高中数学人教A版选修1-2教学案:第二章 2.2 2.2.1 综合法和分析法 Word版含解析
高二数学人教A版选修1-2课件:2.2.1 综合法和分析法

一 二三
知识精要
证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD. 又因为EF⊄平面PCD,PD⊂平面PCD, 所以直线EF∥平面PCD. (2)连接BD.因为AB=AD,∠BAD=60°, 所以△ABD为正三角形. 因为F是AD的中点, 所以BF⊥AD. 因为平面PAD⊥平面ABCD,BF⊂平面ABCD, 平面PAD∩平面ABCD=AD, 所以BF⊥平面PAD. 又因为BF⊂平面BEF, 所以平面BEF⊥平面PAD.
≥
∵a,b,c是不全相等的正数,
������������>0.
∴������+������ ·������+������ ·������+������ >
2
2
2
������2������2������2 =abc.
即������+������ ·������+������ ·������+������>abc 成立.
2
≥2
2.
������ -������
又ab=1,
所以������ 2+������2 = ������ 2+������2-2������������ +2������������ = (������-������)2+2
������ -������
������ -������
������ -������
2
2
2
由已知0<x<1,故只需证明
人教A版高中数学选修1-2《二章 推理与证明 2.2 直接证明与间接证明 2.2.1 综合法和分析法》优质课教案_2

课题:综合法与分析法
【教学目标】
1.知识与技能
(1)了解直接证明的两种基本方法之一综合法。
(2)了解综合法得思维过程和特点。
(1)通过对实例的分析,归纳与总结,增强学生的理解思维能力。
(2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题,解决问题的能力。
3.情感,态度与价值观
通过本节课的学习了解直接证明的基本方法——综合法,感受逻辑证明在数学及日常生活中的作用,使学生养成言之有理,论之有据的好习惯,提高学生的思维能力。
【教学重难点】
重点:综合法的思维过程及特点;
难点:综合法的应用。
【学法指导】遵循中学生的心理特征及认知规律,本节课采用高效课堂教学模式,把学生分成七个小组,通过自主探究与合作探究相结合的学习方法,让学生真正成为学习的主人,感受数学学习的成功与快乐·
【教具准备】多媒体与投影仪
【教学过程】
ABC所在平面.
板书设计
一.导入新课五.应用举例
二.提出问题六.反馈练习
三.概念形成七.课堂小结
四.概念深化八.巩固提升。
人教A版高中数学选修1-2《二章 推理与证明 2.2 直接证明与间接证明 2.2.1 综合法和分析法》优质课教案_6

2、2、1综合法与分析法教案结合已学过的数学实例,了解直接证明的基本方法----综合法 了解综合法的思考过程、特点;培养学生逻辑推理能力六、教学内容分析:本节课是选修1—2中第二章第一课时,本章是重点,可以和其他知识联系在一起。
学习重点:综合法证明数学问题 的方法为主一. 引入合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------直接证明与间接证明。
若要证明下列问题:已知a,b>0,求证2222()()4a b c b c a abc +++≥ 教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。
教师最后归结证明方法。
学生活动:充分讨论,思考,找出以上问题的证明方法设计意图:引导学生应用不等式证明以上问题,引出综合法的定义二.新知探索1、综合法的定义2、框图表示()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论三、典型例题1、证明不等式教师活动:由引入的例子的证明方法,让学生思考应该如何证明本题 学生活动:充分讨论,思考,找出以上问题的证明方法设计意图:应用不等式证明不等式问题变式训练学生活动:自主练习,个别学生到黑板做。
设计意图:规范解题步骤,充分体会综合法证明不等式的方法,体会综合法证明数学问题的思想)(2:,,,,,1222zx yz xy z c b a y b a c x a c b Rc b a R z y x ++≥+++++∈∈+求证、已知:例4)11)(( ,, ≥++++∈+c b a c b a R c b a 求证:已知222222c c a a b x x y y z z a b b c c+++++若不等式左边分解成b a证明有关三角问题教师活动:给出以上问题,让学生思考应该如何证明,学生活动:充分讨论,思考,找出以上问题的证明方法设计意图:应用综合法证明三角问题教师活动:老师分析题目,引导学生找到解题思路学生活动:自主练习,个别学生到黑板做。
人教A版选修1-2 2.2.1 综合法和分析法教案

2.2.1 综合法和分析法(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥. 先完成证明 → 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc . 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果. ③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c+-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? → 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan 3A B A B ++=,求证:60A B +=o . (提示:算tan()A B +)② 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 52 练习 1题) (两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++. 3. 作业:教材P 54 A 组 1题.2.2.1 综合法和分析法(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式(0,0)2a b ab a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件)二、讲授新课:1. 