第五章相平衡(10个)
第05章 相平衡

第五章相平衡§5.1 引言相平衡是热力学在化学领域中的重要应用之一。
化工中很多分离提纯过程,例如精馏、吸收、结晶、萃取等,都涉及到物质在不同相中的分配,它们主要利用物质的挥发性或溶解度等方面的差异,以达到分离提纯的目的,相平衡亦可为此提供理论依据。
因此研究相平衡有着重要现实意义。
一、相(phase)体系内部物理和化学性质完全均匀的部分称为相。
相与相之间在指定条件下有明显的界面。
(1)气体,不论有多少种气体混合,只有一个气相。
(2)液体,按其互溶程度可以组成一相、两相或三相共存。
(3)固体,一般有一种固体便有一个相。
两种固体粉末无论混合得多么均匀,仍是两个相(固体溶液除外,它是单相)。
体系中相的总数用Φ表示。
二、相变物质从一个相流动到另一个相的过程,称为相变化,简称相变。
相变包括气化(boil)、冷凝(condensation)、熔化(melt)、凝固(freeze)、升华(sublimation)、凝华以及晶型转化等。
三、相图(phase diagram)将多相体系的状态随组成、温度、压力等强度性质的改变而发生的过程用图形表示,称为相图。
根据组成相的物态不同分为气-液相图、液-液相图和液-固相图。
根据用途不同可将相图分为温度-蒸汽压图(T-p图,P314 图5.1)、蒸汽压-组成图(p-x图,P318 图5.3):恒定温度,研究P-x,y之间的关系。
称为压力组成图。
温度-组成图(T -x 图,P321 图5.5):在恒定压力下表示二组分系统气-液平衡时温度与组成关系的相图。
研究T-x ,y 之间的关系。
和温度-蒸汽压-组成图(T -p -x 图,P322 图5.6),T-x-y ,x-y ,p-x-y 相图等。
四、自由度(degrees of freedom )确定平衡体系的状态所必须的压力、温度和浓度等独立强度性质的数目称为自由度,用字母f 表示。
如果已指定某个强度性质,除该性质以外的其它强度性质数称为条件自由度,用*f 表示。
第5章 相平衡习题解答

⑵ 图中,组成为 xB=0.800 的液相的泡点: t 110.2 C ; ⑶ 图中,组成为 yB =0.800 的气相的露点: t 112.8 C ; ⑷ 求 105℃时气-液平衡两相的组成: xB 0.417 , yB 0.544 ;
xB
1
xA
0.541
p pA pB 54.22 0.459 136.12 0.541 98.53kPa
yA
pA pA pB
54.22 0.541
0.2526
54.22 0.459 136.12 0.541
yB
pB pA pB
136.12 0.459
0.7474
54.22 0.459 136.12 0.541
答: ⑴ p=98.54kPa,yB=0.7476;⑵ p=80.40kPa,xB=0.3197; ⑶ yB=0.6825,xB=0.4613,nB(l)=1.709mol,nB(g)=3.022mol 5-7 在 101.325kPa 下,水(A) -醋酸(B)系统的气-液平衡数据如下:
t/℃
100
100 92 0.45
2.415
mB (2.415 100 / 92) 18 23.91kg
第五章 相平衡习题解答
5-1 指出下列平衡系统中的物种数 S、组分数 C、相数 P 和自由度数 f。 ⑴ C2H5OH 与水的溶液; ⑵ I2(s)与 I2(g)成平衡; ⑶ NH4HS(s)与任意量的 H2S(g)及 NH3(g)达到平衡; ⑷ NH4HS(s)放入抽空的容器中分解达平衡; ⑸ CaCO3(s)与其分解产物 CaO(s)和 CO2(g)成平衡; ⑹ CHCl3 溶于水中、水溶于 CHCl3 中的部分互溶系统及其蒸气达到相平衡。 解:(1)物种数 S=2,组分数 C=2、相数 P=1,自由度数 f=C-P+2=3;
第5章 相平衡习题解答

5-5 根据下面给出的 I2 的数据,绘制相图。(已知: s l )
三相点
临界点
熔点
t/℃
113
512
114
p/kPa
12.159
11754
101.325
解:碘的相图如下:
