常用逻辑用语

合集下载

常用逻辑用语-知识点+习题+答案

常用逻辑用语-知识点+习题+答案

常用逻辑用语知识点1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的否命题为“若q ⌝,则p ⌝”. 6、四种命题的真假性:四种命题的真假性之间的关系:()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧.原命题 逆命题 否命题 逆否命题真 真 真 真 真 假 假 真 假 真 真 真 假假假假当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定是特称命题. 练习题1、一个命题与他们的逆命题、否命题、逆否命题这4个命题中( )A 、真命题与假命题的个数相同B 、真命题的个数一定是奇数C 、真命题的个数一定是偶数D 、真命题的个数可能是奇数,也可能是偶数 2、下列说法中正确的是( )A 、一个命题的逆命题为真,则它的逆否命题一定为真B 、“a b >”与“ a c b c +>+”不等价C 、“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D 、一个命题的否命题为真,则它的逆命题一定为真3、“用反证法证明命题“如果x<y ,那么51x <51y ”时,假设的内容应该是( ) A 、51x =51yB 、51x <51yC 、51x =51y 且51x <51yD 、51x =51y 或51x >51y4、“a ≠1或b ≠2”是“a +b ≠3”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要 5、函数f (x )=x|x+a|+b 是奇函数的充要条件是( ) A 、ab =0 B 、a +b=0 C 、a =b D 、a 2+b 2=0 6、“若x ≠a 且x ≠b ,则x 2-(a +b )x +ab ≠0”的否命题( ) A 、 若x =a 且x =b ,则x 2-(a +b )x +ab =0 B 、 B 、若x =a 或x =b ,则x 2-(a +b )x +ab ≠0 C 、 若x =a 且x =b ,则x 2-(a +b )x +ab ≠0 D 、D 、若x =a 或x =b ,则x 2-(a +b )x +ab =07、“12m =”是“直线(m+2)x+3my+1=0与直线(m+2)x+(m-2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要8、命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( ) A 、存在实数m ,使得方程x 2+mx +1=0无实根B 、不存在实数m ,使得方程x 2+mx +1=0有实根C 、对任意的实数m ,使得方程x 2+mx +1=0有实根D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根9、不等式2230x x --<成立的一个必要不充分条件是( C )A 、-1<x<3B 、0<x<3C 、-2<x<3D 、-2<x<110.设集合(){}(){}(){}0,,02,,,,≤-+=>+-=∈∈=n y x y x B m y x y x A R y R x y x u ,那么点P (2,3)()B C A u ⋂∈的充要条件是( )A .m>-1,n<5B .m<-1,n<5C .m>-1,n>5D .m<-1,n>511、命题:“若0>a ,则02>a ”的否命题是12、:23A x -<, 2:2150B x x --<, 则A 是B 的_____ _条件。

常用逻辑用语

常用逻辑用语

常用逻辑用语1.充要条件的判断:(1)定义法----正、反方向推理注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”(2)利用集合间的包含关系:例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件。

2.逻辑联结词:⑴且(and) :命题形式 p ∧q ;p q p ∧q p ∨q ⌝p ⑵或(or ): 命题形式 p ∨q ; 真真 真 真 假 ⑶非(not ):命题形式⌝p . 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 3.四种命题的相互关系4。

四种命题:⑴原命题:若p 则q ; ⑵逆命题:若q 则p ; ⑶否命题:若⌝p 则⌝q ;⑷逆否命题:若⌝q 则⌝p注:原命题与逆否命题等价;逆命题与否命题等价。