教学例题:① 出示例1:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件? → 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止. 框图表示:要点:逆推证法;执果索因. ③ 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.④ 出示例4:见教材P 48. 讨论:如何寻找证明思路?(从结论出发,逐步反推) ⑤ 出示例5:见教材P 49. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥. 略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos 23sin C C -≥3sin cos 2C C +≤,即证:sin()16C π+≤(成立). 2. 作业:教材P 52 练习 2、3题.。
高中数学人教A版选修(1-2) 2.2 教学设计 《综合法和分析法》(人教A版)

《综合法和分析法》◆教材分析证明对高中生来说并不陌生,在上一节学习的合情推理中,所得的结论的正确就是要证明的,并且在之前的数学学习中,积累了相对较多的证明数学问题的经验,但这些经验是零散的、不系统的,这一节通过熟悉的数学实例,对证明数学问题的方法形成完整的认识。
◆教学目标【知识与能力目标】1.了解直接证明的了两种基本方法:综合法和分析法;2.了解综合法和分析法的思想过程和特点。
【过程与方法目标】1.通过对实例的分析、归纳和总结,增强学生的理性思维能力;2.通过实际演戏,使学生体会证明的必要性,并增强他们的分析问题、解决问题的能力。
【情感与态度目标】通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力。
【教学重点】 综合法和分析法的思维过程及特点。
【教学难点】综合法和分析法的应用。
多媒体课件。
复习导入回顾基本不等式:a+b2≥√ab (a >0,b >0)的证明过程:法一:因为(√a −√b)2≥0所以a+b-2√ab ≥0所以a+b ≥2√ab所以:a+b2≥√ab法二:验证a+b2≥√ab只需证:a+b ≥2√ab只需证:a+b-2√ab ≥0只需证:(√a −√b)2≥0因为:(√a −√b)2≥0成立所以a+b2≥√ab 成立新课讲授1.综合法:(1)定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫做综合法。
综合法又叫因果导发或顺推证法。
特点:“执因索果”(2)特点:◆教学重难点◆ ◆课前准备◆◆教学过程从“已知”看“可知”,逐步推向“未知”,其逐步推理,是由因导果,实际上是寻找“已知”的必要条件。
用综合法证明数学问题,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹,并且综合法的推理过程属于演绎推理,它的每一步推理得出的结论都是正确的,不同于合情推理.使用综合法证明问题,有时从条件可得出几个结论,哪个结论才可作为下一步的条件是分析的要点,所以如何找到“切入点”和有效的推理途径是有效利用综合法证明数学问题的关键。
数学选修1-2人教A教案+课后练习2.2.1综合法与分析法

第二章第2节直接证明与间接证明一、综合法与分析法课前预习学案一、预习目标:了解综合法与分析法的概念,并能简单应用。
二、预习内容:证明方法可以分为直接证明和间接证明1.直接证明分为和2.直接证明是从命题的或出发,根据以知的定义,公里,定理,推证结论的真实性。
3.综合法是从推导到的方法。
而分析法是一种从追溯到的思维方法,具体的说,综合法是从已知的条件出发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。
综合法是由导,分析法是执索。
三、提出疑惑课内探究学案一、学习目标让学生理解分析法与综合法的概念并能够应用二、学习过程:例1.已知a,b∈R+,求证:例2.已知a,b∈R+,求证:例3.已知a,b,c∈R,求证(I)课后练习与提高1.(A 级)函数⎩⎨⎧≥<<-=-0,;01,sin )(12x e x x x f x π,若,2)()1(=+a f f则a 的所有可能值为 ( )A .1B .22-C .1,2-或D .1,2或 2.(A 级)函数x x x y sin cos -=在下列哪个区间内是增函数 ( )A .)23,2(ππ B .)2,(ππC .)25,23(ππ D .)3,2(ππ3.(A 级)设b a b a b a +=+∈则,62,,22R 的最小值是 ( ) A .22- B .335-C .-3D .27- 4.(A 级)下列函数中,在),0(+∞上为增函数的是 ( ) A .x y 2sin = B .x xe y =C .x x y -=3D .x x y -+=)1ln(5.(A 级)设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+ycx a ( )A .1B .2C .3D .不确定6.(A 级)已知实数0≠a ,且函数)12()1()(2ax x a x f +-+=有最小值1-,则a =__________。
高中数学人教A版选修1-2课件:2.2.1.1 综合法
∵a+b+c=1,∴( ������ + ������ + ������ )2≤3.
∴ ������ + ������ + ������ ≤ 3.
题型一
题型二
题型三
题型四
题型一
题型二
题型三
题型四
【变式训练 2】 (1)已知 a,b,c 是不全相等的正数, 求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc; (2)已知 a>0,b>0,且 a+b=1,求证: + ≥9.
【做一做2】 命题“函数f(x)=x-xln x在区间(0,1)内是增函数”的证 明过程“对函数f(x)=x-xln x求导,得f'(x)=-ln x,当x∈(0,1)时,f'(x)=-ln x>0,故函数f(x)在区间(0,1)内是增函数”应用了 的证明 方法. 解析:本命题的证明利用题设条件和导数与函数单调性的关系, 经推理论证得到了结论,所以应用的是综合法的证明方法. 答案:综合法
������
= .