答:t=84℃
沸点 184 101.325
解:(1)由表中的数据,绘制水(A) -醋酸(B)系统的温度-组成图如下:
⑵ 图中,组成为 xB=0.800 的液相的泡点: t 110.2 C ; ⑶ 图中,组成为 yB =0.800 的气相的露点: t 112.8 C ; ⑷ 求 105℃时气-液平衡两相的组成: xB 0.417 , yB 0.544 ;
答:⑴ S=2,C=2,P=1,f=2; ⑵ S=1,C=1,P=2,f=1; ⑶ S=3,C=3,P=2,f=2; ⑷ S=3,C=1,P=2,f=1; ⑸ S=3,C=2,P=2,f=2; ⑹ S=2,C=2,P=3,f=1
5-2 试求下列平衡系统的组分数 C 和自由度数 f 各是多少? ⑴ 过量的 MgCO3(s)在密闭抽空容器中,温度一定时,分解为 MgO(s)和 CO2(g); ⑵ H2O(g)分解为 H2(g) 和 O2(g); ⑶ 将 SO3(g)加热到部分分解; ⑷ 将 SO3(g)和 O2(g)的混合气体加热到部分 SO3(g)分解。 解:(1)物种数 S=3,组分数 C=2、相数 P=3,自由度数 f*=C-P+1=0;
所以,压力降到 98.53kPa 时,开始产生气相,此气相的组成 yB=0.7474;
(2)当气相组成: yB 0.541时,
yB
化工热力学 第五章 相平衡

A)汽相为理想气体混合物,液相为理想溶液。 B)汽相和液相都是理想溶液。 C)汽相是理想气体混合物,而液相是非理想溶液。 D)两相都是非理想溶液。 5.2.1、相平衡的处理方法 状态方程法:用状态方程来解决相平衡中的逸度系数
ˆ iv yi P li xi P ˆ
活度系数法:液相的逸度用活度系数来计算
s s i i
5.3.2.2) 泡点温度和组成的计算(BUBLT)
已知:平衡压力P,液相组成xi,求 平衡温度T,汽相组成 yi 假设T,确定Pis 计算yi 否
y
i
1
是
园整
5.3.2.3 露点压力和组成计算(DEWP)
已知 平衡温度T,汽相组成yi , 求平衡压力 P,液相组成xi 假设 P 计算Pis及xi
第5章
相 平 衡
在化工生产中,原料由于含有各种杂质,需要提纯进入反 应器;反应又常常是不完全的并伴有副产物,因而产物也是不 纯的,也需要进一步处理,才能得到产品。所有这些都离不开 分离操作,典型的分离操作有精馏(VLE)、吸收(GLE)、 萃取(LLE)、结晶(SLE)等,他们的投资常达整个工厂投 资的一半以上,对有些行业如石油和煤焦油加工等,甚至达到 80%--90%,这些分离都需要相平衡数据。 5.1 相平衡基础 5.1.1、相平衡的判据 何谓相平衡:
例:乙醇(1)----苯(2)溶液,含乙醇80%(mol%),求该溶液在 750mmHg时,的沸点及饱和蒸汽组成。已知乙醇---苯系统有一恒沸 混合物,此混合物含44.8%乙醇,在760mmHg时的沸点为68.24oC (忽略温度对活度系数的影响。 乙醇
苯
lg P1S 8.04494
1554 .3 222 .65 t
5.相平衡

解:
p2 ∆ vap H m 1 1 ln = ( − ) p1 R T1 T2
ቤተ መጻሕፍቲ ባይዱ
R′ = 1 R′ = 0
4
例如,CaCO3(s)的分解
CaCO 3 (s) ƒ CaO(s) + CO 2 (g)
C = S − R − R′
R′— 除一相中各物质的摩尔分数之和为1这个关系 外的不同物种的组成间的独立关系数。 (ii) 当把电解质在溶液中的离子亦视为物种时,由电 中性条件带来的同一相的组成关系。 例如,在HCN的水溶液中,有五个物种H2O、OH-、 H+、CN-和HCN
状态1:µ α = µ β
β = G Gm α m
当φ = 2时 两相平衡
{p}
f =1
状态2:
α β β + d = + d G Gm Gm Gm α m
αƒβ 2
(T+dT,p+dp) 1 αƒβ {T}
17
dG = dG
α m
β m
1.克拉佩龙方程式
dG = dG
α m β m
dG = − SdT + Vdp
15