5.全称量词与存在量词⑴全称量词-------“所有的”、“任意一个”等,用∀表示; 全称命题p :)(,x p M x ∈∀;全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词--------“存在一个”、“至少有一个”等,用∃表示;特称命题p :)(,x p M x ∈∃;特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;一:例题讲解1.命题“若,则”的逆否命题是( ).A . 若,则B . 若,则C . 若,则D . 若,则2.命题:,的否定是( )A .,B .,C .,D .,3.已知命题:"若,则",则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .B .C .D . 4.已知命题:,,则:A . ,B . ,C .,D .,5.设,则“”是“”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件二、练习题16.如果命题p ∨q 为真命题,p ∧q 为假命题,那么( ) A . 命题p ,q 均为真命题 B . 命题p ,q 均为假命题C . 命题p ,q 有且只有一个为真命题D . 命题p 为真命题,q 为假命题 7.命题:p 若0x <,则()ln 10x +<; q 是p 的逆命题,则( )A . p 真, q 真B . p 真, q 假C . p 假, q 真D . p 假, q 假 8.命题“,则”的逆否命题是( ) A . 若,则 B . 若,则 C . 若,则D . 若,则9.设,,则是成立的A . 必要不充分条件B . 充分不必要条件C . 充分必要条件D . 既不充分也不必要条件10.设命题, ,则命题成立是命题成立的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 11.设,则“2-x ≥0”是“≤1”的( )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件 12.已知命题;命题,.则下列命题为真命题的是( ).A .B .C .D .13.设x >0,y ∈R ,则“x >y ”是“x >|y|”的( ) A . 充要条件 B . 充分而不必要条件 C . 必要而不充分条件 D . 既不充分也不必要条件14.条件p:|x+1|>2,条件q:x ≥2,则是的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件 15.设:,:,则是的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件三、练习题216.命题“若x=3,则x 2-9x+18=0”的逆命题、否命题与逆否命题中,假命题的个数为( ) A . 0 B . 1 C . 2 D . 3 17.已知命题:,命题:,,则下列说法正确的是( )A . 命题是假命题B . 命题是真命题C . 命题是真命题 D . 命题是假命题18.命题“若0x y +=,则0x =或0y =”的逆否命题是( )A . 若0x y +=,则0x =且0y =B . 若0x y +≠,则0x ≠或0y ≠C . 若0x =或0y =,则0x y +≠D . 若0x ≠且0y ≠,则0x y +≠19.若命题“p 或q ”与命题“非p ”都是真命题,则( ) A . 命题p 与命题q 都是真命题 B . 命题p 与命题q 都是假命题 C . 命题p 是真命题,命题q 是假命题 D . 命题p 是假命题,命题q 是真命题 20.已知,都是实数,那么“”是“”的( )A . 充要条件B . 必要不充分条件C . 充分不必要条件D . 既不充分也不必要条件 21.命题“”的否定为( ) A .B .C .D .22.设,则“”是“”的( )A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件 23.“α=”是“sin α=”的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充要条件D . 既不充分也不必要条件24.“0x >”是“()10x x +>”成立的( )A . 充分不必要条件B . 必要不充分条件C . 既不充分也不必要条件D . 充要条件 25.设,是两个不同的平面,是直线且,则“”是“”的( )A . 必要不充分条件B . 充分不必要条件C . 充分必要条件D . 既不充分也不必要条件。

常用逻辑用语

常用逻辑用语

第8讲 常用逻辑用语一、重点1.四种命题的相互关系及其真假判断;2.充分性、必要性的判断;3.命题p ∧q ,p ∨q ,⌝p 的真假判断;4.全称量词与存在量词的意义.难点:1.充分性、必要性的判断;2. 对含有一个量词的命题的否定. 三、典例分析【题型一】四种命题及其关系知识梳理1.命题(1)定义:用语言、符号或式子表达的可以 的陈述句.(2)特点:能判断真假,是陈述句. (3)分类:真命题、假命题. 2.四种命题及其关系 (1)四种命题间的相互关系(2)四种命题的真假判断①两个命题互为逆否命题,它们具有相同的 . ②两个命题互为逆命题或否命题,它们的真假性 . 【例1】1、判断下列命题的真假(1)若B A x ⋂∉,则A x ∉且B x ∉; (2)若022≠+y x ,则0≠xy ; (3)若y x ≠或y x -≠,则y x ≠2、下列命题:①“全等三角形的面积相等”的逆命题; ②“若ab =0,则a =0”的否命题;③“正三角形的三个角均为60°”的逆否命题; ④“若x ≤-3,则x 2+x -6>0”的否命题;⑤“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题.其中真命题的序号是________(把所有真命题的序号填在横线上).解析 ①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab =0,则a =0”的否命题为“若ab ≠0,则a ≠0”, 而由ab ≠0可得a ,b 都不为零,故a ≠0,所以该命题是真命题;③由于原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是真命 题;④易判断原命题的逆命题假,则原命题的否命题假;⑤逆命题为“a ,b ∈R ,若a ≠0或b ≠0,则a 2+b 2≠0”为真命题. 答案 ②③⑤【题型二】 充分、必要、充要条件的判断 知识梳理1.充分条件与必要条件命题真假 “若p ,则q ”是真命题“若p ,则q ”是假命题推出关系 p qp q条件关系p 是q 的_____条件 q 是p 的_____条件p 不是q 的_____条件 q 不是p 的_____条件注:在逻辑推理中p ⇒q ,能表达成以下5种说法:①“若p ,则q ”为真命题;②p 是q 的充分条件;③q 是p 的必要条件;④q 的充分条件是p ;⑤p 的必要条件是q. 这五种说法表示的逻辑关系是一样的,都能表示p ⇒q ,只是说法不同而已.2. 充要条件:一般地,如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时,我们说p 是q 的充分必要条件,简称_________.显然,如果p 是q 的充要条件,那么q 也是p 的_________ ,即如果p ⇔q ,那么p 与q 互为充要条件.3. 充分条件、必要条件、充要条件的判断(1)若p ⇒q ,但q p ,则p 是q 的充分而不必要条件; (2)若q ⇒p ,但p q ,则p 是q 的必要而不充分条件; (3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p q 且q p ,则p 是q 的既不充分也不必要条件. 【例2】1.(2016年江西师大附中高三上学期期末) “”是“曲线为双曲线”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】当3>m 时,02>-m ,121)2(2222=--⇒=--m y m x y m mx ,原方程是双曲线方3m >22(2)1mx m y --=程;当原方程为双曲线方程时,有202,0>⇒>->m m m ;由以上说明可知3>m 是“曲线1)2(22=--y m mx 是双曲线”充分而非必要条件.故本题正确选项为A.2、(2016届安徽合肥中学等六校高三第二次联考)在等差数列{}n a 中,“13a a <”是“数列{}n a 是单调递增数列”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要件 【答案C 】3. (2015—2016学年度內蒙古巴彥一中高二理数检测题)设()1:210,:021x p x m m q x -+<>>-,若p 是q 的充分不必要条件,则实数m 的取值范围为 .【答案: (]02,】【变式训练2】1. 若不等式a x <-|1|成立的充分条件是40<<x ,则实数a 的取值范围是 .2. 已知p :020-8-2≤x x ,q :0-12-22≤+m x x (m>0),且p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围。

