2022年全国大学生数学建模竞赛A题获奖论文储油罐的变位识别与罐

合集下载

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定收集资料

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定收集资料

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

全国数学建模大赛题目

全国数学建模大赛题目
附件1:小椭圆储油罐的实验数据
附件2:实际储油罐的检测数据
2010高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
B题 2010年上海世博会影响力的定量评估
2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。
(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。
(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

储油罐的变位识别与罐容表标定模型

储油罐的变位识别与罐容表标定模型
模型Ⅲ:在模型Ⅰ和模型Ⅱ的基础上找出以上两函数式之间的关系,再对变位过程 进行分析得到模型Ⅰ和模型Ⅱ之间的油面高度关系,进而得到油罐内油量与油高及纵向 倾斜角度α和横向偏转角度β 之间的综合关系 y=y(h,α, β)。然后用附录所给数据运用 Matlab7 软件对函数拟合求得α, β的值,最后求得一组油罐表标度值,并给出模型的检 验。
2. 对问题二的分析:因为两个变位参数都是未知的,要直接求得油量与油位高度及两
个参数的总的关系式是较困难的。故我们可以求出油量分别随两个参数的变化关系式 y(h, α)和 y(h, β ),并且这两个函数是建立在问题一的基础上,然后研究两个关系式的关 系,求出油量与油位高度及两个参变量的综合关系式 y(h, α, β),这样问题二便能求解出 来。这当中较难部分是如何把两个函数关系式综合到一起。
2
8、假设储油罐的管壁所占的体积忽略不计; 9、假设注油口,检查口的的严谨性是很强的;
§4 名词解释与符号说明
4.1 名词解释 1、罐容表——罐容表是在油罐制作安装完成后由专业部门通过实测标定的油高与
体积的关系表,油高以厘米为单位,体积以立方分米为单位。由于罐容标定一般是每间 隔 1cm 确定一个容积值,这样罐容表中只有整厘米数油高具有对应的容积值。
§3 模型的假设
1.假设罐体位置横向不发生变位(对于问题一); 2.假设罐内油的体积不会随温度的变化而变化(即忽略热胀冷缩对油体积的影响); 3.假设油罐在检测过程中完好无损,不会出现漏油、汽化等现象; 4.纵向偏转角度 a 不大,可近似认为两端球缺中含油量相同;
5 假设题目所给的数据真实可靠; 6、假设固定油浮子的油位探针始终垂直于油罐底部; 7、假设深入油罐内的管子体积忽略不计;
+

储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表标定摘要许多储油罐在使用一段时间后,由于地基变形等原因,使油罐发生纵向倾斜或者横向偏转,从而导致罐容表发生改变。

据此,我们用微积分与数据拟合的方法建立储油罐的变位识别与罐容表标定的模型。

通过对问题的分析,将问题化成若干个小问题,从而建立了五个数学模型。

其中模型一、二主要针对的是一问提出的,模型三、四、五针对的是二问提出的。

模型一通过用微积分知识确定了无变位时罐内油量与油位高度的关系式,并通过编写MATLAB程序对模型进行了求解。

模型二考虑变位时罐内油量与油位高度的关系,通过附件1中给的数据,拟合出了罐内油量的理论值与实验值之差v∆与油位高度h的关系式,通过v∆与h的关系式可以将倾斜角度α拟合进去,从而得到v∆与h、α的函数关系式,再根据v v v=-∆理实确定出v实的表达式。

模型三考虑的是无变位时储油量与油位高度的关系,与模型一不同的是储油罐的形状不同,通过二重积分求得储油量与油位高度的关系式,最后通过编写MATLAB程序对模型进行了求解。

模型四考虑的也是无变位时储油量与油位高度的关系,只是研究方法与模型三不同,即模型三和模型四是研究同一问题的不同方法。

模型四是将罐子看成一个卧式的圆柱体,求其体积,进而分析误差,并求出误差,最后也可得到较为精确的罐内油量与油位高度的关系式,最后通过编写MATLAB程序对模型进行了求解。

模型五考虑了横向和纵向的倾斜角度的变化,通过对附件2显示油高和显示油量容积两列数据的拟合确定油位高度为0时的罐内油量,即常数L,然后根据新建立的关系式和模型四来确定纵向倾斜角α和横向偏转角β,最终得到了存在倾斜角α和横向偏转角β罐内油量与油位高度的关系式。

应用以上五个模型可以很好的解决题中的两个问题,即模型一、二解决一问,模型三、四、五解决二问。

关键词:微积分数据拟合储油罐油位高度罐容表1 基本假设1)储油罐的形状是规则的2)油位高度为0时,罐内油量为常数L2 符号说明1) h ——油位高度2) l ——小椭圆形储油罐的长度3) a ——小椭圆形储油罐横截面椭圆的长半轴长 4) b ——小椭圆形储油罐横截面椭圆的短半轴长3 模型的建立、求解与应用3.1模型一3.1.1模型的建立对于(1)问,首先考虑储油罐无变位的情况,其横截面积如图:其阴影部分的面积2hs xdy =⎰ ,其中x =则 2v sl =理,其中v 理表示无变位罐内的油量。

