量。

废热的温度决定了蒸发器和冷凝器的设计参数,如管道尺寸和换热面积。

废热的热量决定了热泵系统的制冷量和制热量,从而确定了压缩机的功率和工作介质的选择。

需要考虑热泵系统的运行方式和控制策略。

热泵系统可以采用单回路或多回路的方式运行,具体取决于废热的特点和需求。

控制策略可以根据废热的变化和高温热源的需求进行调整,以实现最佳的能量转化效率。

还需要考虑热泵系统的经济性和可行性。

热泵系统的投资成本、运行费用和维护成本都需要进行评估和比较。

同时,还需要考虑废热回收对生产过程和生活环境的影响,以及其对能源消耗和碳排放的减少效果。

热泵余热回收是一种利用热泵技术将废热转化为有用热能的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒昌焦化焦炉烟气余热回收项目设计方案唐山德业环保设备有限公司二〇一二年三月一、焦化工艺概述:备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。

煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。

炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。

熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。

煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。

约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。

荒煤气中的焦油等同时被冷凝下来。

煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。

焦炉加热用的焦炉煤气,由外部管道架空引入。

焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。

燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。

对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。

二、余热回收工艺流程图技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。

主要技术特点:1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。

我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。

地下烟道路截面尺寸如上图所示。

开孔及布筋图支模示意图支撑系统图2、防止地下烟道、余热回收设备、引风机间环流形成的技术。

由于地下烟道翻板阀与地下烟道周围的150-200的环隙,在风机工作的过程中,风机出口压头大于风机进口压头,且进口压头低于烟囱吸力,因此在设备烟气进口处与风机出口处间地下烟道有环流存在。

经验告诉我们在这种情况下,增大风机功率是没有作用的,因为随风机功率的增加,其环量也在增加,其结局是或影响焦炉总烟道负压度从而影响焦炉的正常生产,或影响余热回收的正常产汽量,这也是一般设备制造厂家在焦炉余热回收上失败的原因之一。

我们公司科学严谨的技术分析,在工艺设计上采取安全保障措施,从根本上避免了这一情况的发生。

3、地下双烟道吸力不平衡调节技术。

由于在实际生产过程中,两个地下烟吸力往往是不一致的,而风机的进口吸力是一样的,如何调整两个地下烟道吸是本项工程的另一关键技术。

三、余热回收工艺1、烟气工艺流程在地下主烟道翻板阀前开孔,将主烟道路热烟气从地下主烟道路引出,经余热回收系统换热降温后,将热烟气降至约170℃,经锅炉引风机再排入主烟道翻阀后的地下烟道,经烟囱排空。

2、水汽系统工艺流程外来20℃的一次水经过软化水处理系统,到软化水箱,由软化水箱经水泵进入除氧器,经除氧器除氧后。

再由给水泵补入软水预热器,然后进入锅炉汽包,汽包水和蒸汽发生器内水自然循环,在汽包内蒸汽与水分离产生0.5MPa饱和蒸汽。

①水系统的供水量每小时20吨,供水压力~1.5MPa,水源由软水总管供给软化水处理系统,然后经软化水箱进入除氧器,除氧器提供补水管,将处理后的水补给软水预热器。

②系统软化水采用全自动软水器,他可将软水器运行及再生的每一个步骤实现自动控制并采用流量感应器来启动再生。

③从软化水箱到除氧器和软水预热器的给水系统均配两台电动给水泵(均为一开一备),水泵扬程除满足系统压力外,还要克服水柱爬升高度及沿程阻力,型号为DG型锅炉给水泵。

④软水预热器、蒸汽发生器、汽包、软化水系统、除氧器均设有排污出水口,可定期清除内部残留污物及水垢。

系统水箱设有给水取样;蒸汽聚集器设有水取样点,对换热器水进行取样。

四.余热回收系统主要设备1余热锅炉系统锅炉本体范围内的主要系统如下:(1)蒸汽及水加热系统:蒸汽输出;汽水取样系统:加药系统给水系统排污系统(2)疏放水系统锅炉本体范围内的各设备、管道的最低点设置疏、放水点,确保各下降管、省煤器、蒸发器等的进出口联箱疏、放水的畅通。