最多有一种固体水合物与水溶液、冰共存。
5.2 单组分系统
C =1 f = C −φ + 2
f = 3 −φ
当φ = 1时 单相 f = 2 双变量系统 f = 1 单变量系统 f = 0 无变量系统
第5章相平衡

5.3中低压下汽液平衡 5.3中低压下汽液平衡
相平衡时
ɵ V = P sφ s r x Pyi φ i i i i i
(5-18) 18)
热力学中汽液平衡的研究方法: 热力学中汽液平衡的研究方法: 汽液平衡的研究方法 从平衡数据的测定入手,总结得到相应的平衡 从平衡数据的测定入手, 规律,拟合得到活度系数方程参数, 规律,拟合得到活度系数方程参数,利用具有预 测功能的活度系数方程,并结合式(5-18),计 测功能的活度系数方程,并结合式( 18),计 ), 算得到其他条件下的汽液平衡性质。 算得到其他条件下的汽液平衡性质。 5.3.1中 5.3.1中、低压下二元汽液平衡相图 见教材,自阅。 见教材,自阅。
汽液平衡体系的四类
相平衡时: 19) 相平衡时: PyiφiV = Pi sφis xi (5-19) 工程条件: 工程条件: P〈 1.5MPa的烃类混合物,同分异构体等。 1.5MPa的烃类混合物 同分异构体等。 的烃类混合物, 低压体系: ③低压体系: 汽相: 汽相:理想气体的混合物 Pi = yi P f i l = ri xi f i l 液相:非理想溶液 液相: 相平衡时 yi P = ri xi f i l = Pi s ri xi 20) (5-20) 工程上:大多数体系可采用此法计算。 工程上:大多数体系可采用此法计算。
∴ −d (U + PV − TS ) ≥ 0
∴ ( dG )T , P ≤ 0
∵ G = U + PV − TS
判断是否达到平衡状态 时,未达到平衡态; 未达到平衡态; 时, 达到平衡态。(5-3) 达到平衡态。( 。(5
=0
∆G < 0 ∆G = 0
( dG )T , P
化工原理第五章气液相平衡

亨利简介
威廉·亨利于1774年12月12日出生在英国的曼彻斯特市。 他们祖孙三代都是医师兼有名的化学家。发明亨利定律的亨利的名字 是威廉·亨利(William Henry),他的父亲名托马斯·亨利( Thomas Henry ),他的儿子名威廉·查尔斯·亨利(William Charles Henry)。他们三代 是十八世纪到十九世纪的著名学者。 威廉·亨利在1795年进爱丁堡大学,一年之后。因为他父亲医务工作 上需要助手,他离开了大学,在家里做实医师。到1805年他又回到爱丁 堡大学,继续学业。1807年化完成了医学博士学位。 亨利定律是在1803年由威廉·亨利在英国皇家学会上宣读的一篇论文 里,加以详细说明的。从此以后,这个定律就被命名为亨利定律了。 1888年,在亨利发表他的定律八十多年后,法国化学家拉乌尔( Francois-Marie Raoult,1830-1901)发表了他在溶液蒸气压方面的发 现,这就是我们现在所称的拉乌尔定律。 亨利晚年因为严重的头痛和失眠,几乎无法工作,于1836年9月2日离 开人世,终年62岁。
2021/7/31
2、相平衡的理论依据 对单组分物理吸收的物系,根据相律:
F=K-Φ+2=3-2+2=3
(K=3,溶质A,惰性组分B,溶剂S,Φ=2,气、
液两相)
【结论】在温度T、总压P和气、液相组成共4个变量
中,有3个自变量(独立变量),另1个是它们的函
数。即:
yfT 、 P 、 x
2021/7/31
mE485023.94 p 20.26
从气相分析 y*=mx=23.94×0.01=0.24<y=0.3
故SO2必然从气相转移到液相,进行吸收过程。 【结论】增大压力(30℃,101.3kPa→202.6kPa)有 利于吸收。
第5章- 相平衡

1 (2) CO O 2 CO 2 2 1 (3) H 2 O 2 H 2O 2
这三个反应中只有两个是独立的,所以 R=2
独立组分数:C= S – R – R′
浓度限制条件:R′ 例如,在真空容器中发生如下反应:
2NH3 (g) N2 (g) 3H2 (g)
第五章
相平衡