1 3
1 3
∴数列
1 ������������
是首项为1,公差为 的等差数列.
题型一
题型二
题型三
题型四
题型一
题型二
题型三
题型四
题型一
题型二
题型三
题型四
利用综合法证明不等式
【例 2】 已知 a,b,c 是正实数,且 a+b+c=1. 求证:(1)a2+b2+c2≥ ;
数学人教A版选修1-2同步课件:第二章 2.2.1综合法和分析法
ya xb ( a+ b) ,当且仅当 = 时,等号成立. x y
2
证明
反思与感悟
综合法证明不等式主要依据的是不等式的基本性质和已
2
知的重要不等式,其中常用的有如下几个: ①a2≥0(a∈R) ; ②(a -
a+b2 a+b 2 2 2 2 2 ≥ab, b) ≥0(a, b∈R), 其变形有 a +b ≥2ab, a +b ≥ ; 2 2
因为( a- b)2≥0 显然成立,所以原不等式成立.
答案
梳理
(1)定义:从要证明的 结论 出发,逐步寻求使它成立的 充分条件 ,
直至最后,把要证明的结论归结为判定一个明显成立的条件( 已知条件 、
定理 、 定义 、 公理 等),这种证明方法叫做分析法. (2)分析法的框图表示
Q⇐P1 ― → P1⇐P2 ― → P2⇐P3 ― →…― → 得到一个明显成立的条件
只需证B1D1垂直于A1C所在的平面A1CC1,
因为该四棱柱为直四棱柱,所以B1D1⊥CC1,
故只需证B1D1⊥A1C1即可.
1
2
3
4
5
解析
答案
x → → → → → 3 4.在锐角△ABC 中,CM=3MB,AM=xAB+yAC,则y=____.
解析
→ → → → 由题设可得CA+AM=3(AB-AM),
析法的逆过程.利用分析法一定要注意证明命题的思维特点以及分析法步
骤的特殊性,一定要恰当使用“要证”“只需证”“即证”等词语.
跟踪训练 3
x1+x2 . ≥f 2
fx1+fx2 已知函数 f(x)=3 -2x, 证明: 对任意 x1, x2∈R, 均有 2
x
证明
高中数学选修1-2教案7:2.2.1 综合法和分析法教学设计
2.2.1 综合法和分析法教学目标:1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2.通过本节内容的学习了解分析法和综合法的思考过程、特点;3.增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度.教学重点:分析法和综合法的思考过程;教学难点:分析法和综合法的思考过程、特点.教学过程设计(一)、情景引入,激发兴趣.教师引入 合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的.数学结论的正确性必须通过逻辑推理的方式加以证明.本节我们将学习两类基本的证明方法:直接证明与间接证明.(二)、探究新知,揭示概念探究一:在数学证明中,我们经常从已知条件和某些数学定义、公理、定理等出发,通过推理推导出所要的结论.例如:已知a ,b >0,求证.教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明.教师最后归结证明方法.学生活动:充分讨论,思考,找出以上问题的证明方法证明:因为,所以.因为,所以.因此 .一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种方法叫做综合法.2222()()4a b c b c a abc +++≥222,0b c bc a +≥>22()2a b c abc +≥222,0c a ac b +≥>22()2b c a abc +≥2222()()4a b c b c a abc +++≥探究二:证明数学命题时,还经常从要证的结论 Q 出发,反推回去,寻求保证 Q 成立的条件,即使Q 成立的充分条件P 1,为了证明P 1成立,再去寻求P 1成立的充分条件P 2,为了证明P 2成立,再去寻求P 2成立的充分条件P 3,…… 直到找到一个明显成立的条件(已知条件、定理、定义、公理等)为止.例如:基本不等式(a >0,b >0)的证明就用了上述方法. 要证 , 只需证,只需证,只需证由于显然成立,因此原不等式成立.一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种方法叫做分析法.(三)、分析归纳,抽象概括用P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论,则综合法可表示为:综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.分析法可表示为:分析法的特点是:执果索因(四)、知识应用,深化理解ab b a ≥+2ab b a ≥+2ab b a 2≥+02≥-+ab b a 0)(2≥-b a 0)(2≥-b a ()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒()()1121().....()n n n Q P P P P P P P -⇐←⇐←⇐←⇐例1 在△ABC 中,三个内角A ,B ,C 的对边分别为,且A ,B ,C 成等差数列, 成等比数列,求证△ABC 为等边三角形.