最新储油罐的变位识别与罐容表标定的数学模型

最新储油罐的变位识别与罐容表标定的数学模型

储油罐的变位识别与罐容表标定的数学模型储油罐的变位识别与罐容表标定的数学模型摘要本文解决了储油罐罐容表变位后标定的问题。

通过把实际的储油罐抽象成直角坐标系下的几何柱体,然后从区分不同的油面高度入手建立了几何柱体体积的积分模型。

再通过合理运用所给数据进行数据拟合,得出了油量体积与油面高度之间的函数关系,进而进行理论与实际体积之间的误差分析和模型可行性分析。

针对问题一,首先对于无变位的小椭圆柱体建立了直角坐标系下的容积积分模型(见第4页)。

通过Minitab15软件对实验数据进行曲线拟合,得出一个油量作为高度的函数关系。

利用这个函数关系计算出相应罐容表高度的实际油量容积,对比理论积分模型的容积值,计算出误差值(见表3和表5)。

观察知误差属于正常范围内,则得出通过理论模型来标定的标准罐容表(见第7页表6)。

然后当只有纵向倾斜的变位时,根据柱体内的倾斜油面将柱体容积分为三个部分,分段计算出相对应部分中的容积积分,建立了变位后的分段容积积分模型,通过Matlab7.0编程得出容积积分函数(见第9页)。

而这个模型是与纵向倾斜角度和油高两个因素有关的。

当倾斜角一定时,代入条件数据进行拟合对比,得出模型是合理有效的,从而得出变位后的罐容表(见第12页表7)。

最后将每变化0.01m的油量变化量与标准罐容表作比,得出比例系数。

针对问题二,将储油罐分割成两个球冠和一个圆柱三部分,并将其截面放入平面直角坐标系下建立容积积分模型,分别求出各个部分的油量容积,再相加求总容积(见第15页)。

而当纵向倾斜和横向偏转都存在时,考虑将空间直角坐标系作一个相应变换,即把轴乘以相应的三角函数得到新的坐标系,此时积分模型得出的是关于两个倾斜角度和高度的函数。

然后根据所给数据作拟合计算出实际油量,且分别选取两个倾斜角度的合理范围,固定高度后代入容积积分函数,将得到的油量与拟合出的实际油量作比较,利用最小二乘的方法从两边逐步逼近,最终得出最优的倾斜角度(见第17页)和倾斜后的罐容表(见第17页表8)。

A甲

A甲

储油罐的变位识别与罐容表标定专家点评:本文基于所给数据准确、罐体几何形状因有附属构件而含有误差进而导致推导的罐容与油位高度之间函数关系的理论公式含有较大偏差的理解下,通过对理论公式计算结果与实测数据的偏差的曲线拟合,对小椭圆型储油罐给出了修正的罐容表。

文中分析研究了无变位和有纵向变位的小椭圆型储油罐的罐容与油位高度的函数表达式、有纵向变位和横向变位的实际储油罐罐容与油位高度的函数表达式、以储油罐中油量随高度的变化率为依据识别纵向倾斜角度和横向偏转角度,由此给出了罐容表的标定、检验了所给出的数学模型的正确性和可靠性,思路正确、方法有效、所得结果合理,但是,对问题一利用祖暅原理将有变位近似转换为无变位的方法略欠妥当。

中国海洋大学 曹圣山教授摘要对于两端平头的小椭圆型储油罐与实际球冠封口的储油罐,本文分别建立了相应的数学模型,解决了储油罐变位后的识别和罐容表的标定的相关问题。

在建立两个模型的过程中充分的运用了MATLAB 和EXCEL 两个软件,利用祖暅原理将变位容积计算转换为未变位时的计算,在保证精度情况下,避免了复杂的积分运算。

对于模型1,首先,我们通过积分,得出无变位时的储油量与油位高度关系,此时,所得理论容积与实测容积出现由罐内附属构件占有一定体积造成的偏差,及时的运用曲线拟合的方法获得了其偏差函数,对模型1的公式进行了修正,获得了很好的结果。