高中数学常用逻辑用语的解题方法归纳

高中数学常用逻辑用语的解题方法归纳

§.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“⌝”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” . 7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .8.充分条件与必要条件 :①pq :p 是q 的充分条件;q 是p 的必要条件; ②p q :p 是q 的充要条件 . 9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“∀” 表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“∃”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p 的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一. 关键词 是 都是(全是) >(<) 至少有一个 至多有一个 任意 存在否定 不是 不都是(全是) ≤(≥) 一个也没有 至少有两个 存在 任意2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|故本题应选C.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误.正解:因为,11⎪⎩⎪⎨⎧<-<-h b h a 所以,11⎩⎨⎧<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-即由命题甲成立推出命题乙成立,所以甲是乙的必要条件.由于⎪⎩⎪⎨⎧<-<-hb h a 22 同理也可得h b a 2<-因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题考查简易逻辑知识.因为p ⇒r ⇒s ⇒q 但r 成立不能推出p 成立,所以q p ⇒,但q 成立不能推出p 成立,所以选A 解:选A[例6] 已知关于x 的一元二次方程 (m∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0求方程①和②都有整数解的充要条件.解:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m ,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解.∴①②都有整数解的充要条件是m =1.[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于0证明: 假设x 、y 、z 均小于0,即:0122<+-=b a x ----① ;0122<+-=c b y ----② ;0122<+-=a c z ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,这与0)1()1()1(222≥-+-+-c b a 矛盾,则假设不成立, ∴x 、y 、z 中至少有一个不小于0[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2,即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0解得:1<mq :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.四、典型习题导练1.方程0122=++x mx 至少有一个负根,则( )A.10<<m 或0<mB.10<<mC.1<mD.1≤m2.“0232>+-x x ”是“1<x 或4>x ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.三个数,,a b c 不全为0的充要条件是 ( )A.,,a b c 都不是0.B.,,a b c 中至多一个是0.C.,,a b c 中只有一个是0.D.,,a b c 中至少一个不是0.4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.5.若,a b R ∈,试从A.0ab =B.0a b +=C.220a b +=D.0ab >E.0a b +>F.220a b +> 中,选出适合下列条件者,用代号填空:(1)使,a b 都为0的充分条件是 ;(2)使,a b 都不为0的充分条件是 ;(3)使,a b 中至少有一个为0的充要条件是 ;(4)使,a b 中至少有一个不为0的充要条件是 .6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1.。

常用逻辑用语高一数学

常用逻辑用语高一数学

第02练 常用逻辑用语1.充分、必要条件的判断: (1)定义法:①分清条件和结论:分清哪个是条件,哪个是结论; ②找推式:判断“q p ⇒”及“p q ⇒”的真假; ③下结论:根据推式及定义下结论.(2)等价法:将命题转化为另一个等价的又便于判断真假的命题。

(3)集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合之间的包含关系进行判断。

2.充要条件的证明:(1)证明充要条件时要分别证明充分性和必要性,二者缺一不可。

一般地,证明“p 成立的充要条件是q ”,①充分性:把q 当作已知条件,结合命题的前提条件,推出p ; ②必要性:把p 当作已知条件,结合命题的前提条件,推出q ;(2)等价证明:从条件开始,逐步推出结论,或者从结论开始,逐步推出条件,但要求每一步都是等价的。

3.应用充分、必要条件确定参数:利用充分条件和必要条件求参数的取值范围、主要是根据集合间的包含关系与充分条件和必要条件的关系,将问题转化为集合之间的关系,建立关于参数的不等式或不等式组求解。

4.判断全称量词命题、存在量词命题的真假:(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每个元素x ,证明p(x)成立;但要判定全称量词命题是假命题,只要能举出集合M 中的一个0x x =,使得)(0x p 不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个存在量词命题是真命题,只要在限定集合M 中,至少能找到一个0x x =;使)(0x p 成立即可。