分析:将 A , B , C 成等差数列,转化为符号语言就是2B =A + C ; A , B , C 为△ABC 的内角,这是一个隐含条件,明确表示出来是A + B + C =π; a , b ,c 成等比数列,转化为符号语言就是.此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.证明:由 A , B , C 成等差数列,有 2B =A + C . ①因为A ,B ,C 为△ABC 的内角,所以 A + B + C =π. ②由①② ,得 B =π3. ③由a , b ,c 成等比数列,有 . ④由余弦定理及③,可得 .再由④,得 .即 ,因此 .从而 A =C .由②③⑤,得A =B =C =π3.所以△ABC 为等边三角形.注:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等.还要通过细致的分析,把其中的隐含条件明确表示出来. 例2 求证.分析:从待证不等式不易发现证明的出发点,因此我们直接从待证不等式出发,分析其成立的充分条件. 证明:因为都是正数,所以为了证明 ,,a b c ,,a b c 2b ac =2b ac =222222cos b a c ac B a c ac =+-=+-22a c ac ac +-=2()0a c -=a c =5273<+5273和+,只需明,展开得,只需证,因为成立,所以成立.在本例中,如果我们从“21〈25”出发,逐步倒推回去,就可以用综合法证出结论.但由于我们很难想到从“21<25”入手,所以用综合法比较困难.事实上,在解决问题时,我们经常把综合法和分析法结合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ‘;根据结论的结构特点去转化条件,得到中间结论 P ‘.若由P ‘可以推出Q ‘成立,就可以证明结论成立.下面来看一个例子.例4 已知,且①②求证:. 分析:比较已知条件和结论,发现结论中没有出现角,因此第一步工作可以从已知条件中消去.观察已知条件的结构特点,发现其中蕴含数量关系,于是,由 ①2一2×② 得.把与结论相比较,发现角相同,但函数名称不同,于是尝试转化结论:统一函数名称,即把正切函数化为正(余)弦函数.把结论转化为5273<+22)52()73(<+2021210<+521<2521<22)52()73(<+,()2k k Z παβπ≠+∈sin cos 2sin θθα+=2sin cos sin θθβ=22221tan 1tan 1tan 2(1tan )αβαβ--=++θθ2(sin cos )2sin cos 1θθθθ+-=224sin 2sin 1αβ-=224sin 2sin 1αβ-=,再与比较,发现只要把中的角的余弦转化为正弦,就能达到目的. 证明:因为,所以将 ① ② 代入,可得 . ③另一方面,要证, 即证 , 即证, 即证, 即证 .由于上式与③相同,于是问题得证.课堂练习:1.课本练习1、2、3.(五)、归纳小结、布置作业综合法和分析法的特点布置作业:课本1、2、3. 22221s sin (s sin )2co co ααββ-=-224sin 2sin 1αβ-=22221s sin (s sin )2co co ααββ-=-2(sin cos )2sin cos 1θθθθ+-=224sin 2sin 1αβ-=22221tan 1tan 1tan 2(1tan )αβαβ--=++22222222sin sin 11cos cos sin sin 12(1)cos cos βαβααβαβ--=++22221s sin (s sin )2co co ααββ-=-22112sin (12sin )2αβ-=-224sin 2sin 1αβ-=。
高中数学人教A版选修1-2第二章 2.2 2.2.1 综合法和分析法课件
顺推证
经过一系列的 推理论证, → Q2⇒Q3 →…→ Qn⇒Q 法或由
最后推导出所要证明的结 (P 表示已知条件 ,已有的 因导果
论成立,这种证明方法叫 定___义__、公理 、 定理等, 法
做综合法
Q 表示 所要证明的结论 ).
2.分析法 定义
框图表示
特点
从要证明的 结论出发 ,逐
步寻求使它成立的 充分条
[活学活用]
已知 a,b,c 都为正实数,求证:
证明:要证
a2+b32+c2≥a+3b+c,
a2+b32+c2≥a+3b+c.
只需证a2+b32+c2≥a+3b+c2, 只需证 3(a2+b2+c2)≥a2+b2+c2+2ab+2bc+2ac,
只需证 2(a2+b2+c2)≥2ab+2bc+2ac,
逆推
件__,直至最后,把要证明的 Q⇐P1 → P1⇐P2
证法
结论归结为判定一个明显
→ P2⇐P3 →…→ 成立的条件(已知条
或执
件、定理、 定义、公理等) 得到一个明显 成立的条件 果索
因法
为止.这种证明方法叫做分
析法
3.综合法、分析法的区别
[点睛] 一般来说,分析法解题方向明确,利于寻求解 题思路;而综合法解题条理清晰,宜于表述.因此在解决问 题时,通常以分析法为主寻求解题思路,再用综合法有条理 地表述解题过程.