(3)排污系统在汽包的盐段设连续排污,在水系统的下联箱设定期排污,排去适量的锅炉污水以确保蒸汽品质。

在锅炉本体下部配置1台定期排污扩容器,排污降温池布置在锅炉本体下部,且预留好排污降温池位置。

(4)汽水取样系统--锅炉本体汽水取样,取样系统包括:给水取样:PH值、电导率、O2炉水取样:PH值、磷酸根、电导率2余热锅炉系统设计:(1)锅炉烟气进口至出口,烟气阻力小于800Pa。

(2)系统正常排污量不超过锅炉给水流量的1%。

(3)锅炉疏放水系统能在一个小时内,将整台锅炉的水以重力放空。

(4)管道、阀门、排污扩容器及附件的设计压力和设计温度的确定符合标准规范有关确定。

(5)负责提供锅炉与其它设备之间的接口设计,并提供锅炉接口清单表。

(7)锅炉设有水压试验接口,提供试验方法和详细说明(包括试验用水的水质和水温)。

(9)锅炉的取样点、监视点、加药点、排污点、放气点及停炉放水点全部带有根部阀,如为法兰连接配带反向法兰、垫片及紧固件。

(10)供测量烟道及余热锅炉本体各段温度的测量元件。

(11)在符合设计条件及系统正常投运时,保证达到以下运行性能:①锅炉在设计工况参数下能达到额定值。

并保证长期安全运行,所有附件及配供的测控设备均能正常投运。

②主蒸汽额定汽温偏差为±5℃,在可能运行的条件工况下,各段受热面的金属壁温都在允许范围之内。

③锅炉从启动到最大连续负荷范围内,水循环安全可靠。

④锅炉适用于露天布置,并采取适当防雨,避雷的措施。

⑤锅炉设计在定压运行下有良好的对负荷变动的适应性,在变负荷运行时,锅炉应有足够的安全可靠性,以适应系统或控制装置在运行中产生的偏差。

⑥锅炉设计中有有效的停炉保护措施,并提供有关设备及系统3余热锅炉汽水系统工艺及设备布置余热锅炉包括:蒸发器、省煤器、共三组受热面以及汽包、除氧器。

3、锅炉整体布置余热锅炉采取卧式布置。

热管换热器分成热管联箱、热管支架等组件。

水处理间布置中压锅炉给水泵、软水泵,软水箱、汽水取样分析装置和锅炉锅内磷酸盐加药装置。

(3)中压汽包及内部装置中压汽包直段长度约为6000mm,两端相配椭球形封头,并设有人孔装置。

筒体和封头的材料均为16MnR。

该汽包通过两个支座(一个活动支座,一个固定支座)搁置在钢架梁上,汽包的中心线标高为12m。

由省煤器来的水从汽包前部进入分配管。

汽包内的汽水分离元件为均汽孔板和丝网捕沫器,布置在汽包顶部。

汽包正常水位在汽包中心线以下100mm处,正常水位范围为±75mm。

汽包内设有磷酸盐加药管、连续排污管、紧急放水管、再循环管。

底部为集中下降管。

在汽包上还设有双色水位计、压力表和安全阀(2个)等装置,以供锅炉运行时监督、控制用。

(4)汽包及内部装置汽包直段长度约为6000mm,两端相配椭球形封头,并设有人孔装置。

筒体和封头的材料均为16MnR。

该汽包也通过两个支座(一个活动支座,一个固定支座)搁置在钢架梁上,汽包的中心线标高为14m。

为保证锅炉正常运行时获得良好的蒸汽品质,该汽在其内部也设置了均汽孔板和丝网捕沫装置。

在汽包内部也设有给水分配管、加药管和排污管,同时在该汽包上还设有水位计、压力表和安全阀(2个)等装置,供锅炉运行时监督、控制用。

五、锅炉本体的设备性能(1)蒸汽发生器的性能蒸汽发生器的原理为:热流体的热量由热管传给水套管内的水(水由下降管输入),并使其汽化,所产汽、水混合物经蒸汽上升管到达汽包,经集中分离以后再经蒸汽主控阀输出。

