高中数学 直线与抛物线相交问题

合集下载

考点102直线与抛物线的位置关系

考点102直线与抛物线的位置关系

考点102直线与抛物线的位置关系一、课本基础提炼1.研究直线与抛物线的位置关系,一般是联立两曲线方程,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”、“整体代入”、“点差法”以及定义的灵活应用.2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式二级结论必备过抛物线焦点的动直线与抛物线交于点A,B,则该抛物线在点A,B处的两切线的交点轨迹是抛物线的准线.1.直线与抛物线相交时的弦长问题若直线过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用|AB|=x1+x2+p;若直线不过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用,对于此类问题,应熟练地利用韦达定理设而不求计算弦长,另外注意与面积有关的问题,常用到弦长公式.例1.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.(1)求抛物线C的方程;(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求的最小值.【解析】(1)由题可知F,则该直线方程为代入y2=2px(p>0),得设M(x1,y1),N(x2,y2),则有x1+x2=3p.∵|MN|=8,∴x1+x2+p=8,即3p+p=8,解得p=2,∴抛物线的方程为y2=4x.(2)设直线l的方程为y=x+b,代入y2=4x,得x2+(2b-4)x+b2=0.∵l为抛物线C的切线,∴Δ=0,解得b=1.∴l的方程为y=x+1.设P(m,m+1),则=(x1-m,y1-(m+1)),=(x2-m,y2-(m+1)),∴=(x1-m)(x2-m)+[y1-(m+1)][y2-(m+1)]=x1x2-m(x1+x2)+m2+y1y2-(m+1)(y1+y2)+(m+1)2.由(1)可知:x1+x2=6,x1x2=1,∴(y1y2)2=16x1x2=16,y1y2=-4.,=1-6m+m2-4-4(m+1)+(m+1)2=2(m2-4m-3)=2[(m-2)2-7]≥-14,当且仅当m=2,即点P的坐标为(2,3)时,的最小值为-14.例2.抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为的直线l与线段OA相交(不经过点O 或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积.【解析】由题意,可设l的方程为y=x+m,-5<m<0.由方程组,消去y,得x2+(2m-4)x+m2=0 ,①∵直线l与抛物线有两个不同交点M、N,∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0,解得m<1,又-5<m<0,∴m的范围为(-5,0)设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1•x2=m2,点A到直线l的距离为,从而=4(1-m)(5+m)2,当且仅当2-2m=5+m,即m=-1时取等号.故直线l的方程为y=x-1,△AMN的最大面积为2.抛物线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为“点差法”.例3.已知抛物线y2=4x的一条弦的斜率为3,它与直线交点恰为这条弦的中点M,则点M的坐标为_______.【解析】设弦端点P(x1,y1)、Q(x2,y2),弦PQ的中点M(x0,y0),则x1+x2=2x0=1,y1+y2=2y0,又两式相减得(y1+y2)(y1-y2)=4(x1-x2)即2y0(y1-y2)=4(x1-x2),∴点M的坐标为3.抛物线的切线问题由于抛物线x2=2py(p≠0),可转化为函数,因此我们可以借助导数的几何意义来研究抛物线的切线.例4. 已知抛物线x2=2y,过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为________.【解析】由x2=2y,得,∴y′=x.设P(x1,y1),Q(x2,y2),∴抛物线在P,Q两点处的切线的斜率分别为x1,x2,∴过点P的抛物线的切线方程为y-y1=x1(x-x1),又∴切线方程为,同理可得过点Q的切线方程为,两切线方程联立解得又抛物线焦点F的坐标为,易知直线l的斜率存在,可设直线l的方程为,由,得x2-2mx-1=0,所以x1x2=-1,所以4.面积问题求三角形或四边形的面积最值是高考中的常见问题,解决这类问题的基本方法是把面积表示为某一变量的函数,再转化为函数求最值,或利用基本不等式求最值.例5.(2014•高考四川卷)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA→•OB→=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是( )A.2 B.3【解析】设直线AB的方程为x=ny+m(如图),A(x1,y1),B(x2,y2),∴x1x2+y1y2=2.∴y1y2=-2.联立得y2-ny-m=0, ∴y1y2=-m=-2,∴m=2,即点M(2,0).又S△ABO=S△AMO+S△BMO当且仅当时,等号成立.例6.已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p.(1)求a的取值范围.(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.【解析】(1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0.∴4ap+2p2≤p2,即4ap≤-p2又∵p>0,(2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y),由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p,则有∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0)点N到AB的距离为从而当a有最大值时,S有最大值为5.对称问题根据圆锥曲线上存在不同两点关于某直线对称求参数范围,是一类典型问题,解决此类对称问题,要抓住三点:(1)中点在对称轴上;(2)两个对称点的连线与对称轴垂直;(3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”、“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围.例7.已知抛物线y=ax2-1(a≠0)上总有关于直线x+y=0对称的相异两点,求a的取值范围.