5_热分析(DSC)解读
第5章热分析-2 DSC

——采用差热分析的原理来进行量热分析。
——热流式、热通量式。
热流式差示扫描量热仪 ——利用康铜电热片兼作试样、参比物支架底盘和测 温热电偶。 ——仪器自动改变差示放大器的放大系数,补偿因温 度变化对试样热效应测量的影响。
热通量式差示扫描量热法 ——利用热电堆精确测量试样和参比物温度,灵 敏度和精确度高,用于精密热量测定。
5.2差示扫描量热法——
DSC(Differential Scanning Calorimetry)
理学院郭敏杰
DTA 技术具有快速简便等优点,但其缺点是重复性较差, 分辨率不够高,其热量的定量也较为复杂。 1964年,美国的Waston和O’Neill在分析化学杂志上首次 提出了差示扫描量热法(DSC)的概念,并自制了DSC 仪器。 不久,美国Perkin-Elmer 公司研制生产的DSC-I型商品 仪器问世。 随后,DSC技术得到迅速发展,到1976年,DSC方法的使 用比例已达13.3%,而在1984已超过20%(当时DTA 为 18.2%),到1986年已超过1/3。
结 晶 放 热 速 率 mW 结晶终了 tend 结晶开始 t0 基线
T /℃
6.研究高分子共混体系的相容性
测定双组分共混体系的玻璃化转变温度:
只出现一个Tg——相容的均相体系; 出现了两个Tg: (1)在原组分的Tg位置——不相容体系; (2)两个Tg相互靠近——部分相容体系; 注意两个问题: (1)分散相尺寸很小; (2)原组分的两个Tg很接近;
m——样品质量;H——单位质量样品的焓变;A——与H相应的曲 线峰面积;K——修正系数,称仪器常数。
吸热
熔融 吸热行为 玻璃化转变
最新高分子研究方法-热分析(TG、TMA、DSC等)介绍

1. 概述 2. 热重分析 (TG) 3. 热机械分析 (TMA) 4. 示差扫描量热法 (DSC) 5. 动态力学分析 (DMTA) 6. 介电分析 (DETA)
高分子研究方法-热分析(TG、TMA、 DSC等)介绍
第一章 热分析技术概述
一、什么是热分析 热分析的本质是温度分析。物质经历温度变化的同时,必
1891年,英国人使用示差热电偶和参比物,记录样品与参照物 间存在的温度差,大大提高了测定灵敏度,发明了差热分析 (DTA)技术的原始模型 1915年,日本(俄国)人在分析天平的基础上研制出热天平,开创 了热重分析(TG)技术 1940-1960年,热分析向自动化、定量化、微型化方向发展 1 9 6 4 年 , 美 国 人 在 DTA 技 术 的 基 础 上 发 明 了 示 差 扫 描 量 热 法 (DSC), Perkin-Elmer公高司分子率研先究方研法-热制分了析(TDG、SCTM-A1、型示差扫描量热仪
物理性质 重量 热量 尺寸
模量or 柔量 介电常数
热分析技术名称 热重分析法
示差扫描量热法 热机械法
动态力学分析 热电分析
高分子研究方法-热分析(TG、TMA、 DSC等)介绍
缩写 TG DSC TMA DMTA DETA
二、热分析简史
1887年,法(德)国人第一次用热电偶测温的方法研究粘土矿物在 升温过程中的热性质的变化
2.1 影响热重测定的因素
2.1.1 升温速度
升温速度越快,温 度滞后越大,Ti及Tf越 高,反应温度区间也越 宽。建议高分子试样为 5 ~10K/min, 无 机 、 金 属试样为10~20K/min
重量分数
0.42 2.5 10 40 100 240 480 K/min
热分析技术简介—DSC

淬火PET的总热流、可逆热流和非 可逆热流
谢谢!