这样由于热管不断将热量输入水套管内的水,并通过外部汽——水管道的上升及下降完成基本的汽——水循环,达到将热流体降温,并转化为蒸汽的目的。

、焦炉设计参数(单台,共两台):(2)热管省煤器的性能原理为:热流体的热量由翅片热管传给管内的水,水吸收热量,使热流体降温,达到预期的效果。

六、钢架、平台扶梯本体钢架采用全钢结构,按七度地震烈度设防。

钢架采用大型H型钢制成。

本体钢架采用桁架式结构,本体钢架将支撑整台锅炉正常运行时所产生的允许载荷以及风载、地震等载荷,并将其平稳地传递至地面基础,确保锅炉在允许载荷范围内长期安全可靠的运行。

锅炉外围采用紧身封闭式结构。

本锅炉在运行操作及检修所需的各部位均布置了平台,检修平台采用不透孔的花钢板结构,其余平台、步道及扶梯均采用适栅格结构,步道宽度为1000mm,扶梯宽度为800mm,斜度为45°,平台的允许载荷为2kPa(200kgf/m2),同时承载面积按不超过20%平台总面积计。

七.设备的主要特点提到设备的特点,就要先介绍一下热管技术和特点:1、热管(1)、工作原理热管是一种独立、密封的管子,内部抽成真空后,充入工质,工质以蒸发——冷凝的循环过程将热量从管的一端传到管子的另一端。

由于蒸发——冷凝过程,内部工质多处于饱和状态,因此热管几乎是在等温下传递热量,具有“热超导体”之称。

(2)、特点①、极高的传热性能随管内工质的不同,传热系数达107W/m2.℃,是普通碳钢的数万倍。

②、低温差下高传输热量能力一根直径12.7mm,长1000mm的紫铜棒,两端温差100℃时传输30W的热量;而一根直径、长度的热管传输100W的热量,两端温差只需几度;③、换热两流体均走管外,可以翅片化以强化传热;④、单管作业性由热管组成的换热设备单根热管损坏对设备的换热影响不大,即使部分热管损坏也不会影响的政正常运行;⑤、热源分汇在设计可以随意调整热管冷却段和蒸汽段的换热长度,以控制热管的壁温,因此可以使热管换热器避开露点。

这样就可避开露点腐蚀、不易积灰;⑥、热管与换热器单支点焊接,避免由热帐冷缩造成的应力。

2、根据热管的这些特点,从而决定了热管余热锅炉的特点;(1)、传热系数高。

废气和水及水蒸气的换热均在热管的外表面进行,而且废气热管外侧为翅片,这样换热面积增大,传热得到强化,因而使换热系数得到了很大的提高。

(2)、彻底解决泄漏问题:由于热管是单管作业,冷热流体完全隔开,有效防止水汽系统的泄漏。

在运行时,废气的大量冲刷,即使管子一端被腐蚀传,只能使该热管失效,而管子另一端是完好的,不会造成冷侧的气水泄漏到热侧,确保了系统的安全运行,彻底解决了设备泄漏问题。

(3)、减轻露点腐蚀:热管余热锅炉每一根管子的壁温是一个值,这就使相当一批热管在酸露点以上工作,当壁温比酸露点高1℃以上时,就可以避免露点腐蚀。

通过调节热管冷热段受热表面的比例来调整管壁温度,避开最大腐蚀区。

(4)、减轻积灰、堵灰及解决灰堵问题:热管余热锅炉避开了露点,管壁不结露,就大大减少了灰的附着力,而且热管余热锅炉从设计上更科学合理,使其本身就具有一定的自吹灰能力。

相关文档
最新文档