在变位条件下,依据油位高度,对变位后的小椭圆形储油罐划分了三种高度条件来讨论了其罐容标定,然后利用几何关系将高度转化为无变位条件下的高度来计算容积。

对于模型2,无变位时,同样,我们先积分,积出无变位情况下实际油罐的储油量与油位高度表达式;变位时,我们依然依据油位高度,对实际的球冠封口的储油罐划分为三种情况来讨论,同样采用一些转化将高度转化为无变位条件下的高度来计算容积;在求解α,β的过程中,利用导数间的关系建立了油位高度的关系,编写了导数返查的MATLAB 程序以及依据数值逼近思想所利用的2)(1nn n n x x f x x --=+迭代公式和最小二乘法的线性拟合,精确地计算出了α,β的值 ,进而促成模型2的正确建立,然后利用模型计算出罐容标定表并利用给定数据分析检验。

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定精品

全国大学生数学建模竞赛A题获奖—储油罐的变位识别与罐容表标定精品

2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.指导教师或指导教师组负责人(打印并签名):日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):储油罐的变位识别与罐容表标定摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022年全国大学生数学建模竞赛A题获奖论文储油罐的变位识别与罐承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):江西师范大学参赛队员(打印并签名):1.洪情指导教师或指导教师组负责人(打印并签名):教练组日期:2022年9月12日摘要本文通过对储油罐中油位高度及变位参数之间的不同情形的储油量进行分析并建立相应的数学模型,在该过程中先利用投影法、截面法及微元法得出储油量与油位高度及变位参数的函数关系。

再由Matlab编程可知各高度储油量的理论数据,最后分析误差及评价模型的合理性。

对于问题一的任一种情形,我们均建立笛卡尔坐标系,当储油罐无变位时,利用微元法得到体积关于h的公式,当储油罐发生变位时,根据储油罐中油量的多少分成三种情形,就每一类利用微元法得到体积关于h的公式。

代人附件1实验数据中的高度得到储油罐中的理论油量V。

根据理论油量及实际油量得出误差,判断误差所服从的分布,再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

对于问题二中的储油罐,我们先将问题进行简化考虑,得出了储油罐水平卧放时油量与浮油子高度的函数关系;再考虑储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)的一般情况,在该过程中,我们进行近似处理,利用投影法和截面法得出了储油量关于油位高度及变位参数的函数关系;并在固定的横向偏转角度条件下,就纵向倾斜角度的变化进行分成三类讨论,这三类又可以分成八种情形,得到了每一种情形下实际储油罐罐内储油量与油位高度的函数关系。

在模型的改进中,我们就问题二储油量与油位高度及变位参数的一般情况进行了仔细的考虑,将含油部分的体积分成四个部分,每一个部分将上述所提到的积分方法相结合,得到了各个部分的储油量与油位高度及变位参数的函数关系,从而可得总储油量与油位高度及变位参数的函数关系;并据此利用Matlab编程和实际测量的数据求得和值;与此同时我们可以得出在固定、值时各高度下的理论储油量;根据理论油量及实际油量得出误差,判断误差所服从的分布再利用相对误差进行误差分析并评价模型的合理性。

由上述得到储油罐发生变位时体积关于h的公式我们给出了罐体变位后油位高度间隔为10cm的罐容表标定值。

【关键词】投影法截面法微元法Matlab编程§1问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。

按照有关规定,需要定期对罐容表进行重新标定。

请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为4.1的纵向变位两种情况做了实验,实验数据如附件1所示。

请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)之间的一般关系。

请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。

进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。

(以上涉及的图1~4均在附录中)§2模型的假设与符号的约定§2.1模型的假设与说明(1)在储油罐倾斜的情况下,忽略油浮子高度为0时油所占的体积;(2)在储油罐倾斜的情况下,假设当油浮子高度达到最大后不再进油;(3)油的挥发速度很慢,忽略因油的挥发而造成储油量的减少;(4)储油罐的材料为钢体,忽略因渗出油而造成储油量的减少;(5)储油罐管理妥当,不会因特殊情况而造成储油量的变化。

§2.2符号的约定与说明V表示储油罐中油的体积;L表示储油罐圆柱体部分的长度;a表示任一椭球截面的长半轴;b表示任一椭球截面的短半轴;a1表示油浮子在圆柱体高方向上投影至两端的较小值;h表示油浮子到圆柱体高方向的距离;h1表示储油罐接地一端油面到地面得距离;表示纵向倾斜角度;表示横向倾斜角度;h0表示球冠高;b0表示球冠底半径;§3问题的分析§3.1问题一的分析当储油罐无变位时,储油罐圆柱体的接地一端为原点,以圆柱体高方向为z轴,建立笛卡尔坐标系,利用微元法得到体积关于h的公式,代人附件1实验数据中的高度得到储油罐中的理论油量V。