DSC曲线
基本原理
功率补偿型(Power Compensation) 在样品和参比品始终保持相同温度的条件下,测定 为满足此条件样品和参比品两端所需的能量差, 并直接作为信号Q(热量差)输出。
热流型(Heat Flux) 在给予样品和参比品相同的功率下,测定样品和参 比品两端的温差T,然后根据热流方程,将T (温差)换算成Q(热量差)作为信号的输出。
DSC204F1
主要内容
DSC的定义 基本原理 基线与仪器校正 实验的影响因素 应用实例 新功能扩展
DSC的定义
差示扫描量热法是指在程序控制温度下,测量样 品热焓与温度(或时间)的函数关系的一种技术。 所有与热效应有关的物理及化学过程都可以用 DSC表征. 熔点 熔融热和结晶热 比热 玻璃化温度 结晶度 氧化诱导期 相容性 反应动力学
测玻璃化转变、熔点和熔融热 共混物的相容性 热历史效应 结晶度的表征 增塑剂的影响 固化过程的研究
测玻璃化转变、熔点和熔融热
共混物的相容性
Range:
40 mW 20 °C/min
Endothermic
Heating Rate:
Heat Flow
PE/PP Blend
PE PP
50
Temperature(℃)
固化过程的研究
Tg Heat Flow Heat Flow
Onset of Cure
Cure
0
Temperature(℃)
300
DSC Results on Epoxy Resin
固化过程的研究
热分析技术简介——DSC

热分析技术简介——DSC摘要:差示扫描量热分析仪因其使用方便,精确度高等特点,多年来备受青睐。
本文介绍了差示扫描量热法(DSC)的发展历史、现状及工作原理,并且简要地介绍了DSC在天然气水合物、食品高聚物测定和水分含量测定、油脂加工过程及产品、沥青性能研究及改性沥青的性能评定中的应用。
关键词:DSC 技术发展现状应用一、差示扫描量热法( DSC ) 简史18世纪出现了温度计和温标。
19世纪,热力学原理阐明了温度与热量即热焓之间的区别后,热量可被测量。
1887年,L e Chatel ier进行了被认为的首次真正的热分析实验:将一个热电偶放入黏土样品并在炉中升温,用镜式电流计在感光板上记录升温曲线。
1899年,Robert s Austen将两个不同的热电偶相反连接显著提高了这种测量的灵敏度,可测量样品与惰性参比物之间的温差。
1915年,Honda首次提出连续测量试样质量变化的热重分析。
1955年,Boersm a设想在坩埚外放置热敏电阻,发明现今的D SC。
1964年,Watson等首次发表了功率补偿DSC的新技术。
差示扫描量热法是六十年代以后研制出的一种热分析方法。
它被定义为:在温度程序控制下,测量试量相对于参比物的热流速随温度变化的一种技术,简称DSC(Differ entia l Scanni ng Calovi metry)。
根据测量方法的不同,又分为两种类型:功率补偿型D SC和热流型DSC。
其主要特点是使用的温度范围比较宽、分辨能力高和灵敏度高。
由于它们能定量地测定各种热力学参数(如热焓、熵和比热等)和动力学参数,所以在应用科学和理论研究中获得广泛的应用。
二、差示扫描量热法的现状2.1差示扫描量热法(DSC)的原理差示扫描量热法(DSC)装置是准确测量转变温度,转变焓的一种精密仪器,它的主要原理是:将试样和参比物置于相同热条件下,在程序升降温过程中,始终保持样品和参比物的温度相同。
热分析技术简介—DSC

质量 温度 热量
尺寸 力学 声学
光学 电学 磁学
DSC
Differential Scanning Calorimetry
DSC204F1
主要内容
DSC的定义 的定义 基本原理 基线与仪器校正 实验的影响因素 应用实例 新功能扩展
DSC的定义 的定义
差示扫描量热法是指在程序控制温度下, 差示扫描量热法是指在程序控制温度下,测量样 品热焓与温度(或时间)的函数关系的一种技术。 品热焓与温度(或时间)的函数关系的一种技术。 所有与热效应有关的物理及化学过程都可以用 DSC表征 表征. 表征 熔点 熔融热和结晶热 比热 玻璃化温度 结晶度 氧化诱导期 相容性 反应动力学
PE/PP Blend
PE PP
50