否则,这一存在量词命题就是假命题。

一、单选题 1.“0a b >>”是“1ab>”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1ab>,但是不满足0a b >>, 故“0a b >>”是“1ab>”的充分不必要条件.故选:B 2.命题“x ∀∈R ,23230x x -->”的否定为( ) A .x ∀∈R ,23230x x --≤B .x ∀∉R ,23230x x --≤ C .x ∃∈R ,23230x x --≤D .x ∃∉R ,23230x x --≤ 【答案】C【解析】命题“x ∀∈R ,23230x x -->”的否定为x ∃∈R ,23230x x --≤,故选:C 。

数学常用逻辑用语

数学常用逻辑用语

数学常用逻辑用语
1. 嘿,数学常用逻辑用语就像一把神奇的钥匙,能打开好多知识大门呢!比如“如果今天下雨,我就带伞”,这不就是典型的条件语句嘛!
2. 哇塞,数学常用逻辑用语可是很重要的呀!就像我们说话做事要有条理一样,比如“要么吃苹果,要么吃香蕉”,多明确呀!
3. 哎呀,数学常用逻辑用语真的超有意思!就像走迷宫有了指引,比如“所有的三角形内角和都是 180 度”,这就是普遍真理呀!
4. 嘿呀,数学常用逻辑用语可不是吃素的!就好像给你指明方向的灯塔,比如“若一个数是偶数,那它一定能被 2 整除”。

5. 哇哦,数学常用逻辑用语那可太关键啦!就如同游戏规则一样,比如“存在一个数使得等式成立”,这多神奇!
6. 哟呵,数学常用逻辑用语简直妙不可言!好比是搭建房子的基石,比如“只要努力学习,就会取得好成绩”。

7. 哈哈,数学常用逻辑用语太好玩啦!就像一个神秘的密码锁,比如“当且仅当条件满足时才成立”,是不是很特别!
8. 哎呀呀,数学常用逻辑用语真的很神奇呢!就像我们走路要有路线一样,比如“非此即彼”的判断。

9. 嘿哟,数学常用逻辑用语真的超厉害!就如同给你力量的魔法,比如“若 A 则B”这样的逻辑关系。

10. 哇啦,数学常用逻辑用语那可是相当重要啊!就好像是航行中的指南针,比如“不是正数就是负数或0”。

我觉得数学常用逻辑用语是数学中非常基础且关键的部分,掌握了它,能让我们更好地理解和运用数学知识呀!。

(完整版)常用逻辑用语知识点总结

(完整版)常用逻辑用语知识点总结

常用逻辑用语—、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1) 、四种命题(2) 、四种命题间的逆否关系(3) 、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.、充分条件与必要条件1、定义1 .如果p? q,则p是q的充分条件,q是p的必要条件.2•如果p? q, q? p,则p是q的充要条件.2、四种条件的判断1.如果若p则q ”为真,记为p q,如果若p则q ”为假,记为p q .2.若p q,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:p q p q(1 )定义法:①p是q的充分不必要条件p q ②p是q的必要不充分条件p qp q p q③p是q的充要条件q p ④p是q的既不充分也不必要条件p q(2)集合法:设P={p}, Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P g.Q且Q ^ P,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词⑴命题中的且”或”非”叫做逻辑联结词.①用联结词且”联结命题p和命题q,记作p A q,读作p且q”.②用联结词或”联结命题p和命题q,记作p V q,读作p或q”.③对一个命题p全盘否定,就得到一个新命题,记作?p,读作非p”或p的否定(2)简单复合命题的真值表:*p A q:p、q有一假为假, *p V q:一真为真, .四、量词1、全称量词与存在量词(1)常见的全称量词有:任意一个” 一切”每一个”任给”所有的”等.(2)常见的存在量词有:存在一个”至少有一个”有些”有一个”某个”有的”等.(3)全称量词用符号?”表示;存在量词用符号? ”表示.2全称命题与特称命题(1) 含有全称量词的命题叫全称命题:对M中任意一个x,有p(x)成立”可用符号简记为?x€ M, p(x),读作对任意x属于M,有p(x)成立”.(2) 含有存在量词的命题叫特称命题:存在M中的一个x o,使p(x o)成立"可用符号简记为?x o€ M , P(x o),读作存在M中的兀素x o,使p(x o)成立”3 命题的否定(1) 含有量词命题的否定全称命题p:x M , p(x) 的否定p:x M, p x ;全称命题的否定为存在命题存在命题p:x M, p x 的否定p:x M , p x ;存在命题的否定为全称命题其中p x p (x)是一个关于x的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ p 且q” ;p且q ”的否定:“ p或q”(3) “若p则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p的否定(即非p)是否定命题p所作的判断,而否命题”是若p则q ”。

高中数学:常用逻辑用语

高中数学:常用逻辑用语

常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。

其中,判断为真的即为真命题,为假的即为假命题。

2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。

(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。

3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。

(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。

(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。

【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。

5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。

(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。

6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用逻辑用语知识点一:命题1. 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的语句叫做命题.(1)命题由题设和结论两部分构成. 命题通常用小写英文字母表示,如p,q,r,m,n等. (2)命题有真假之分,正确的命题叫做真命题,错误的命题叫做假命题. 数学中的定义、公理、定理等都是真命题(3)命题“”的真假判定方式:①若要判断命题“”是一个真命题,需要严格的逻辑推理;有时在推导时加上语气词“一定”能帮助判断。