解:设A(x1,y1)和B(x2,y2)为抛物线y=ax2-1上的关于直线x+y=0对称的两相异点,则两式相减,得y1-y2=a(x1-x2)(x1+x2).再由x1≠x2,得设线段AB的中点为M(x0,y0),则由M点在直线x+y=0上,得∴直线AB的方程为联立直线AB与抛物线的方程并消去y,得依题意,上面的方程有两个相异实根,∴a的取值范围是1.(2014•潍坊模拟)过抛物线y2=4x的焦点且斜率为的直线l与抛物线y2=4x交于A,B两点,则|AB|的值为( )【答案】A【解析】设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线l的方程为,代入抛物线方程得3x2-10x+3=0.根据抛物线的定义,可知|AB|=x1+1+x2+1=2.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若|FA|=2|FB|,则k=( )【答案】D【解析】由直线方程知直线过定点即抛物线焦点(2,0),由|FA|=2|FB|知x A+2=2(x B+2) 联立方程用根与系数关系可求3.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有( )A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=0解方程组,得ax2-kx-b=0,可知,代入验证即可.4.已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为_______.答案】y2=4x【解析】设抛物线为y2=kx,与y=x联立方程组,消去y,得:x2-kx=0, x1+x2=k=2×2,故y2=4x.1.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,若点P恰为AB的中点,则|AF|+|BF|=( )A.12B.10C.6D.8 【答案】D【解析】设点A(x1,y1),B(x2,y2),则有y1+y2=2×1=2,|AF|+|BF|=(y1+3)+(y2+3)=(y1+y2)+6=8.故选D.2.已知双曲线(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为3,则p=( )A.1 C.2 D.3 【答案】C【解析】由双曲线的离心率.∴双曲线的渐近线方程为.由题意可设得p=2或-2(舍去).故选C.3.直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为( )A.48 B.56 C.64 D.72 【答案】A【解析】由题不妨设A在第一象限,联立y=x-3和y2=4x可得A(9,6),B(1,-2),而准线方程是x=-1,所以|AP|=10,|QB|=2,|PQ|=8,故S梯形APQB=(|AP|+|QB|)•|PQ|=48.4.过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,则这样的直线有条_______.注意到点(2,4)是抛物线上的点,用数形结合知满足题意的直线有两条,其一是过该点的切线;其二是过该点且与对称轴平行的直线.故填2.5.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若FQ=2,则直线l的斜率等于_______.【答案】±1【解析】设A(x1,y1),B(x2,y2),直线l的方程为y=k(x+1),联立得k2x2+(2k2-4)x+k2=0,x1+x2y1+y2=k(x1+x2)+2k=,设Q(x0,y0),则,又F(1,0),,解得k=±11.(2015福建文19)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0) ,延长AF交抛物线E于点B,求证:以点F为圆心且与直线GA相切的圆,必与直GB相切.【答案】(1)y2=4x;(2)见解析【解析】(1)由抛物线的定义得.因为|AF|=3,即,解得p=2,所以抛物线E的方程为y2=4x.(2)解法一:因为点A(2,m),在抛物线E:y2=4x上,所以,由抛物线的对称性,不妨设由,F(1,0)可得直线AF的方程为,得2x2-5x+2=0.解得x=2或,从而又G(-1,0),所以所以k GA+K GB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.解法二:设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以,由抛物线的对称性,不妨设由,F(1,0)可得直线AF的方程为,得2x2-5x+2=0.解得x=2或,从而又G(-1,0),故直线GA的方程为从而又直线GB的方程为所以点F到直线GB的距离这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.2.设不同的两点A(x1,y1),B(x2,y2)在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上的截距的取值范围.【查看答案】【答案】(1) x1+x2=0 ;(2)【解析】(1)F∈l⇔|FA|=|FB|⇔A,B两点到抛物线的准线的距离相等,∵抛物线的准线是x轴的平行线,y1≥0,y2≥0,依题意y1,y2不同时为0,∴上述条件等价于∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F.(2)设l在y轴上的截距为b,依题意得l的方程为由y=2x2,得过A,B的直线方程为∵直线AB与抛物线有两个不同交点,∴联立得32x2+8x+5-16b=0,Δ=-9+32b>0,.因此直线l在y轴上截距的取值范围是3.如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).(1)若动点M满足,求点M的轨迹C;(2)若过点B的直线l′(斜率不等于零)与(1)中的轨迹C交于不同的两点E,F(E在B,F之间),试求△OBE与△OBF面积之比的取值范围.(1) 以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆;(2)【解析】(1)由x2=4y,得∴直线l的斜率为y′|x=2=1,故直线l的方程为y=x-1,∴点A坐标为(1,0).设M(x,y),则由得整理得∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆.(2)由题意知直线l′的斜率存在且不为零,设l′的方程为y=k(x-2)(k≠0),①将①代入整理,得(2k2+1)x2-8k2•x+(8k2-2)=0,由Δ>0得设E(x1,y1),F(x2,y2),由此可得,且0<λ<1.由②知(x1-2)•(x2-2)=x1x2-2(x1+x2)+4又∵0<λ<1,∴△OBE与△OBF面积之比的取值范围是。