相数的确定
系统中相的总数称为相数,用 表示。
气体,不论有多少种气体混合,只有一个气相; 液体,按其互溶程度可以组成一相、两相或三相共存;
固体,一般有一种固体便有一个相。两种固体粉末无论混 合得多么均匀,仍是两个相(固溶体除外,它是单相);
自由度
确定平衡系统的状态(既不产生新相也不消失
* nA (g) pA * nB (g) pB
2、 工业应用:水蒸气蒸馏
简单的低共熔二元相图
1.0Bi
a
A
0.4Cd 1.0Cd 0.2Cd 0.7Cd b c d e H A'
F
p
A
H 596
熔化物(单相)
546
C
F
T /K
C
B
413
D D' E
G
M
熔化物+Cd(s)
G E 413 Bi(s)+熔化物 D BBi
0.2
0.4
0.6
0.8
wCd
1 Cd
Cd-Bi二元相图的绘制
Cd-Bi二元相图的绘制
w(Cd) 0.2
的步冷曲线
b
T /K
f* 2
C
D
f * 1
1. 加热到b点,Bi-Cd全部熔化 Φ 1 f * 2 1 Φ 2 温度可以下降,组成也可变 2. 冷至C点,固体Bi开始析出 Φ 2 f * 2 1 Φ 1 温度可以下降 3.D点固体Bi、Cd同时析出
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相平衡一、本章基本要求1.掌握相、组分数和自由度的意义。
2.了解相律的推导过程及其在相图中的应用。
3.了解克劳修斯-克拉珀龙方程式的推导,掌握其在单组分两相平衡系统中的应用。
4.掌握各种相图中点、线及面的意义。
5.根据相图能够画出步冷曲线,或由一系列步冷曲线绘制相图。
6.掌握杠杆规则在相图中的应用。
7.结合二组分气液平衡相图,了解蒸馏与精馏的原理。
8.对三组分系统,了解水盐系统的应用,相图在萃取过程中的应用及分配定律的应用。
二、 基本公式和内容提要(一)基本公式相律的普遍形式:f K n =-Φ+克拉珀龙方程:mm d ln d V T H T p ∆∆= 克劳修斯-克拉珀龙方程的各种形式:微分式: 2m vap d ln d RTH T p ∆= vap m H ∆与温度无关或温度变化范围较小vap m H ∆可视为常数,定积分:vap m 211211ln ()H p p R T T ∆=- 不定积分式:vap mln H p C RT ∆=-+ 特鲁顿规则:K)J/(mol 88b mvap ⋅≈∆T H杠杆规则:以系统点为支点,与之对应的两个相点为作用点,有如下关系:1122()()n x x n x x -=-其中n 1 、n 2 分别表示平衡两相的摩尔数,x 、x 1、x 2分别表示系统的组成及其对应的平衡两相的组成。
(二)内容提要1.单组分系统 单组分系统相律的一般表达式为:f =1-Φ+2=3-Φ可见单组分系统最多只能有三相平衡共存,并且最多有两个独立变量,一般可选择温度和压力。
水的相图为单组分系统中的最简单相图之一。
图5-1中三条曲线将平面划分成固、液及气相三个区。
单相区内f =2。
AB 、AD 和AE 分别表示气液、气固和固液两相平衡线。
两相共存时f =1。
虚线AC 表示应该结冰而未结冰的过冷水与水蒸气平衡共存。
A 点为三相点,这时f =0,水以气、液、固三相共存。
水的三相点与水的冰点不同,冰点与压力有关。
单组分系统两相平衡共存时T与p的定量关系图5-1 水的相图式可由克拉珀龙方程式描述。
对于有气相参与的纯物质气液两相或气固两相平衡,可用克劳修斯-克拉珀龙方程描述。
特鲁顿规则是近似计算气化热或沸点的经验式。
2.二组分双液系统对于二组分系统,f =2-Φ+2=4-Φ。
Φ=1时f=3,即系统最多有三个独立变量,这三个变量通常选择温度、压力和组成。
若保持三者中的一个变量恒定,可得到p~x图、T~x图和p~T图。
在这三类相图中,系统最多有3个相同时共存。
(1)二组分完全互溶系统的气液平衡:这类系统的相图如图5-2。
图中实线为液相线,虚线为气相线,气相线与液相线之间为气液二相共存区。
靠近气相线一侧为气相区,靠近液相线一侧为液相区。