如:一定推出.②若要判断命题“”是一个假命题,只需要找到一个反例即可.注意:“不一定等于3”不能判定真假,它不是命题.2. 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫简单命题,由简单命题与逻辑联结词构成的命题叫复合命题. (2)复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(3)复合命题的真假判断(利用真值表):非真真假真真真假假真假假真真真假假假真假假①当p、q同时为假时,“p或q”为假,其它情况时为真,可简称为“一真必真”;②当p、q同时为真时,“p且q”为真,其它情况时为假,可简称为“一假必假”.③“非p”与p的真假相反.注意:(1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。

可以类比于集合中“或”.(2)“或”、“且”联结的命题的否定形式:“p或q”的否定是“p且q”;“p且q”的否定是“p或q”.(3)对命题的否定只是否定命题的结论;否命题,既否定题设,又否定结论.知识点二:四种命题1. 四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.2. 四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.命题与集合之间可以建立对应关系,在这样的对应下,逻辑联结词和集合的运算具有一致性,命题的“且”、“或”、“非”恰好分别对应集合的“交”、“并”、“补”,因此,我们就可以从集合的角度进一步认识有关这些逻辑联结词的规定.知识点三:充分条件与必要条件1. 定义:对于“若p 则q ”形式的命题:从逻辑观点上,关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于区分命题的条件p 与结论q 之间的关系. ①若p q ,则p 是q 的充分条件,q 是p 的必要条件; ②若pq ,但qp ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件;③若q p ⇒且p ≠>q ,则p 是q 成立的必要不充分条件; ④若既有pq ,又有qp ,记作pq ,则p 是q 的充分必要条件(充要条件);⑤若p ≠>q 且q ≠>p ,则p 是q 成立的既不充分也不必要条件.从集合的观点上,关于充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件的判定在于判断p 、q 相应的集合关系.建立与p 、q 相应的集合,即(){:p A x p x =成立},(){:q B x q x =成立}.若A B ⊆,则p 是q 的充分条件,若A B ,则p 是q 成立的充分不必要条件;若B A ⊆,则p 是q 的必要条件,若B A ,则p 是q 成立的必要不充分条件;若A B =,则p 是q 成立的充要条件;若A ⊆/B 且B ⊇/A ,则p 是q 成立的既不充分也不必要条件. 2. 理解:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论 推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”、“有且仅有”、“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.3. 判断命题充要条件的三种方法(1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用与;与;与的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,比如A B可判断为A B;A=B可判断为A B,且B A,即A B.如图:“”“,且”是的充分不必要条件.“”“”是的充分必要条件.知识点四:全称量词与存在量词1. 全称量词与存在量词(1)全称量词及表示:表示全体的量词称为全称量词。

表示形式为“所有”、“任意”、“每一个”等,通常用符号“”表示,读作“对任意”。

含有全称量词的命题,叫做全称命题。

全称命题“对M中任意一个x,有p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.(2)存在量词及表示:表示部分的量称为存在量词。

表示形式为“有一个”,“存在一个”,“至少有一个”,“有点”,“有些”等,通常用符号“”表示,读作“存在”。

含有存在量词的命题,叫做特称命题特称命题“存在M中的一个x,使p(x)成立”可表示为“”,其中M为给定的集合,p(x)是关于x的命题.2. 对含有一个量词的命题进行否定(1)对含有一个量词的全称命题的否定全称命题p:,他的否定:全称命题的否定是特称命题。

(2)对含有一个量词的特称命题的否定特称命题p:,他的否定:特称命题的否定是全称命题。

注意:(1)命题的否定与命题的否命题是不同的.命题的否定只对命题的结论进行否定(否定一次),而命题的否命题则需要对命题的条件和结论同时进行否定(否定二次).(2)一些常见的词的否定:正面词等于大于小于是都是一定是至少一个至多一个否定词不等于不大于不小于不是不都是一定不是一个也没有至少两个总结1. 判断复合命题的真假的步骤:①确定复合命题的构成形式;②判断其中简单命题p和q的真假;③根据规定(或真假表)判断复合命题的真假.2. 条件“或”是“或”的关系,否定时要注意.类型一:四种命题及其关系1. 写出命题“已知是实数,若ab=0,则a=0或b=0”的逆命题,否命题,逆否命题,并判断其真假。

解析:逆命题:已知是实数,若a=0或b=0, 则ab=0, 真命题;否命题:已知是实数,若ab≠0,则a≠0且b≠0,真命题;逆否命题:已知是实数,若a≠0且b≠0,则ab≠0,真命题。