直线与抛物线的相交问题

直线与抛物线的相交问题

直线与抛物线的相交问题已知动点M 到定点F (1,0)的距离比M 到定直线x =-2的距离小1.(1)求点M 的轨迹C 的方程;(2)过点F 任意作互相垂直的两条直线l 1,l 2,分别交曲线C 于点A ,B 和M ,N .设线段AB ,MN 的中点分别为P ,Q ,求证:直线PQ 恒过一个定点;(3)在(2)的条件下,求△FPQ 面积的最小值.解:(1)由题意可知,动点M 到定点F (1,0)的距离等于M 到定直线x =-1的距离,根据抛物线的定义可知,点M 的轨迹C 是一条抛物线. 易知p =2,所以抛物线的方程为y 2=4x .故点M 的轨迹C 的方程为y 2=4x .(2)设A ,B 两点的坐标分别为A (x 1,y 1),B (x 2,y 2),则点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22. 由题意可设直线l 1的方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1),得k 2x 2-(2k 2+4)x +k 2=0. Δ=(2k 2+4)2-4k 4=16k 2+16>0.因为直线l 1与曲线C 交于A ,B 两点,所以x 1+x 2=2+4k 2,y 1+y 2=k (x 1+x 2-2)=4k .所以点P 的坐标为⎝ ⎛⎭⎪⎫1+2k 2,2k . 由题知,直线l 2的斜率为-1k ,同理可得点Q 的坐标为(1+2k 2,-2k ).当k ≠±1时,有1+2k 2≠1+2k 2,此时直线PQ 的斜率k PQ =2k +2k 1+2k 2-1-2k 2=k 1-k 2. 所以直线PQ 的方程为y +2k =k 1-k 2(x -1-2k 2), 整理得yk 2+(x -3)k -y =0.于是,直线PQ 恒过定点E (3,0).当k =±1时,直线PQ 的方程为x =3,也过点E (3,0). 综上所述,直线PQ 恒过定点E (3,0).(3)由(2)可得|EF |=2,所以△FPQ 的面积S =12|FE |⎝ ⎛⎭⎪⎫2|k |+2|k |=2⎝ ⎛⎭⎪⎫1|k |+|k |≥4,当且仅当k =±1时,“=”成立, 所以△FPQ 面积的最小值为4.。

直线与抛物线相交

直线与抛物线相交

当 Δ<0 且 k≠0,即 k>12时,方程(*)没有实数解,从而 直线 l 与抛物线没有公共点.
综上可得:当 k=0 或 k=12时,直线 l 与抛物线只有一个 公共点;当 k<12且 k≠0 时,直线 l 与抛物线有两个公共点;当 k>12时,直线 l 与抛物线没有公共点.
[一点通] 设直线l:y=kx+m,抛物线:y2= 2px(p>0),将直线方程与抛物线方程联立整理成关于x的方 程:ax2+bx+c=0.
3.直线y=kx-2交抛物线y2=8x于A,B两点,若AB中点
的横坐标为2, 则k=
()
A.2或-1
B.-1
C.2
D.3
解析:由yy=2=k8xx-,2, 得k2x2-(4k+8)x+4=0.
由Δ=(4k+8)2-16k2>0,得k>-1.
设A(x1,y1),B(x2,y2),
则x1+x2=4kk+2 8=4,
B.[-2,2]
C.[-1,1]
D.[-4,4]
解析:设直线方程为 y=k(x+2),与抛物线方程联立,得
y2=8x, y=kx+2,
消去 x 得到关于 y 的方程 ky2-8y+16k=0.
当 k=0 时,上述方程有解,所以直线与抛物线有公共点;
当 k≠0 时,应有 Δ≥0,即 64-64k2≥0,解得-1≤k≤1 且 k≠0.
4 3
.两直线间的距离
为15|-8-(-43)|=43.
法二:设抛物线y=-x2上一点为(m,-m2), 该点到直线4x+3y-8=0的距离为15|4m-3m2-8|=35|(m-23)2+290|. 当m=23时,取得最小值43.
答案:A