其中Ⅰ为理想液态混合物系统;Ⅱ、Ⅲ分别为一般正、负偏差系统;Ⅳ、Ⅴ分别是最大正、负偏差系统。
Ⅰ~Ⅲ类系统中易挥发组分在气相中的组成大于其在液相中的组成,一般精馏可同时得到两个纯组分。
Ⅳ、Ⅴ类相图中极值点处的气相组成与液相组成相同,该系统进行一般精馏时可得到一个纯组分和恒沸混合物。
二组分系统的两相平衡状态对应一个区域,用杠杆规则可以计算两相平衡共存区平衡二相的相对数量。
图5-2 完全互溶系统的气液(2)部分互溶的二组分系统:因两种液体结构上有显著的差别,会出现一种液体在另一种液体中只有有限的溶解度,超过一定范围便要分成两个液层,即“部分互溶”,相图见图5-3。
C点对应的温度称为“临界溶解温度”。
温度超过C点,正丁醇与水两组分能以任何比例互溶。
还存在另外两类溶解度图,分别见图5-4和图5-5,前者具有下临界溶解温度,后者同时具有上、下临界溶解温度。
图5-3 水-正丁醇的溶解图图5-4 水-三乙基胺的溶解度图图5-5 水-烟碱的溶解度图图5-6 邻硝基氯苯、对硝基氯苯二元系统的冷却曲线(a )和熔点组成图(b )(3)完全不互溶的双液系统:如果两种液体结构相差很大,彼此间的溶解度可以忽略不计,这样的系统可以看作完全不互溶的双液系统。
在这类系统中任意液体在某一温度下的蒸气压与该液体同温度下单独存在时的蒸气压相同,与两种液体存在的量无关。
总蒸气压**A B p p p =+,因此完全不互溶液体混合物的沸点低于任意纯组分的沸点,这是水蒸气蒸馏的基础。
3.二组分固液系统(1)简单低共熔系统:常用热分析法或溶解度法绘制这类相图。
利用“冷却曲线”绘制的邻硝基氯苯(A )与对硝基氯苯(B )的固液相图见图5-6。
aE 和bE 线分别表示邻硝基氯苯与对硝基氯苯固体与熔化物平衡时液相组成与温度的关系曲线,也称为熔点降低曲线。
E 点为最低共熔点,对应该温度的水平直线为三相平衡线(两端点除外),共存的三相为固体邻硝基氯苯和对硝基氯苯及E 点对应的溶液,aE 、bE 及三相线将图形分成4个部分,各区域的相态分别注在图上。
低共熔系统相图与药学密切相关,如利用冷却结晶过程分离提纯化合物;利用熔点变化检查药物或中间体纯度;指导药物配伍及防冻制剂的制备;改良与修饰剂型;与气-液相图联用,对混合物进行分离和提纯。
(2)生成化合物系统:若A与B形成的化合物在固相和液相均是稳定的,并且熔化时固相和液相的组成相同,称为生成稳定化合物系统。
若A与B间形成n个稳定的化合物,则其固液相图相当于(n+1)个简单低共熔系统相图的拼合,若A与B间形成的化合物C,在加热到熔点之前,就分解成熔化物和另一种固体,熔化物与固态化合物C的组成不同,称为生成不稳定化合物系统。
其相图与前者有所不同。
4.三组分系统当温度和压力同时固定时,在平面上用等边三角形可表示三组分凝聚系统中各平衡系统的状态。
其中三个顶点分别表示三个纯物质,三条边分别表示2个端点对应物质构成的二组分系统,三角形内任意一点表示三组分系统,二组分及三组分系统的组成可利用相图得到。
三液体间可以是一对、二对甚至是三对部分互溶的,这类系统的相图在液-液萃取过程中有重要作用。
除三液系统外,还有水盐系统,其相图对于粗盐提纯、分离具有指导作用。
三、概念题和例题(一)概念题1.在一个抽空的容器中,放入过量的NH4I(s)并发生下列反应:NH4I(s)NH3(g)+HI(g)2HI(g)H2(g)+I2(g)系统的相数Φ=();组分数K=();自由度f=()。
2.在一个抽空的容器中,放入过量的NH4HCO3(s)发生下列反应并达平衡:NH4HCO3(s)NH3(g)+H2O(g)+CO2(g)系统的相数Φ=();组分数K=();自由度f=()。
3.在一个抽空容器中,放入足量的H2O(l),CCl4(l)及I2(g)。
H2O(l)和CCl4(l)完全不互溶,I2(g)可同时溶于H2O(l)和CCl4(l)中,容器上部的气相中同时含有I2(g)、H2O(g)及CCl4(g)。
该平衡系统的相数Φ=();组分数K=();自由度f=()。
4.含KNO3和NaCl的水溶液与纯水达渗透平衡,系统的相数Φ=();组分数K=();自由度f=()。