总结1.“已知是实数”为命题的大前提,写命题时不应该忽略;2. 互为逆否命题的两个命题同真假;3. 注意区分命题的否定和否命题.类型三:全称命题与特称命题真假的判断1. 要判断一个全称命题是真命题,必须对限定的集合M中每一个元素,验证成立;要判断全称命题是假命题,只要能举出集合M中的一个,使不成立可;2. 要判断一个特称命题的真假,依据:只要在限定集合M中,至少能找到一个,使成立,则这个特称命题就是真命题,否则就是假命题.类型四:充要条件的判断1. 处理充分、必要条件问题时,首先要分清条件与结论;2. 正确使用判定充要条件的三种方法,要重视等价关系转换,特别是与关系.类型五:求参数的取值范围1.由p或q为真,知p、q必有其一为真,由p且q为假,知p、q必有一个为假,所以,“p 假且q真”或“p真且q假”.可先求出命题p及命题q为真的条件,再分类讨论.从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的基本策略.类型六:证明1. 利用反证法证明时,首先正确地作出反设(否定结论).从这个假设出发,经过推理论证,得出矛盾,从而假设不正确,原命题成立,反证法一般适宜结论本身以否定形式出现,或以“至多…”、“至少…”形式出现,或关于唯一性、存在性问题,或者结论的反面是比原命题更具体更容易研究的命题.2. 反证法时对结论进行的否定要正确,注意区别命题的否定与否命题.三、典型例题选讲例1 写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1)已知a ,b ,c 为实数,若0ac <,则20ax bx c ++=有两个不相等的实数根; (2)两条平行线不相交;(3)若220x y +=,则x ,y 全为零.分析:写出一个命题的四种命题形式,关键是分清命题的条件与结论,把命题写成“如果…那么…”的形式,再根据四种命题的定义写出其他三种命题即可.解:(1)原命题是真命题;逆命题:若20ax bx c ++=有两个不相等的实数根,则0ac <,(假); 否命题:若0ac ≥,则20ax bx c ++=没有两个不相等的实数根,(假); 逆否命题:若20ax bx c ++=没有两个不相等的实数根,则0ac ≥,(真). (2)原命题形式可写成:若两条直线平行,则它们不相交,(真); 逆命题:若两条直线不相交,则它们平行,(假); 否命题:若两条直线不平行,则它们相交,(假); 逆否命题:若两条直线相交,则它们不平行,(真). (3)原命题是真命题;逆命题:若x ,y 全为零,则220x y +=,(真); 否命题:若220x y +≠,则x ,y 不全为零,(真); 逆否命题:若x ,y 不全为零,则220x y +≠,(真).归纳小结:(1)本题考查了命题的四种形式,并能进行真假判断,强化对知识运用的灵活性.(2)要注意四种命题之间的等价关系,即原命题与逆否命题等价,否命题与逆命题等价.在判断一个命题是真命题时,要严格按照数学逻辑进行推理证明,而要说明它是假命题时,只需要举出一个反例即可.(3)在否定条件或结论时,要注意否定词语的使用.常见否定词语有: 正面词语等于大于小于是都是 至多有一个 否定词语 不等于 不大于 不小于 不是不都是至少有两个例2 说明下列命题形式,指出构成它们的简单命题: ⑴矩形的对角线垂直平分;⑵不等式220x x -->的解集是{2x x >或}1x <-;⑶43≥; ⑷方程没有实数根.分析:根据命题中出现的逻辑联结词或隐含的逻辑联结词,进行命题结构的判断,其中解题的关键是正确理解逻辑联结词“且”、“或”、“非”的含义.解:⑴这个命题是“p q ∧”的形式,其中p :矩形的对角线互相垂直,q :矩形的对角线互相平分.⑵这个命题是“p q ∨”的形式,其中p :不等式220x x -->的解集是{}2x x >,q :不等式220x x -->的解集是或{}1x x <-.⑶这个命题是“p q ∨”的形式,其中p :43>,q :43=. ⑷这个命题是“¬p ”的形式,其中p :方程有实数根.归纳小结:⑴本题考查了含有逻辑联结词的命题结构,要求能正确理解逻辑联结词,并找出隐含的正面词语 至少有一个 任意的 所有的 一定 否定词语一个也没有某个某些一定不逻辑联结词,能根据命题形式分析问题、解决问题.⑵把简单命题合成为复合命题或把复合命题分解为两个简单命题并判断其真假是本节的重点之一,关键在于理解逻辑联结词的含义.熟悉真值表可以加快对含有逻辑联结词的命题的真假判断.⑶逻辑联结词中的“或”、“且”、“非”与日常用语中的“或”、“且”、“非”的意义是不完全相同的.如逻辑词中的“或”含有可以兼有之意,而生活中的“或”一般不可兼有的意思.例3(广东)已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝分析:本题只需要判断出命题p 和命题q 的真假,根据真值表进行判断即可. 解:由题意可以判断命题p 是真命题,命题q 是假命题,所以命题p ⌝是假命题,命题q ⌝是真命题.只有()()p q ⌝∨⌝是真命题,故选D .归纳小结:(1)本题考查了命题的真假判断和真值表的使用,考查了逻辑判断的思辩能力和推理能力;(2)命题p q ∨的真假判断是“一真就真,全假为假”;命题p q ∧的真假判断是“一假就假,全真为真”;命题p 与p ⌝的真假相反.