直线与抛物线的位置关系

直线与抛物线的位置关系
,
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少

高中数学同步学案 直线与抛物线的位置关系

高中数学同步学案 直线与抛物线的位置关系

第二课时 直线与抛物线的位置关系[读教材·填要点]直线与抛物线的位置关系设直线l :y =kx +m,抛物线:y 2=2px(p >0),将直线方程与抛物线方程联立整理成关于x 的方程:ax 2+bx +c =0,(1)若a≠0,当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个交点; 当Δ<0时,直线与抛物线相离,无公共点.(2)若a =0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.[小问题·大思维]若直线与抛物线有且只有一个公共点,则直线与抛物线有什么样的位置关系?提示:直线与抛物线相切时,只有一个公共点,反过来,当只有一个公共点时,直线与抛物线相切或直线平行于抛物线的对称轴或与对称轴重合.直线与抛物线的位置关系若直线l :y =(a +1)x -1与曲线C :y 2=ax 恰好有一个公共点,试求实数a 的取值集合.[自主解答] 因为直线l 与曲线C 恰好有一个公共点,所以方程组⎩⎪⎨⎪⎧y =a +1x -1,y 2=ax有唯一一组实数解.消去y,得[(a +1)x -1]2=ax, 整理得(a +1)2x 2-(3a +2)x +1=0.①(1)当a +1=0,即a =-1时,方程①是关于x 的一元一次方程,解得x =-1,这时,原方程组有唯一解⎩⎪⎨⎪⎧x =-1,y =-1.(2)当a +1≠0,即a≠-1时,方程①是关于x 的一元二次方程.令Δ=(3a +2)2-4(a +1)2=a(5a +4)=0, 解得a =0或a =-45.当a =0时,原方程组有唯一解⎩⎪⎨⎪⎧x =1,y =0,当a =-45时,原方程组有唯一解⎩⎪⎨⎪⎧x =-5.y =-2.综上,实数a 的取值集合是⎩⎨⎧⎭⎬⎫-1,-45,0.若将“曲线C :y 2=ax 恰有一个公共点”改为“抛物线C :y 2=ax(a≠0)相交”,如何求解?解:列方程组⎩⎪⎨⎪⎧y =a +1x -1,y 2=ax a≠0,消去x 并化简,得(a +1)y 2-ay -a =0.(*)①当a +1=0即a =-1时:方程(*)化为y +1=0, ∴y =-1.∴方程组的解为⎩⎪⎨⎪⎧x =-1,y =-1,故直线与抛物线相交.②当a +1≠0即a≠-1时, 由Δ=(-a)2+4a(a +1)≥0,得 5a 2+4a≥0,结合a≠0, 解得a≤-45或a>0.综上所述,实数a 的取值范围是⎝⎛⎦⎥⎤-∞,-45∪(0,+∞).直线与抛物线的位置关系有三种,即相交、相切、相离,这三种位置关系可通过代数法借助判别式判断.当直线与抛物线的对称轴平行或重合时直线与抛物线也是相交,此时只有一个交点.1.如图,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A. (1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.解:(1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y 得x 2-4x -4b =0,(*)因为直线l 与抛物线C 相切, 所以Δ=(-4)2-4×(-4b)=0. 解得b =-1.(2)由(1)可知b =-1,故方程(*)为x 2-4x +4=0. 解得x =2,代入x 2=4y,得y =1, 故点A(2,1).因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 就等于圆心A 到抛物线的准线y =-1的距离. 即r =|1-(-1)|=2.所以圆A 的方程为(x -2)2+(y -1)2=4.弦长、中点弦问题已知顶点在原点,焦点在y 轴上的抛物线被直线x -2y -1=0截得的弦长为15,求此抛物线方程.[自主解答] 设抛物线方程为:x 2=ay(a≠0),由方程组⎩⎪⎨⎪⎧x 2=ay ,x -2y -1=0.消去y 得:2x 2-ax +a =0, ∵直线与抛物线有两个交点,∴Δ=(-a)2-4×2×a>0,即a <0或a >8. 设两交点坐标为A(x 1,y 1),B(x 2,y 2),则 x 1+x 2=a 2,x 1x 2=a 2,y 1-y 2=12(x 1-x 2),弦长为|AB|=x 1-x 22+y 1-y 22=54x 1-x 22=54[x 1+x 22-4x 1x 2]=145a 2-8a .∵|AB|=15,∴145a 2-8a =15,即a 2-8a -48=0,解得a =-4或a =12, ∴所求抛物线方程为:x 2=-4y 或x 2=12y.(1)研究直线与抛物线的弦长问题,通常不求弦的端点坐标,而是直接利用弦长公式|AB|=1+k 2|x 1-x 2|,另外要注意斜率不存在的情况,当弦过焦点时可利用焦点弦公式求解.(2)在直线与抛物线的问题中经常遇到中点弦的问题,处理的基本方法是点差法或利用根与系数的关系求出中点弦所在直线的斜率.2.过点Q(4,1)作抛物线y 2=8x 的弦AB,若弦恰被Q 平分,求AB 所在直线方程. 解:设以Q 为中点的弦AB 端点坐标为A(x 1,y 1),B(x 2,y 2),则有⎩⎪⎨⎪⎧y 21=8x 1, ①y 22=8x 2, ②x 1+x 2=8, ③y 1+y 2=2, ④k =y 1-y 2x 1-x 2,⑤ ①-②得(y 1+y 2)(y 1-y 2)=8(x 1-x 2). 将④代入,得y 1-y 2=4(x 1-x 2),4=y 1-y 2x 1-x 2.∴k =4.经验证,此时直线与抛物线相交.∴所求弦AB 所在直线方程为y -1=4(x -4), 即4x -y -15=0.抛物线中的定点、定值问题A,B 是抛物线y 2=2px(p>0)上的两点,并满足OA ⊥OB,求证:(1)A,B 两点的横坐标之积、纵坐标之积,分别都是一个定值; (2)直线AB 经过一个定点.[自主解答] (1)因为AB 斜率不为0,设直线AB 方程为my =x +b,由⎩⎪⎨⎪⎧my =x +b ,y 2=2px ,消去x,得y 2-2pmy +2pb =0.