Temperature(℃) ℃
200
热历史效应
结晶度的表征
%结晶度 = Hm / Href 结晶度
结晶度的表征
两种不同结晶度的高密度聚乙烯DSC曲线 曲线 两种不同结晶度的高密度聚乙烯
增塑剂的影响
Unplasticized Heat Flow Plasticized
热分析技术简介— 热分析技术简介— 差示扫描量热仪(DSC) 差示扫描量热仪(DSC)
高分子材料分析测试中心 刘吉文
热分析
国际热分析协会(ICTA)热分析定义: 在程序控制温度下, 在程序控制温度下,测量物质的物理性质与 温度关系的一种技术。 温度关系的一种技术。
ICTA 热分析方法
TG
Thermogravimetry
DSC应用举例 应用举例
测玻璃化转变、 测玻璃化转变、熔点和熔融热 共混物的相容性 热历史效应 结晶度的表征 增塑剂的影响 固化过程的研究
热分析法—热重分析法(TG) 差热分析法(DTA) 差示扫描量热法( DSC)

热分析技术分类
测定的性质 质量
温度 热焓
挥发物 尺寸 电性质 光性质 磁性质
方法 热重分析法(TG)
微热重分析法(DTG) 差热分析法(DTA) 差示扫描量热法(DSC)
逸出气体分析法(EGA) 热膨胀法 热电法 热光法 热磁法
描述
程序控温下,测量物质的质量随温度的变 化 TG的基础上,利用计算机计算Δm-T的曲线 程序控温下,测量温度随程序温度的变化
TG,DTA,DSC曲线
相关文献 壹
JACS简介
Journal of the American Chemical Society 中文名:《美国化学会志》 化学杂志龙头 1879至今 134年历史
JACS简介
总引证次数和被引次数第一,远超第二 JACS每年有51期 JACS不收版面费,文章用彩色不加收费用 审稿周期10周。通讯是2个审稿人,全文是3个,全文审稿周期更长
IPS实质TFT
TFT:指薄膜晶体管,即每个液高速度、高亮度、高对比度, 最好的LCD彩色显示设备之一
文章内容: 金属氧化物半导体——耦合光透性、机械性能好、出色的电子性能。
TFT performance of many oxides exceeds that of amorphous silicon (a-Si:H), and their stability rivals or exceeds that of typical organic semiconductors
发展历史
1964年—— Watson等研制出可定量测量热量的差示扫描量热计,试样用量 为mg级。Mazieres研制的微量差热分析仪的试样量达到了10-100ug。 近十年来——热分析仪器与其他分析仪器的联用技术也发展很快,出现了 TG-MS、TG-GC、DTA-MS、TG-TGA等联用仪器,既节省试样用量又同时 获得更多的信息。
热分析技术简介—DSC
共混物的相容性 热历史效应 结晶度的表征 增塑剂的影响
固化过程的研究
测玻璃化转变、熔点和熔融热
共混物的相容性
Range:
40 mW
Heating Rate: 20°C/min
Endothermic
Heat Flow
PE/PP Blend
PE PP
50
Temperature(℃)
20ml/min)。
仪器操作注意事项
1. 用力过大,造成样品池不可挽救的损坏;
2. 测试温域选择注意温度上限避免造成样品分解,下限温度 一般要高于样品玻璃化温度至少20-30oC;
3. 还要注意最高温度不能超过坩埚上限(铝样品皿,温度 <500℃);
4. 样品未被封住,引起样品池污染。
DSC应用举例
扫描速度的影响
样品样制品几备何的形影状响;
样品与器皿的紧密接触; 样品皿的封压; 底面平整、样品不外露; 合适的样品量(5-10mg); 灵敏度与分辨率的折中。
气氛的影响
一般使用惰性气体,如N2、He等; 研究氧化反应使用空气; 空气切换惰性气体时应需要较长排空时间; 气体流速恒定(保护气60ml/min,吹扫气
量热仪内部示意图
工作原理简图
两种DSC的优缺点
仪器校正
基线校正
基线的重要性 样品产生的信号及样品池产生的信号必须加以区分; 样品池产生的信号依赖于样品池状况、温度等; 平直的基线是一切计算的基础。 如何得到理想的基线 干净的样品池、仪器的稳定、池盖的定位、清洗气; 选择好温度区间,区间越宽,得到理想基线越困难; 进行基线最佳化操作。