例4(北京)“2()6k k Z παπ=+∈”是“1cos 22α=”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:简易逻辑中充要条件的判断前提是先明确条件与结论,即弄清楚哪个是条件,哪个是结论,再根据条件分析出推式的关系,从而利用定义和推式得到结论.解:当2()6k k Z παπ=+∈时,1cos 2cos 4cos 332k ππαπ⎛⎫=+== ⎪⎝⎭,w 即p q ⇒.反之,当1cos 22α=时,有()2236k k k Z ππαπαπ=+⇒=+∈, 或()2236k k k Z ππαπαπ=-⇒=-∈,即q ≠>p .综上所述,“2()6k k Z παπ=+∈”是“1cos 22α=”的充分不必要条件,故选A .例5(福建)设集合01x A x x ⎧⎫=<⎨⎬-⎩⎭,{}03B x x =<<,那么“m A ∈”是“m B ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题条件与结论的形式都是集合形式,只要理清集合之间的关系,按照充要条件与集合的对应关系即可作出判断.解:∵{}01A x x =<<, ∴AB .故选A .归纳小结:(1)本题考查了充要条件的定义,这是高考试题题型的常见形式之一,可与其他考查内容综合.同时还考查了数学转化思想、合情推理能力.(2)充分不必要条件、必要不充分条件、充分必要条件、既不充分也不必要条件反映了条件p 和结论q 之间的因果关系,在结合具体问题进行判断时,要注意以下几点:①确定问题的条件和结论;②尝试从条件推结论,结论推条件;③确定条件是结论的什么条件.也可以从命题体现的集合运算关系,判断出命题间的条件.在从条件推结论,结论推条件时,可以利用学过的定理、定义和公式直接做逻辑判断,或利用数轴或Venn 图分析两个集合的关系判断出“p q ⇒”和“q p ⇒”的真假.例6(湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( )A.①④⑤B.①②④C.②③⑤D.②④⑤分析:本题命题及其关系较多,如果直接解决则比较麻烦,可以用符号“⇒”、“⇔”等符号表示,简化题意,解决方便.解:由题意可知:p r ⇒,且r ≠>p ,q r s q ⇒⇒⇒.所以s q ⇔,①正确;p r q ⇒⇔,且q ≠>p ,②正确;r q ⇔,③不正确;p r s ⇒⇔,且s ≠>p ,④正确;r s ⇔,⑤不正确.故选B .归纳小结:(1)本题考查了充分条件、必要条件、充要条件的概念及命题之间关系的转化,逆否命题的等价性,考查了逻辑思辩能力和转化思想.(2)在命题之间的充分条件、必要条件、充要条件的推导过程中,使用符号语言可以简化过程,降低思维量.例7 已知命题p :1123x --≤,命题q :()222100x x m m -+-≤>,若¬p 是¬q 的充分不必要条件,求实数m 的取值范围.分析:¬p 是¬q 的充分不必要条件转化为等价命题形式:q 是p 的充分不必要条件,利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,从而求出m 的取值范围.解:记{}1122103x A x x x ⎧-⎫=-≤=-≤≤⎨⎬⎩⎭, (){}(){}222100110B x x x m m x m x m m =-+-≤>=-≤≤+>∵¬p 是¬q 的充分不必要条件, ∴q 是p 的充分不必要条件,即BA .∴012110m m m >⎧⎪->-⎨⎪+<⎩,解得03m <<. 所以实数m 的取值范围是03m <<.归纳小结:(1)本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,考查了转化思想的运用,强调了知识点运用的灵活性.(2)对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,在判断或利用两个命题的充要条件时,可以利用它们的等价式,即将命题转化为另一个等价形式的命题,一般可以利用逆否命题的等价形式:①若¬p ⇒¬q ,即q p ⇒,则p 是q 的必要条件,q 是p 的充分条件;②若¬p ⇒¬q ,且¬q ≠>¬p ,即q p ⇒,且p ≠>q ,则p 是q 的必要不充分条件;③若¬q ⇒¬p ,且¬p ≠>¬q ,即p q ⇒,且q ≠>p ,则p 是q 的充分不必要条件;④若¬p ⇔¬q ,则p q ⇔,即p 、q 互为充要条件;⑤若¬p ≠>¬q ,且¬q ≠>¬p ,即q ≠>p ,且p ≠>q ,则p 是q 的既不充分也不必要条件.例8(海南、宁夏)有四个关于三角函数的命题:1p :x R ∃∈,221sin cos 222x x += 2p :x ∃、y R ∈,()sin sin sin x y x y -=-3p :[]0,x π∀∈,1cos 2sin 2x x -= 4p :sin cos 2x y x y π=⇒+= 其中是假命题的有( )A .1p ,4pB .2p ,4pC .1p ,3pD .2p ,4p分析:若全称命题为真命题,必须对限定范围内的元素中的全体都成立;若特称命题是真命题,只需在限定范围中有一个元素满足条件即可.解:1p 是假命题,因为x R ∀∈,22sincos 122x x+=; 2p 是真命题,如0x y ==时成立;3p 是真命题, []0,x π∀∈,sin 0x ≥.