5.在下列不同情况下,反应:2NH3(g)N2(g)+3H2(g)达平衡时,系统的自由度各为多少?(1)反应在抽空的容器中进行;(2)反应在有N2的容器中进行;(3)反应于一定的温度下,在抽空的容器中进行。
6.A和B两种液态物质微观角度讲要满足哪些条件才能形成理想液态混合物?7.水的三相点与正常冰点有何不同?8.液体的饱和蒸气压越高,沸点就越低;而由克劳修斯-克拉珀龙方程知,温度越高,液体的饱和蒸气压愈大。
两者是否矛盾?为什么?9.对于具有最大正、负偏差的液-气平衡系统,易挥发组分在气相中的组成大于其在液相中的组成的说法是否正确?为什么?10.在一定压力下,若A、B二组分系统的温度-组成图中出现最高恒沸点,则其蒸气压对拉乌尔定律产生正偏差吗?11.导出杠杆规则的基本依据是什么?它能解决什么问题?如果相图中横坐标为质量分数,物质的数量应取什么单位?若横坐标为摩尔分数,物质的数量又应取什么单位?(二)概念题答案1.2,1,12.2,1,13.3,3,24.3,2,45.(1)f=(3-1-1)-1+2 =2;(2)f=(3-1)-1+2=3;(3)f=(3-1-1)-1+1=16.A和B两种液体分子的大小和结构十分接近,使得A-A分子之间、B-B 分子之间及A-B分子之间作用力近似相等时,可构成理想溶液。
7.三相点是严格的单组分系统,水呈气、液、固三相共存时对应的温度为273.16K,压力为0.610kPa。
而冰点是在水中溶有空气和外压为101.325kPa 时测得的温度数据。
首先,由于水中溶有空气,形成了稀溶液,冰点较三相点下降了0.00242K;其次,三相点时系统的蒸气压低于冰点时的外压,由于压力的不同冰点又下降了0.00747K,故冰点时的温度为273.15K。
8.两者并不矛盾。
因为沸点是指液体的饱和蒸气压等于外压时对应的温度。
在相同温度下,不同液体的饱和蒸气压一般不同,饱和蒸气压高的液体,使其饱和蒸气压等于外压时,所需的温度较低,故沸点较低;克劳修斯-克拉珀龙方程是用于计算同一液体在不同温度下的饱和蒸气压的,温度越高,液体越易蒸发,故饱和蒸气压越大。
9.不正确。
因为具有最大正、负偏差系统的相图中有极值点,在极值点处液相组成与气相组成相同,用一般精馏不能将恒沸混合物分离。
对于具有最大正、负偏差系统,题中的叙述应修正为适于理想或非理想液态混合物系统的柯诺瓦洛夫规则,即:在二组分溶液中,如果加入某一组分使溶液的总蒸气压增加(即在一定压力下使溶液的沸点下降),则这个组分在气相中的组成将大于它在液相中的组成。
10.产生负偏差。
因为温度-组成图上有最高极值点,压力-组成图上必有最低极值点,故题中所给系统对拉乌尔定律产生最大负偏差。
11.导出杠杆规则的基本依据是质量守恒定律,该规则具有普遍意义。
可用于计算任意平衡两相的相对数量。
相图中横坐标以质量分数表示时,物质的数量以质量为单位。
横坐标以摩尔分数表示时,物质的数量以摩尔为单位。
(三)例题例1 水的蒸汽压方程为:4885ln p A T=-, 式中A 为常数,p 的单位为Pa 。
将10g 水引入体积为10L 的真空容器中,问在323K 达到平衡后,容器中还剩多少水?解:将T =373.2K ,p =101325Pa 代入所给方程中,则:4885ln101325373.2A =-得A =24.61 于是蒸汽压方程为:T p 488524.61ln -= 将T =323K 代入上式,得:p =13.24kPa因为 V l +V g =10L , V lV g , 故 V g ≈10L 设蒸汽为理想气体,mol 0493.0gg ==RT pV n ,W g =0.888g图5-7 邻硝基氯苯(A )与对硝基氯苯(B )的T -x 图故还剩水为:10-0.888=9.112g例2 已知298K 时气相异构反应:正戊烷异戊烷的p K =13.24,液态正戊烷和异戊烷的蒸气压(kPa )与温度的关系式分别可用下列二式表示:正戊烷:2002453145.9ln +-=T p 异戊烷:2252453002.9ln +-=T p 假定两者形成的溶液为理想液态混合物,计算298K 时液相异构反应的x K 。