高分子材料分析测试中心 刘吉文
五大材料热性能分析方法(TG,TMA,DSC,DMA,DETA)
五大材料热性能分析方法(TG,TMA,DSC,DMA,DETA)以下为正文:热分析简介热分析的本质是温度分析。
热分析技术是在程序温度(指等速升温、等速降温、恒温或步级升温等)控制下测量物质的物理性质随温度变化,用于研究物质在某一特定温度时所发生的热学、力学、声学、光学、电学、磁学等物理参数的变化,即P = f(T)。
按一定规律设计温度变化,即程序控制温度:T = (t),故其性质既是温度的函数也是时间的函数:P =f (T, t)。
材料热分析意义在表征材料的热性能、物理性能、机械性能以及稳定性等方面有着广泛的应用,对于材料的研究开发和生产中的质量控制都具有很重要的实际意义。
热分析简史回顾常用热分析方法解读根据国际热分析协会(ICTA)的归纳和分类,目前的热分析方法共分为九类十七种,常用的热分析方法包括热重分析法(TG)、差示扫描量热法(DSC)、静态热机械分析法(TMA)、动态热机械分析(DMTA)、动态介电分析(DETA)等,它们分别是测量物质重量、热量、尺寸、模量和柔量、介电常数等参数对温度的函数。
(1)热重分析(TG)热重法(TG)是在程序温度控制下测量试样的质量随温度或时间变化的一种技术。
应用范围:(1)主要研究材料在惰性气体中、空气中、氧气中的热稳定性、热分解作用和氧化降解等化学变化;(2)研究涉及质量变化的所有物理过程,如测定水分、挥发物和残渣、吸附、吸收和解吸、气化速度和气化热、升华速度和升华热、有填料的聚合物或共混物的组成等。
原理详解:样品重量分数w对温度T或时间t作图得热重曲线(TG 曲线):w = f (T or t),因多为线性升温,T与t只差一个常数。
TG曲线对温度或时间的一阶导数dw/dT 或 dw/dt 称微分热重曲线(DTG曲线)。
图2中,B点Ti处的累积重量变化达到热天平检测下限,称为反应起始温度;C点Tf处已检测不出重量的变化,称为反应终了温度;Ti或Tf亦可用外推法确定,分为G点H点;亦可取失重达到某一预定值(5%、10%等)时的温度作为Ti。
DSC基本原理及使用方法
DSC基本原理及使用方法DSC(差示扫描量热法)是一种热分析技术,广泛应用于材料学、化学、生物学等领域,用于研究物质的热性质和热相变过程。
DSC技术可以通过测量样品与参比物的温度差异来研究样品的热力学特性,同时也可以确定样品的熔融点、玻璃化转变温度等参数。
基本原理:DSC基于样品与参比物之间在恒定温度变化过程中的热量交换原理。
通常情况下,样品和参比物放置在两个独立的炉中,并分别与两个热电偶相连。
当试样发生放热或吸热反应时,热电偶将测量到样品温度与参比物温度之间的差异。
这个温差被放大并记录下来,从而得到样品发生吸放热的热力学信息。
通过对样品和参比物的数据进行对比,可以确定样品的热性质和热相变过程。
使用方法:1.样品制备:样品应尽量纯净,制备过程中需避免任何可能导致污染或失水的因素。
样品通常以粉末或薄膜形式放置在样品盘中。
2.参比物选择:参比物应与样品具有相似的热性质,并且能够稳定在测量温度范围内。
常用的参比物有铝、铂等金属,或者无反应的化合物。
3.试样装填:样品和参比物应放置在两个炉中,保持全部试样对称放置,使得两个炉的热量传导方式相同。
4.温度控制:使用炉温控制系统控制样品与参比物的温度,使其按设定程序升温或降温。
5.数据记录和分析:记录样品和参比物的温度差异,并将其转化为放热/吸热曲线。
根据放热/吸热曲线的形状和峰值,可以确定样品的热力学特性以及热相变过程。
6.结果解读:根据放热/吸热曲线的变化,结合对样品和参比物的理解,可以判断样品的熔融点、玻璃化转变温度、焓变化等参数,进一步研究样品的特性和性质。
DSC技术的主要优点包括:测量精度高、结果可靠、测试速度快、样品需求小等。
因此,它被广泛应用于材料学、化学、生物学等领域的热分析研究中。
例如,可以通过DSC技术研究材料的相变温度、热容量、焓变化等参数,评估材料稳定性、研究反应系统的热力学特性、探究生物大分子的折叠过程等。