∴21cos 2sin sin sin 2xx x x -===; 4p 是假命题,如2x π=,2y π=时,sin cos x y =,但2x y π+≠.故选A .归纳小结:(1)本题考查了全称命题与特称命题的真假判断,同时也考查了对概念的转化能力和推理能力.(2)一般地说,全称命题与特称命题的真假判断方法是:①判定一个全称命题是真命题时,必须对限定的集合M 中的每一个元素x ,验证()p x 成立即可;②判定一个全称命题是假命题时,只要能列举出集合M 中的一个元素0x ,使()0p x 不成立即可;③判定一个特称命题是真命题时,只要在限定的集合M 中,至少能找到一个元素0x ,使()0p x 成立即可,否则,这个特称命题就是假命题.例9(宁夏)已知命题p :1sin ,≤∈∀x R x ,则( ) A.1sin ,:≥∈∃⌝x R x p B.1sin ,:≥∈∀⌝x R x p C.1sin ,:>∈∃⌝x R x p D.1sin ,:>∈∀⌝x R x p分析:对全称(特称)命题的否定是将其全称(存在)量词改为存在(全称)量词,再将结论否定.解:将∀变为∃,同时否定sin 1x ≤,可以得到1sin ,:>∈∃⌝x R x p . 故选C .归纳小结:(1)本题考查了含有一个量词的命题的否定及否定词的运用,对学生的逻辑判断能力进行考查.(2)一般地,对于含有一个量词的全称命题的否定,有下面的结论: 全称命题p :(),x M p x ∀∈,它的否定¬p :0x M ∃∈,¬()0p x . 特称命题p :()00,x M p x ∃∈,它的否定¬p :x M ∀∈,¬()p x . 要注意否定词的运用.例10 已知命题p :210x mx ++=有两个不等的负根,命题q :()2442x m x +-+10无实数根.若命题p 与命题q 有且只有一个为真,求实数m 的取值范围.分析:对命题p 和命题q 的条件进行化简可得m 的范围,再对p 、q 的真假进行讨论,得到参数成立的条件,利用交集求出m 的取值范围.解:∵方程210x mx ++=有两个不等的负根,∴2400m m ⎧->⎨-<⎩,解得2m >.∵方程()2442x m x +-+10=无实数根,∴()2162160m --<,解得13m <<.若命题p 为真,命题q 为假,则213m m m >⎧⎨≤≥⎩或,得3m ≥.若命题p 为假,命题q 为真,则213m m ≤⎧⎨<<⎩,得12m <≤.综上所述,实数m 的取值范围为12m <≤或3m ≥.归纳小结:(1)本题考查了方程求解的条件、命题真假的讨论、集合运算等知识,突出考查了分类讨论思想,和把命题真假转化为集合运算的能力.(2)根据问题条件求出命题所对应的集合范围,将命题的真假条件转化为集合的运算,即当命题为真时,则条件所对集合为原集合,当命题为假时,则条件所对应的集合为补集.两个命题的真假同时成立,则条件所对应的集合为两个集合的交集.在命题的真假性不能确定的前提下,应作分类讨论.四、本章总结本专题内容主要是常用逻辑用语,包括命题与量词,逻辑联结词以及充分条件、必要条件与命题的四种形式.1.要理解命题的四种形式,并会运用逻辑推理判断真命题,利用举反例判断假命题.原命题与其逆否命题为等价命题,逆命题与否命题为等价命题,当一个命题的真假不易判断时,可考虑判断其等价命题的真假.2.理解逻辑联结词的含义,能正确分析命题形式,指出构成它们的简单命题,并会依据真值表判断命题的真假.3.注意一个命题的否定与命题的否命题是不同的,原命题的否定只否定结论,原命题的否命题既否定条件,又否定结论.4.判断充要条件的三种方法是:定义法、等价法、利用集合间的包含关系作判断.练习题一、选择题 1.若命题“p q ∧”为假,且“p ⌝”为假,则( )A .p 或q 为假B .q 假C .q 真D .不能判断q 的真假2.在△ABC 中,“︒>30A ”是“21sin >A ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.有下列四个命题:①“若0x y += , 则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤ ,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题; 其中真命题为( ) A .①② B .②③ C .①③D .③④4.设a R ∈,则1a >是11a< 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件5.命题:p 若,a b R ∈,则1a b +>是1a b +>的充分而不必要条件;命题:q 函数12y x =--的定义域是(][),13,-∞-+∞ ,则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真6.若,a b R ∈,使1a b +>成立的一个充分不必要条件是( )A .1a b +≥B .1a ≥C .0.5,0.5a b ≥≥且D .1b <-7.有下列四个命题:①、命题“若1=xy ,则x ,y 互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题;③、命题“若1m ≤,则022=+-m x x 有实根”的逆否命题;④、命题“若A B B = ,则A B ⊆”的逆否命题。

相关文档
最新文档