语语文文::初初一一新新生生使使用用的的是是教教育育部部编编写写的的教教材材,,也也称称““部部编编””教教材材。。““部部编编本本””是是指指由由教教育育部部直直接接组组织织编编写写的的教教材材。。““部部编编本本””除除了了语语文文,,还还有有德德育育和和历历史史。。现现有有的的语语文文教教材材,,小小学学有有1122种种版版本本,,初初中中有有88种种版版本本。。这这些些版版本本现现在在也也都都做做了了修修订订,,和和““部部编编本本””一一同同投投入入使使用用。。““部部编编本本””取取代代原原来来人人教教版版,,覆覆盖盖面面比比较较广广,,小小学学约约占占5500%%,,初初中中约约占占6600%%。。今今秋秋,,小小学学一一年年级级新新生生使使用用的的是是语语文文出出版版社社的的修修订订版版教教材材,,还还是是先先学学拼拼音音,,后后学学识识字字。。政政治治::小小学学一一年年级级学学生生使使用用的的教教材材有有两两个个版版本本,,小小学学一一年年级级和和初初一一的的政政治治教教材材不不再再叫叫《《思思想想品品德德》》,,改改名名为为《《道道德德与与法法治治》》。。历历史史::初初一一新新生生使使用用华华师师大大版版教教材材。。历历史史教教材材最最大大的的变变化化是是不不再再按按科科技技、、思思想想、、文文化化等等专专题题进进行行内内容容设设置置,,而而是是以以时时间间为为主主线线,,按按照照历历史史发发展展的的时时间间顺顺序序进进行行设设置置。。关关于于部部编编版版,,你你知知道道多多少少??为为什什么么要要改改版版??跟跟小小编编一一起起来来了了解解下下吧吧!!一一新新教教材材的的五五个个变变化化一一、、入入学学以以后后先先学学一一部部分分常常用用字字,,再再开开始始学学拼拼音音。。汉汉字字是是生生活活中中经经常常碰碰到到的的,,但但拼拼音音作作为为一一个个符符号号,,在在孩孩子子们们的的生生活活中中接接触触、、使使用用都都很很少少,,教教学学顺顺序序换换一一换换,,其其实实是是更更关关注注孩孩子子们们的的需需求求了了。。先先学学一一部部分分常常用用常常见见字字,,就就是是把把孩孩子子的的生生活活、、经经历历融融入入到到学学习习中中。。二二、、第第一一册册识识字字量量减减少少,,由由440000字字减减少少到到330000字字。。第第一一单单元元先先学学4400个个常常用用字字,,比比如如““地地””字字,,对对孩孩子子来来说说并并不不陌陌生生,,在在童童话话书书、、绘绘本本里里可可以以看看到到,,电电视视新新闻闻里里也也有有。。而而在在以以前前,,课课文文选选用用的的一一些些结结构构简简单单的的独独体体字字,,比比如如““叉叉””字字,,结结构构比比较较简简单单,,但但日日常常生生活活中中用用得得不不算算多多。。新新教教材材中中,,增增大大了了常常用用常常见见字字的的比比重重,,减减少少了了一一些些和和孩孩子子生生活活联联系系不不太太紧紧密密的的汉汉字字。。三三、、新新增增““快快乐乐阅阅读读吧吧””栏栏目目,,引引导导学学生生开开展展课课外外阅阅读读。。教教材材第第一一单单元元的的入入学学教教育育中中,,有有一一幅幅图图是是孩孩子子们们一一起起讨讨论论《《西西游游记记》》等等故故事事,,看看得得出出来来,,语语文文学学习习越越来来越越重重视视孩孩子子的的阅阅读读表表达达,,通通过过读读 故故事事、、演演故故事事、、看看故故事事等等,,提提升升阅阅读读能能力力。。入入学学教教育育中中第第一一次次提提出出阅阅读读教教育育,,把把阅阅读读习习惯惯提提升升到到和和识识字字、、写写字字同同等等重重要要的的地地位位。。四四、、新新增增““和和大大人人一一起起读读””栏栏目目,,激激发发学学生生的的阅阅读读兴兴趣趣,,拓拓展展课课外外阅阅读读。。有有家家长长担担心心会会不不会会增增加加家家长长负负担担,,其其实实这这个个““大大人人””包包含含很很多多意意思思,,可可以以是是老老师师、、爸爸妈妈、、爷爷爷爷、、奶奶奶奶、、外外公公、、外外婆婆等等,,也也可可以以是是邻邻居居家家的的小小姐姐姐姐等等。。每每个个人人讲讲述述一一个个故故事事,,表表达达是是不不一一样样的的,,有有人人比比较较精精炼炼,,有有人人比比较较口口语语化化,,儿儿童童听听到到的的故故事事不不同同,,就就会会形形成成不不同同的的语语文文素素养养。。五五、、语语文文园园地地里里,,新新增增一一个个““书书写写提提示示””的的栏栏目目。。写写字字是是有有规规律律的的,,一一部部分分字字有有自自己己的的写写法法,,笔笔顺顺都都有有自自己己的的规规则则,,新新教教材材要要求求写写字字的的时时候候,,就就要要了了解解一一些些字字的的写写法法。。现现在在信信息息技技术术发发展展很很快快,,孩孩子子并并不不是是只只会会打打字字就就可可以以,,写写字字也也不不能能弱弱化化。。二二为为什什么么要要先先识识字字后后学学拼拼音音??一一位位语语文文教教研研员员说说,,孩孩子子学学语语文文是是母母语语教教育育,,他他们们在在生生活活中中已已经经认认了了很很多多字字了了,,一一年年级级的的识识字字课课可可以以和和他他们们之之前前的的生生活活有有机机结结合合起起来来。。原原先先先先拼拼音音后后识识字字,,很很多多孩孩子子觉觉得得枯枯燥燥,,学学的的时时候候感感受受不不到到拼拼音音的的用用处处。。如如果果先先接接触触汉汉字字,,小小朋朋友友在在学学拼拼音音的的过过程程中中会会觉觉得得拼拼音音是是有有用用的的,,学学好好拼拼音音是是为为了了认认识识更更多多的的汉汉字字。。还还有有一一位位小小学学语语文文老老师师说说::““我我刚刚刚刚教教完完一一年年级级语语文文,,先先学学拼拼音音再再识识字字,,刚刚进进校校门门的的孩孩子子上上来来就就学学,,压压力力会会比比较较大大,,很很多多孩孩子子有有挫挫败败感感,,家家长长甚甚至至很很焦焦急急。。现现在在让让一一年年级级的的孩孩子子们们先先认认简简单单的的字字,,可可以以让让刚刚入入学学的的孩孩子子们们感感受受到到学学习习的的快快乐乐,,消消除除他他们们害害怕怕甚甚至至恐恐惧惧心心理理。。我我看看了了一一下下网网上上的的新新教教材材,,字字都都比比较较简简单单,,很很多多小小朋朋友友都都认认识识。。””