由Δ=(-2pm)2-8pb>0,又∵y 1+y 2=2pm,y 1y 2=2pb,OA ⊥OB, ∴x 1·x 2+y 1·y 2=0.∴y 21·y 224p2+y 1·y 2=0.∴b 2+2pb =0.∴b +2p =0.∴b =-2p. ∴y 1y 2=-4p 2,x 1·x 2=b 2=4p 2.所以A,B 两点的横坐标之积、纵坐标之积,分别是4p 2和-4p 2;(2)直线AB 的方程为my =x -2p, 所以AB 过定点(2p,0).直线与抛物线相交问题中有很多的定值问题,如果该定值是个待求的未知量,则可以利用特殊位置(如斜率不存在、斜率等于0等)找出该定值,然后证明该定值即为所求.3.过抛物线y 2=2px(p>0)的焦点F 作直线l 交抛物线于A,B,求证:y A ·y B =-p 2. 证明:①斜率不存在时y 1=p,y 2=-p, ∴y 1y 2=-p 2.②斜率存在时,⎩⎪⎨⎪⎧y =k ⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去x 得,y =k·y 22p -kp2,∴y 1·y 2=-kp 2k 2p =-p 2.解题高手 多解题 条条大路通罗马,换一个思路试一试抛物线y 2=x 上,存在P,Q 两点,并且P,Q 关于直线y -1=k(x -1)对称,求k 的取值范围. [解] 法一:设P(x 1,y 1),Q(x 2,y 2),∴⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2⇒(y 1-y 2)(y 1+y 2)=x 1-x 2.又∵⎩⎪⎨⎪⎧y 1-y 2=-1k x 1-x 2,y 1+y 22-1=k ⎝ ⎛⎭⎪⎫x 1+x 22-1,∴y 1+y 2=-k.∴-k 2-1=k ⎝ ⎛⎭⎪⎫y 21+y 222-1=k 2[(y 1+y 2)2-2y 1y 2-2]. ∴-k -2=k[k 2-2y 1(-k -y 1)-2]. ∴2ky 21+2k 2y 1+k 3-k +2=0. ∴Δ=4k 4-8k(k 3-k +2)>0. ∴k(-k 3+2k -4)>0. ∴k(k 3-2k +4)<0. ∴k(k +2)(k 2-2k +2)<0. ∴k ∈(-2,0).法二:设P(x 1,y 1),Q(x 2,y 2),且PQ 的中点M(x 0,y 0), 由题意可知直线y -1=k(x -1)的斜率存在,且k≠0. 不妨设直线PQ 的方程为x +ky +m =0,由⎩⎪⎨⎪⎧x +ky +m =0,y 2=x ,得y 2+ky +m =0. ∴y 1+y 2=-k. 即y 0=-k 2,x 0=12-1k.又∵中点M(x 0,y 0)在抛物线的内部, ∴y 20<x 0,∴k 3-2k +4k<0,即k +2k 2-2k +2k<0,∴k ∈(-2,0).1.若直线y =2x +p 2与抛物线x 2=2py(p>0)相交于A,B 两点,则|AB|等于( )A .5pB .10pC .11pD .12p解析:将直线方程代入抛物线方程, 可得x 2-4px -p 2=0.设A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=4p,∴y 1+y 2=9p. ∵直线过抛物线的焦点,∴|AB|=y 1+y 2+p =10p. 答案:B2.过点(1,0)作斜率为-2的直线,与抛物线y 2=8x 交于A,B 两点,则弦AB 的长为( ) A .213 B .215 C .217D .219解析:不妨设A,B 两点坐标分别为(x 1,y 1),(x 2,y 2), 由直线AB 斜率为-2,且过点(1,0)得直线AB 方程为y =-2(x -1), 代入抛物线方程y 2=8x 得4(x -1)2=8x, 整理得x 2-4x +1=0, ∴x 1+x 2=4,x 1x 2=1, ∴|AB|=1+k2|x 1-x 2|=5[x 1+x 22-4x 1x 2]=215.答案:B3.过点(0,1)作直线,使它与抛物线y 2=2x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:斜率不存在时,直线x =0符合题意,斜率存在时,由⎩⎪⎨⎪⎧y =kx +1,y 2=2x ,得k 2x 2+(2k -2)x +1=0, k =0时,符合题意, k≠0时,由Δ=0得k =12.答案:C4.已知△OAB 为等腰直角三角形,其中|OA|=|OB|,若A,B 两点在抛物线y =14x 2上,则△OAB 的周长是________.解析:设A(x 1,y 1),B(x 2,y 2),x 2<0<x 1,由|OA|=|OB|及抛物线的对称性知AB ⊥y 轴,y 1=x 1,又y 1=14x 21,所以x 1=y 1=4,故|OA|=|OB|=42,|AB|=8,△OAB 的周长为8+8 2.答案:8+8 25.已知抛物线y 2=2px(p >0),过其焦点且斜率为1的直线交抛物线于A,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________.解析:抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p 2,将其代入得:y 2=2px =2p ⎝ ⎛⎭⎪⎫y +p 2=2py +p 2,所以y 2-2py -p 2=0,所以y 1+y 22=p =2,所以抛物线的方程为y 2=4x,准线方程为x =-1.答案:x =-16.直线y =kx -2交抛物线y 2=8x 于A,B 两点,若线段AB 中点的横坐标等于2,求弦AB 的长. 解:将y =kx -2代入y 2=8x 中变形整理得: k 2x 2-(4k +8)x +4=0,由⎩⎪⎨⎪⎧k≠0,4k +82-16k 2>0⇒k>-1且k≠0,设A(x 1,y 1),B(x 2,y 2), 由题意得:x 1+x 2=4k +8k 2=4⇒k 2=k +2⇒k 2-k -2=0.解得k =2或k =-1(舍去). 由弦长公式得: |AB|=1+k 2·64k +64k2=5×1924=215.一、选择题1.过抛物线y 2=2px(p >0)的焦点作一条直线交抛物线于A(x 1,y 1),B(x 2,y 2)两点,则y 1y 2x 1x 2的值为( )A .4B .-4C .p 2D .-p 2解析:取特殊位置,当AB ⊥x 轴时,A ⎝ ⎛⎭⎪⎫p 2,p ,B ⎝ ⎛⎭⎪⎫p 2,-p . ∴y 1y 2x 1x 2=-4. 