利用附件1实验数据中得到储油罐中的实际油量,根据理论油量及实际油量就可以得出误差,判断误差所服从的分布,利用相对误差进行误差分析。

当储油罐发生变位时,以储油罐圆柱体的接地一端为原点,圆柱体高方向为z轴,建立笛卡尔坐标系。

根据储油罐中油量的多少分成三类,然后就每一类利用微元法得到体积关于h的公式,代人附件1实验数据中的高度得到储油罐中的理论油量V。

利用附件1实验数据中得到储油罐中的实际油量,根据理论油量及实际油量就可以得出误差,判断误差所服从的分布,利用相对误差进行误差分析。

由上述得到储油罐发生变位时体积关于h的公式可以给出罐体变位后油位高度间隔为1cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

§3.2问题二的分析对于实际储油罐,我们首先将问题进行简化考虑,得出了当实际储油罐水平卧放时实际储油罐中油量与浮油子高度的函数关系;然后我们先考虑实际储油罐罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)的一般情况,在该过程中,我们进行近似处理,利用投影法和截面法得出了储油量关于油位高度及变位参数的函数关系,再在固定的横向偏转角度条件下,就纵向倾斜角度的变化进行分类讨论,一共有三种情形,得到了每一种情形下实际储油罐罐内储油量与油位高度的函数关系。

最后我们先利用附件2中的少量实际数据得出了附件2所处状态下的纵向倾斜角度和横向偏转角度,再利用附件2中给定各高度进行代人,得到实际储油罐理论的储油量,与实际储油量进行比较,求出误差及相对误差。

由上述得到储油罐发生变位时体积关于h的公式可以给出罐体变位后油位高度间隔为10cm的罐容表标定值(即进/出油量与罐内油位高度的表格)。

§4模型的建立与求解§4.1问题一§4.1.1模型一当储油罐体无变位时,储油罐圆柱体的接地一端为原点,以圆柱体高方向为z轴,建立笛卡尔坐标系,如图4-1所示,在高度为h时,利用微元法过垂直z轴的方向做截面S(z),对S(z)关于z进行积分,得到体积关于h的公式。

图4-1某2y2由221某abS(z)2a0bahb1(hb2arcinb2bb2dVS(z)dzVS(z)dzLahb12L(hb2arcinbbb2Vahb12L(hb2arcinbbb2利用Matlab中的命令ub代人附件1实验数据中的各高度得到储油罐中的理论油量V。

由附件1实验数据中进油量、出油量及储油罐罐内油量初值可以得到储油罐中的实际储油量,根据理论油量及实际油量就可以得出误差。

由附录中的程序youliang1,我们得到了理论储油量,误差及相对误差。

进油后理论储油量与实际储油量随高度的变化规律如图4-2所示:图4-2出油后理论储油量与实际储油量随高度的变化规律如图4-3所示:图4-3无变位进油和无变位出油的储油理论量和储油实际量及误差和相对误差的数据如表4-1所示:表4-120222062211221622212226223122315.82365.82367.12417.12467.12517. 12567.12617.126672668.82718.82768.82818.82868.82918.82968.83018 .83068.83118.83168.83168.93218.93268.93318.93368.93418.93468.93 518.93568.93618.93668.93718.93768.93818.93868.93918.93968.92082.22134.02185.72237.42289.22340.92392.72396.62448.42449.6250 1.42553.12604.92656.62708.32760.02761.92813.72865.42917.22968.9 3020.73072.43124.13175.93227.63279.43279.53331.23382.93434.7348 6.43538.23589.93641.73693.43745.13796.93848.63900.43952.14003.9 4055.64107.470.2071.9573.6775.4377.1678.8980.6780.7882.5482.5684.3486.0587. 8289.5391.2893.0393.1194.8396.5998.34100.09101.84103.58105.3110 7.06108.80110.55110.55112.27114.03115.76117.52119.26121.01122.7 6124.51126.23127.98129.74131.48133.23134.95136.70138.453.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37% 3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37 %3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.3 7%3.37%3.37%3.37%3.37%3.37%3.37%—6—2216.22166.22116.22066.22022.21966.21916.21866.21816.21766.2171 6.21666.21616.21566.21516.21466.21416.21366.21316.21266.21216.2 1166.21116.21066.21016.2966.2916.2866.2816.2766.2716.2666.2616. 2566.2516.2466.2416.2366.2316.2266.22293.52241.72190.02138.32086.52034.81983.01931.31879.51827.8177 6.11724.31672.61620.81569.11517.31465.61413.81362.11310.41258.6 1206.91155.11103.41051.6999.9948.2896.4844.6792.9741.2689.4637. 7585.9534.2482.5430.7379.0327.2275.577.3275.5573.8472.0870.3268.6066.8565.1263.3561.6159.8858.1256. 3754.6452.8751.1449.4247.6545.9144.1842.4240.6838.9437.1935.433 3.7131.9630.2028.4526.7124.9923.2521.5119.7418.0216.2814.5012.7 711.029.283.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37% 3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37 %3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3.37%3. 37%3.37%3.37%由上述的表格可以得出相对误差稳定,不会随高度发生变化。

相关文档
最新文档