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1综合法和分析法预习课本P85~89,思考并完成下列问题(1)综合法的定义是什么?有什么特点?(2)综合法的推证过程是什么?(3)分析法的定义是什么?有什么特点?(4)分析法与综合法有什么区别和联系?[新知初探] 1.综合法3.综合法、分析法的区别[点睛] 一般来说,分析法解题方向明确,利于寻求解题思路;而综合法解题条理清晰,宜于表述.因此在解决问题时,通常以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)综合法是执果索因的逆推证法.( ) (2)分析法就是从结论推向已知.( ) (3)所有证明的题目均可使用分析法证明.( ) 答案:(1)× (2)× (3)×2.若a >b >0,则下列不等式中不正确的是( ) A .a 2>ab B .ab >b 2 C.1a >1b D .a 2>b 2答案:C3.欲证2-3<6-7成立,只需证( ) A .(2-3)2<(6-7)2 B .(2-6)2<(3-7)2 C .(2+7)2<(3+6)2 D .(2-3-6)2<(-7)2 答案:C4.如果a a >b b ,则实数a ,b 应满足的条件是________.答案:a >b >0[典例] 在△ABC 中,三边a ,b ,c 成等比数列.求证:a cos 2 C 2+c cos 2 A 2≥32b .[证明] ∵a ,b ,c 成等比数列,∴b 2=ac . ∵左边=a (1+cos C )2+c (1+cos A )2=12(a +c )+12(a cos C +c cos A ) =12(a +c )+12⎝⎛⎭⎫a ·a 2+b 2-c22ab +c ·b 2+c 2-a 22bc =12(a +c )+12b ≥ac +b 2=b +b 2=32b =右边, ∴a cos 2C 2+c cos 2 A 2≥32b .当且仅当a =c 时等号成立.综合法的解题步骤[活学活用]1.已知a ,b ,c ,d ∈R ,求证:(ac +bd )2≤(a 2+b 2)(c 2+d 2). 证明:∵左边=a 2c 2+2abcd +b 2d 2 ≤a 2c 2+(a 2d 2+b 2c 2)+b 2d 2 =(a 2+b 2)(c 2+d 2)=右边, ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2). 2.设数列{a n }满足a 1=0,11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,S n =b 1+b 2+…+b n ,证明:S n <1. 解:(1)∵11-a n +1-11-a n=1,∴⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列. 又∵11-a 1=1,∴11-a n=n ,a n =1-1n . (2)证明:由(1)得 b n =1-a n +1n =n +1-n n +1·n =1n -1n +1, ∴S n =b 1+b 2+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1<1.∴S n <1.[典例] 设a ,b [证明] 当a +b ≤0时,∵ a 2+b 2≥0,∴a 2+b 2≥22(a +b )成立. 当a +b >0时,用分析法证明如下:要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎡⎦⎤22(a +b )2. 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .∵a 2+b 2≥2ab 对一切实数恒成立, ∴a 2+b 2≥22(a +b )成立.综上所述,不等式得证.分析法证明不等式的依据、方法与技巧(1)解题依据:分析法证明不等式的依据是不等式的基本性质、已知的重要不等式和逻辑推理的基本理论;(2)适用范围:对于一些条件复杂,结构简单的不等式的证明,经常用综合法.而对于一些条件简单、结论复杂的不等式的证明,常用分析法;(3)思路方法:分析法证明不等式的思路是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件是已知(或已证)的不等式;(4)应用技巧:用分析法证明数学命题时,一定要恰当地用好“要证”、“只需证”、“即证”等词语.[活学活用]已知a ,b ,c 都为正实数,求证: a 2+b 2+c 23≥a +b +c3. 证明:要证a 2+b 2+c 23≥a +b +c3, 只需证a 2+b 2+c 23≥⎝⎛⎭⎫a +b +c 32,只需证3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2bc +2ac , 只需证2(a 2+b 2+c 2)≥2ab +2bc +2ac ,只需证(a -b )2+(b -c )2+(c -a )2≥0,而这是显然成立的,所以 a 2+b 2+c 23≥a +b +c3成立.