总之,DSC技术通过测量样品与参比物的温度差异,研究样品的热性质和热相变过程。
高分子研究方法-热分析(TG、TMA、DSC等)介绍【实用参考】
高分子研究方法-热分析(TG、TMA、 DSC等)介绍
2.1.2 样品的粒度和用量
样品的粒度不宜太
W
大、装填的紧密程度适
中为好。同批试验样品,
每一样品的粒度和装填
紧密程度要一致
小用量
大用量
温度
高分子研究方法-热分析(TG、TMA、 DSC等)介绍
2.1.3 气氛
常用气氛为空气和N2,亦使用O2、He、 H2、CO2 、Cl2和水蒸气等。气氛不同反应 机理不同。气氛与样品发生反应,则TG曲 线形状受到影响
高分子研究方法-热分析(TG、TMA、 DSC等)介绍
样品重量分数w对温度T或
时间t作图得热重曲线(TG
曲线):
w
w = f (T or t)
起始 水分 可燃 烧物
因多为线性升温,T与dw/dT 或 dw/dt 称微分热
重曲线(DTG曲线)
气流速度40~50mL/min
400 600 800 1000 1200 温度(C)
如存在挥发物的再冷凝,
问题
应加大热天平室气氛的通
气量
将CO2 、真空、空气
高分子研究方法-热分析(TG、TMA三、 种气氛与曲线对应
DSC等)介绍
2.1.4 试样皿
➢ 试样皿的材质有玻璃、铝、陶瓷、石英、金属等 ➢ 试样皿对试样、中间产物和最终产物应是惰性的 ➢ 聚四氟乙烯类试样不能用陶瓷、玻璃和石英类试样 皿,因相互间会形成挥发性碳化物 ➢ 白金试样皿不适宜作含磷、硫或卤素的聚合物的试 样皿,因白金对该类物质有加氢或脱氢活性 ➢ 在选择试样皿时试样皿的形状以浅盘为好,试验时 将试样薄薄地摊在其底部,以利于传热和生成物的扩散
增重 *
*
高分子研究方法-热分析(TG、TMA、 DSC等)介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
50
100
150
T/℃
PS相对分子质量对Tg的影响
Mn 111000 10400 5400 3630
2740 1530 650
Tg/°C 100 83 70 53
43 43 -25
PS相对分子质量与Tg的关系
120 80
Tg/
40 0 -40 0 20000 40000 60000 80000 100000 120000
1、差示扫描量热法(DSC, Differential scanning calorimeter )
样品
功率差 参比物
程序控温
温度
W=f(T)
差热分析法( DTA, differential thermal analyzer )
样品
温度差 参比物
程序控温
温度
T=f(T)
DSC、DTA的比较
一般是结晶相与非结晶相共存
结晶形态复杂
5. 3 聚合物结晶中的应用
对Tm的影响 结晶形态对Tm的影响 平衡熔点的确定 结晶度 结晶动力学 液晶晶型及转变热 冷结晶
典型结晶性聚合物DSC曲线
放热
dH/dT
Tg
Tm
T/oC
横坐标:T或t
纵坐标dH/dt:热流率,表示单位时间内试样热焓的变化(cal/s或J/s)
热分析的历史
DSC
TG
DTA
TMA
复合分析
印刷
现代热分析技术仪器组成
程序控温系统 测量系统 显示系统 气氛控制系统 操作控制系统 数据处理系统
与其它技术的联用性
热分析只能给出试样的重量变化及吸热或放 热情况;
解释曲线常常是困难的,特别是对多组分试 样作的热分析曲线尤其困难; 最现实的办法就是把热分析与其它仪器串接 或间歇联用,对逸出气体和固体残留物进行 连续的或间断的,在线的或离线的分析,从 而推断出反应机理。
(微分热重分析) TMA (热机械分析)
DMA (动态机械分析) EGA (逸出气分析)
热分析装置的利用领域
熱分析の木
•食品 •生物体・液晶 •油脂・肥皂 •洗涤剂 •电子材料 •木材・纸 •建材 •公害 •工业废弃物
•医药品 •香料・化妆品 •有机、无机药品 •触媒 •火药
規格
•橡胶 •高分子・塑料 •纤维 •油墨・顔料・染料・塗料 •粘着剂 •玻璃 •金属 •陶瓷・粘土・矿物 •水泥
热分析定义
在程序控制温度下
物质的物理性质 温度 测量
一类技术
P=f(T) P---物理性质 T---温度