答案:B2.设抛物线y 2=8x 的准线与x 轴交于点Q,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:准线x =-2,Q(-2,0),设l :y =k(x +2),由⎩⎪⎨⎪⎧y =k x +2,y 2=8x ,得k 2x 2+4(k 2-2)x +4k 2=0.当k =0时,x =0,即交点为(0,0), 当k≠0时,Δ≥0,-1≤k<0或0<k≤1. 综上,k 的取值范围是[-1,1]. 答案:C3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左顶点与抛物线y 2=2px(p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .2 3B .2 5C .4 3D .4 5解析:由⎩⎪⎨⎪⎧ y =b ax ,x =-p2,解得⎩⎪⎨⎪⎧y =-bp 2a ,x =-p2.由题得知⎩⎪⎨⎪⎧-bp2a=-1,-p2=-2,解得⎩⎪⎨⎪⎧b a =12,p =4.又知p 2+a =4,故a =2,b =1,c =a 2+b 2=5,∴焦距2c =2 5. 答案:B4.设定点M ⎝⎛⎭⎪⎫3,103与抛物线y 2=2x 上的点P 的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点的坐标为( )A .(0,0)B .(1,2)C .(2,2)D.⎝ ⎛⎭⎪⎫18,-12解析:连接PF,则d 1+d 2=|PM|+|PF|≥|MF|,知d 1+d 2的最小值为|MF|,当且仅当M,P,F 三点共线时,等号成立,而直线MF 的方程为y =43⎝⎛⎭⎪⎫x -12,与y 2=2x 联立可得x =2,y =2.答案:C 二、填空题5.已知抛物线y 2=4x,过点P(4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 21+y 22的最小值是________.解析:显然x 1>0,x 2>0.又y 21=4x 1,y 22=4x 2,所以y 21+y 22=4(x 1+x 2)≥8x 1x 2,当且仅当x 1=x 2=4时取等号,所以y 21+y 21的最小值为32.答案:326.过抛物线y 2=2px(p>0)的焦点F 作斜率为45°的直线交抛物线于A,B 两点,若线段AB 的长为8,则p =________.解析:设A(x 1,y 1),B(x 2,y 2),由条件可知直线AB 的方程为y =x -p 2,由⎩⎪⎨⎪⎧y =x -p 2,y 2=2px ,得x 2-px +p24=2px.即x 2-3px +p24=0,又|AB|=8,即⎝ ⎛⎭⎪⎫x 1+p 2+⎝ ⎛⎭⎪⎫x 2+p 2=8. ∴x 1+x 2=8-p. 即3p =8-p,∴p =2. 答案:27.直线y =x -3与抛物线y 2=4x 交于A,B 两点,过A,B 两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB 的面积为________.解析:由⎩⎪⎨⎪⎧y 2=4x ,y =x -3消去y 得x 2-10x +9=0,得x =1或9,即⎩⎪⎨⎪⎧x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6.所以|AP|=10,|BQ|=2或|BQ|=10,|AP|=2,所以|PQ|=8,所以梯形APQB 的面积S =10+22×8=48.答案:488.已知以F 为焦点的抛物线y 2=4x 上的两点A,B 满足AF ―→=3FB ―→,则弦AB 的中点到准线的距离为________.解析:依题意,设直线AB 的方程是x =my +1,A(x 1,y 1),B(x 2,y 2),则由⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消去x 得y 2=4(my +1),即y 2-4my -4=0,所以y 1+y 2=4m,y 1y 2=- 4. 又AF ―→=3FB ―→,AF ―→=(1-x 1,-y 1),FB ―→=(x 2-1,y 2),于是有-y 1=3y 2,y 22=43, (y 1+y 2)2=4y 22=163, 弦AB 的中点到准线的距离为x 1+x 22+1=y 21+y 228+1 =y 1+y 22-2y 1y 28+1=163+88+1=83. 答案:83三、解答题9.已知抛物线y 2=-x 与直线l :y =k(x +1)相交于A,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.解:(1)证明:易知k≠0,联立⎩⎪⎨⎪⎧ y 2=-x ,y =k x +1,消去x,得ky 2+y -k =0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=-1k,y 1·y 2=-1. 因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1,所以x 1x 2+y 1y 2=0,即OA ―→·OB ―→=0,所以OA ⊥OB.(2)设直线l 与x 轴的交点为N,则N 的坐标为(-1,0),所以S △AOB =12|ON|·|y 1-y 2| =12×|ON|×y 1+y 22-4y 1·y 2 =12×1× 1k2+4=10,解得k 2=136,所以k =±16. 10.如图,过抛物线y 2=x 上一点A(4,2)作倾斜角互补的两条直线AB,AC 交抛物线于B,C 两点,求证:直线BC 的斜率是定值.证明:设AB 的斜率为k,则AC 的斜率为-k.故直线AB 的方程是y -2=k(x -4),与y 2=x 联立得,y -2=k(y 2-4),即ky 2-y -4k +2=0.∵y =2是此方程的一解,∴2y B =-4k +2k ,y B =1-2k k, x B =y 2B =1-4k +4k 2k 2. ∴B ⎝ ⎛⎭⎪⎫1-4k+4k 2k 2,1-2k k . ∵k AC =-k,以-k 代替k 代入B 点坐标得点C 的坐标为⎝⎛⎭⎪⎫1+4k+4k 2k 2,1+2k -k , ∴k BC =-1+2k k -1-2k k 1+4k +4k 2k 2-1-4k +4k 2k 2=-14为定值.。