[典例] 已知a ,b ,c 是不全相等的正数,且0<x <1. 求证:log x a +b 2+log x b +c 2+log x a +c2<log x a +log x b +log x c .[证明] 要证明log x a +b 2+log x b +c 2+log x a +c2<log x a +log x b +log x c ,只需要证明log x ⎝⎛⎭⎫a +b 2·b +c 2·a +c 2<log x (abc ), 由已知0<x <1,只需证明a +b 2·b +c 2·a +c2>abc , 由公式a +b 2≥ab >0,b +c2≥bc >0, a +c2≥ac >0.又∵a ,b ,c 是不全相等的正数, ∴a +b 2·b +c 2·a +c2> a 2b 2c 2=abc . 即a +b 2·b +c 2·a +c2>abc 成立. ∴log x a +b 2+log x b +c 2+log x a +c 2<log x a +log x b +log x c 成立.分析综合法的应用综合法由因导果,分析法执果索因,因此在实际解题时,常常把分析法和综合法结合起来使用,即先利用分析法寻找解题思路,再利用综合法有条理地表述解答过程.[活学活用]已知△ABC 的三个内角A ,B ,C 成等差数列,a ,b ,c 为三个内角对应的边长,求证:1a +b +1b +c =3a +b +c. 证明:要证1a +b +1b +c =3a +b +c,即证a +b +c a +b +a +b +c b +c =3,即证c a +b +a b +c =1.即证c (b +c )+a (a +b )=(a +b )(b +c ), 即证c 2+a 2=ac +b 2.∵△ABC 三个内角A ,B ,C 成等差数列. ∴B =60°.由余弦定理,有b 2=c 2+a 2-2ca cos 60°, 即b 2=c 2+a 2-ac .∴c 2+a 2=ac +b 2成立,命题得证.层级一 学业水平达标1.要证明a +a +7<a +3+a +4(a ≥0)可选择的方法有多种,其中最合理的是( )A .综合法B .类比法C .分析法D .归纳法解析:选C 直接证明很难入手,由分析法的特点知用分析法最合理.2.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ ”,其过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证法解析:选B 结合分析法及综合法的定义可知B 正确.3.在不等边三角形中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足什么条件( )A.a2<b2+c2B.a2=b2+c2 C.a2>b2+c2D.a2≤b2+c2解析:选C由cos A=b2+c2-a22bc<0,得b2+c2<a2.4.若a=ln 22,b=ln 33,c=ln 55,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c解析:选C利用函数单调性.设f(x)=ln xx,则f′(x)=1-ln xx2,∴0<x<e时,f′(x)>0,f(x)单调递增;x>e时,f′(x)<0,f(x)单调递减.又a=ln 44,∴b>a>c.5.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是() A.a>b B.a<bC.a=b D.a,b大小不定解析:选B∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x取导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.解析:该证明过程符合综合法的特点.答案:综合法7.如果a a+b b>a b+b a,则正数a,b应满足的条件是________.解析:∵a a+b b-(a b+b a)=a(a-b)+b(b-a)=(a-b)(a-b)=(a-b)2(a+b).∴只要a≠b,就有a a+b b>a b+b a.答案:a≠b8.若不等式(-1)n a<2+(-1)n+1n对任意正整数n恒成立,则实数a的取值范围是________.解析:当n 为偶数时,a <2-1n ,而2-1n ≥2-12=32,所以a <32,当n 为奇数时,a >-2-1n ,而-2-1n <-2,所以a ≥-2.综上可得,-2≤a <32.答案:⎣⎡⎭⎫-2,32 9.求证:2cos(α-β)-sin(2α-β)sin α=sin βsin α.证明:要证原等式,只需证:2cos(α-β)sin α-sin(2α-β)=sin β,① 因为①左边=2cos(α-β)sin α-sin[(α-β)+α] =2cos(α-β)sin α-sin(α-β)cos α-cos(α-β)sin α =cos(α-β)sin α-sin(α-β)cos α =sin β.所以①成立,所以原等式成立.10.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *). (1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)① 又S n +1=2S n +n +5,② ②-①得a n +1=2a n +1(n ≥2), 所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2.