程序控温: 把温度看作时间的函数 T=g(t) 因此: P=f(T或t)
ICTA关于热分析方法的分类
加热 热量变化
重量变化
DTA
TG
DSC
DTG
长度变化
物 质 粘弹性变化 气体发生 冷却 热传导 热光、电、磁学
5. 3.1 结晶对Tm的影响
PE结晶形态对Tm的影响
伸直链
从熔体缓慢冷却得到的球晶
从熔体快速冷却得到的球晶 从溶液生长得到的单晶
Tm
5.3.4 测定聚合物平衡熔点( Tm )
在不同温度下进行结晶的材料的熔点 ( Tm )不同;结晶温度( Tc)越高, Tm越高; 同一种聚合物,制备方法不同,结晶状 态就不同, Tm不同。
5.1 各种转变温度的确定
无定型聚合物玻璃化温度的确定(Tg)
结晶聚合物熔点的确定(Tm) 氧化温度 交联(固化)温度 分解温度 液晶晶型转变温度 结晶温度
三种硫磺样品熔点(Tm)比较
美国
Tm
日本
中国
未处理样 品
处理后不 溶硫样品
125.8
128
125
125.5
129
118.5
5.1.1 PS相对分子质量对Tg的影响
所以实验测得的熔点并不能表征聚合物本身的 特性。所以为了考察热力学平衡状态下的熔融 。 行为,必须用Tm 来表征
。
Tm 定义
与聚合物熔体平衡的一组晶体的熔点。
在下熔融的晶体是该聚合物最完善的结 晶。具有最小的自由能。
。
一般来讲,
。 Tm
> Tm ;
三种聚合物的Tc-Tm图
Tm/℃
280 240 160
方法 DSC 热焓 能定量 温度范围 窄 炉子 小 温度平衡 易达平衡
DTA
不能定量
宽
大
不易达平 衡
DSC主要特点
使用温度范围宽(-175 ℃ ~725 ℃ )
分辨能力高 灵敏度高
2. DSC的仪器结构
样品支持器示意图
3. 功率补偿型DSC测量原理 ——零位平衡原理
通过补偿一定的功率而使样品池和参比 池的T=Tr-Ts0; DSC是通过测定试样与参比物所吸收的 功率差来代表试样的热焓变化。
Mn
5.2 共混物研究
相容性判断
共混物相容性判断
TgA TgB
TgAB
完全相容
T′gA
T′gB
T′gB
部分相容
T′gA
完全不相容
5. 3 聚合物结晶
聚合物结晶的特点
聚合物特殊的结构使聚合物的结晶状态与其他 材料(如金属)有明显区别。
由于分子链是无规线团的长链状态,所以不太 容易使分子非常规则的排列,形成非常规整的 结构。
Tm=Tc a b c
Tm °
a:尼龙6 b:聚三氟氯乙烯 c:等规聚丙烯
Tm°120120160200240
280
320
Tc/℃
Tm-Tc图与Tm=Tc交点为平衡熔点Tm0
5.3.5 高分子液晶的研究
5.3.5 液晶(LC,Liquid crystal)
一些物质的结晶结构受热熔融或被溶剂溶解后,表 观上虽然失去了固体物质的刚性,变成了具有流 动性的液体物质,但结构上仍然保持着一维或二 维有序排列,从而在物理性质上呈现出各向异性, 形成一种兼有部分晶体和液体性质的过渡状态, 这种中介状态称为液晶态. 处于这种状态的物质称为液晶(Liquid crystal))
横坐标: T或 t
纵坐标: 功率或热焓
4.影响DSC实验结果的因素
升(降)温速率
试样用量 试样粒度 气氛
升(降)温速率
越大
越大
灵敏度越大
热滞后越严重
峰越大;
峰温越高。
常用 =10oC/min(测Tg则 = 20 oC/min)
越小 分辨率越高
不同降温速率下的DSC曲线
降温速率(oC/min)
2.5 oC 5 oC 10 oC 20 oC
试样用量m
同升温速率的影响规律相同。
常用m<10mg(1~6mg)
试样粒度
粒度越大 热阻越大 特征温度及熔融热 焓越低。 样品尽可能均匀;
粒度越细越好; 大块样品研磨成细粉
气氛
为避免氧化的发生,一般采用惰性气体
如N2、Ar、He等
5. DSC在高聚物中的应用
主要内容
差热扫描量热 Differential Scanning Calorimeter, DSC 热失重 ThermoGravimetric Analyzer ,TG
动态热机械分析 Dynamic Mechanical Thermal Analysis , DMTA)
三者构成了热分析的三大支柱 占到热分析总应用的75%以上。