直线与抛物线

直线与抛物线
所以直线过定点(2p,0).
O
C(2p,0)
B
x
l
高考链接:过定点Q(2p,0)的直线与y2 = 2px(p>0)交于相异两 点A、B,以线段AB为直径作圆H(H为圆心),试证明抛物线顶点 在圆H上。
练习:
1、已知抛物线的顶点在原点,对称轴为x轴,焦点在 16 直线3x-4y-12=0上,那么抛物线通径是 .
y k x1 联立 2 y 4x
k
消去 x 得 ky 2 4 y 4 0
例 2.已知正方形 ABCD 的一边 CD 在直线 y x 4 上, B 在抛物线 y 2 x 上,求正方形的边长. 顶点 A 、
解:设 AB 的方程为 y=x+b, y xb 由 2 消去 x 得 y2-y+b=0, y x
得到一元一次方程
直线与抛物线的 对称轴平行(重合)
得到一元二次方程 计算判别式 >0 =0 <0
相交(一个交点)
相交
相切
相离
三、判断直线与抛物线位置关系的操作程序(二) 判断直线是否与抛物线的对称轴平行 平行 不平行 计算判别式 直线与抛物线 相交(一个交点)
>0
相交
=0
相切
<0
相离
例1 已知抛 物线的方程为 y 2 4 x , 直线 l 过 定 点 P (2,1) , 斜率为 k , k 为何值时 ,直线 l 与抛物 线 y 2 4 x : ⑴只有一个公共点;⑵有两个公共点; ⑶没有公共点?
O
A
C(2p,0) B
x
y
2
L:x=2p
=2px(p>0) 交于 A 、 B
y
A