又n =1时,S 2=2S 1+1+5,且a 1=5, 所以a 2=11,所以a 2+1a 1+1=11+15+1=2,所以数列{a n +1}是以2为公比的等比数列. (2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n ,所以a n =3×2n -1.层级二 应试能力达标1.使不等式1a <1b 成立的条件是( ) A .a >b B .a <bC .a >b 且ab <0D .a >b 且ab >0解析:选D 要使1a <1b ,须使1a -1b <0,即b -a ab <0.若a >b ,则b -a <0,ab >0;若a <b ,则b -a >0,ab <0. 2.对任意的锐角α,β,下列不等式中正确的是( ) A .sin(α+β)>sin α+sin β B .sin(α+β)>cos α+cos β C .cos(α+β)>sin α+sin β D .cos(α+β)<cos α+cos β解析:选D 因为α,β为锐角,所以0<α<α+β<π,所以cos α>cos(α+β).又cos β>0,所以cos α+cos β>cos(α+β).3.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B ∵x >0,y >0,1x +4y =1,∴x +y 4=⎝⎛⎭⎫x +y 4⎝⎛⎭⎫1x +4y =2+y 4x +4x y≥2+2y 4x ·4x y=4,等号在y =4x ,即x =2,y =8时成立,∴x +y4的最小值为4,要使不等式m 2-3m >x+y4有解,应有m 2-3m >4,∴m <-1或m >4,故选B. 4.下列不等式不成立的是( ) A .a 2+b 2+c 2≥ab +bc +ca B.a +b >a +b (a >0,b >0) C.a -a -1<a -2-a -3(a ≥3) D.2+10>2 6解析:选D 对A ,∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,a 2+c 2≥2ac ,∴a 2+b 2+c 2≥ab +bc +ca ;对B ,∵(a +b )2=a +b +2ab ,(a +b )2=a +b ,∴a +b >a +b ;对C ,要证 a -a -1<a -2-a -3(a ≥3)成立,只需证明a +a -3<a -2+a -1,两边平方得2a -3+2a (a -3)<2a -3+2(a -2)(a -1),即a (a -3)<(a -2)(a -1),两边平方得a 2-3a <a 2-3a +2,即0<2.因为0<2显然成立,所以原不等式成立;对于D ,(2+10)2-(26)2=12+45-24=4(5-3)<0,∴2+10<26,故D 错误.5.已知函数f (x )=2x ,a ,b 为正实数,A =f ⎝⎛⎭⎫a +b 2,B =f (ab ),C =f ⎝⎛⎭⎫2ab a +b ,则A ,B ,C 的大小关系是________.解析:∵a +b 2≥ab (a ,b 为正实数),2aba +b≤ab ,且f (x )=2x 是增函数,∴f ⎝⎛⎭⎫2ab a +b≤f (ab )≤f ⎝⎛⎭⎫a +b 2,即C ≤B ≤A .答案:C ≤B ≤A6.如图所示,四棱柱ABCD - A 1B 1C 1D 1的侧棱垂直于底面,满足________时,BD ⊥A 1C (写上一个条件即可).解析:要证BD ⊥A 1C ,只需证BD ⊥平面AA 1C . 因为AA 1⊥BD ,只要再添加条件AC ⊥BD , 即可证明BD ⊥平面AA 1C ,从而有BD ⊥A 1C . 答案:AC ⊥BD (答案不唯一)7.在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:在锐角三角形ABC 中,∵A +B >π2,∴A >π2-B .∴0<π2-B <A <π2,又∵在⎝⎛⎭⎫0,π2内正弦函数y =sin x 是单调递增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 即sin A >cos B .① 同理sin B >cos C ,② sin C >cos A .③ 由①+②+③,得:sin A +sin B +sin C >cos A +cos B +cos C .8.已知n ∈N ,且n >1,求证:log n (n +1)>log n +1(n +2). 证明:要证明log n (n +1)>log n +1(n +2), 即证明log n (n +1)-log n +1(n +2)>0.(*) ∵log n (n +1)-log n +1(n +2)=1log n +1n-log n +1(n +2)=1-log n +1n ·log n +1(n +2)log n +1n.又∵当n >1时,log n +1n >0,11 且log n +1(n +2)>0,log n +1n ≠log n +1(n +2),∴log n +1n ·log n +1(n +2)<14[log n +1n +log n +1(n +2)]2=14log 2n +1[n (n +2)]=14log 2n +1(n 2+2n )<14log 2n +1(n +1)2=1,故1-log n +1n ·log n +1(n +2)>0,∴1-log n +1n ·log n +1(n +2)log n +1n>0.这说明(*)式成立,∴log n (n +1)>log n +1(n +2).。