高二数学直线与抛物线

高二数学直线与抛物线

·
L
则由
y=-4/3 x+b
y2=64x
消x化简得 y2+48y-48b=0
△=482-4×(-48b)=0
∴b=-12 ∴切线方程为:y=-4/3 x-12 解方程组 y=-4/3 x-12 y2=64x 得 x=9 y=-24
∴切点为P(9,-24)
切点P到L的距离d=
| 4 9 3 ( 24) 46 | 4 2 32
得到一元二次方程
计算判别式
直线与抛物 线相交(一 个交点)
>0 相交
=0 相切
<0 相离
三、判断位置关系方法总结(方法二) 判断直线是否与抛物线的对称轴平行 平行 不平行 计算判别式 直线与抛物 线相交(一个 交点)
>0 相交 =0 相切 <0 相离
四、直线与圆锥曲线位 置关系判断方法的回顾
直线与圆 把直线方程代入圆的方程 得到一元 计 算
斯就是遥远的北方的一个国家。他在那里执行任务,但是因为你家祖先在那里不适应气候,很快就病倒了。病了还不算可怜,可怜的是他 因为只懂我们现在说的中原话,不会讲也听不懂那边的俄语,就没有办法和当地人进行交流,也没有办法买药治病。于是病就一直没有好 转。傅元甲老前辈也不能一直因为生病而不去完成任务,于是他就带病继续奔波。”说了这么一大段,先喝一口茶水。边喝边瞅了一下那 两妞,发现她们已经开始根据我的牛皮在自己脑中飞速的想象着情节发展,那傻傻的听书人的表情真逗。“咳咳,我继续说。傅老前辈一 路向北的走着,在一间名叫九龙冰室的客栈停了下了,因为他实在太累了,而且还带病在身,即使再能打也只是空有一身武术。他刚走进 客栈,就遇到了有几个本地人在闹事,客栈老板是个女子,名字好像叫伊莎贝拉。当时店里的小二都被闹事的人打伤了,他们还打算欺负 客栈的女主子。傅老前辈当然抱打不平,上前去教训了那些闹事的人渣!”我越讲越激动,连忙又喝了几口水。“闹事的人也不是无名小 辈,他们也有相当的功夫,傅老前辈虽然身怀中原绝世武术,但是面对俄罗斯的奇特功夫,再加上他有恙在身,勉强只能招架着。这时候, 门外突然杀进来一男子,三下五除二就把贼人给打倒了。但是由于傅老前辈带病出战,动了真气,加之被贼人武功所伤,也最后支撑不住 倒了下去。”缓一会儿吧,说的好累。“然后呢?然后呢?”大和小琴迫不及待地向我问来。“然后啊,就是”没等我继续接着吹牛皮吹 下去,门外突然闯进一个人来。我乍眼一看,居然是翠大娘。翠大娘来得匆匆,也不看我在那里坐着喝茶,就往大那走去,关心地问道, “您没事吧?刚听到您大声叫唤,是怎么了吗?”什么?!刚听到?我讲书都讲了一大段了,你这才来,还装着时事发之后第一时间冲过 来的?你也太会演戏了吧,翠大娘!我心中有无限的鄙视了这个丫环主管。大貌似听我讲故事听得很来趣,一时被翠大娘打断了,明显有 点不高兴。但是翠大娘毕竟是自己的长辈,也不好不回她。“翠大娘,让你担心了。我只是不小心磕了一下,现在已经好了。”咦!想不 到大帮我瞒着事情的真相,看来大已经在偏袒我了。可能是想把故事给听完吧。听完大的说词之后,翠大娘把目光投向我这,蓦地发现我 坐着并且在悠闲地喝着茶,顿时气不打一处来,对我吼道,“是谁叫你坐下来的?谁叫你用这里的杯子喝茶的?”我一听,知道出事了, 连忙站起来,弓着身子退到门角处等着被骂。翠大娘刚想破口大骂,谁知道外头传来呼唤声,翠大娘应了一声之后,回头对我说,“把你 留在这里肯定会跟我们添麻烦,你跟我出来。”说罢,转身就走出去了。我也伸了伸身子,准备跟着

直线和抛物线的位置关系

直线和抛物线的位置关系

(2)M过(p,0) (3)M过(2p,0)
x1x2=p2;y1y2=-2p2. x1x2=4p2;y1y2=-4p2.
OA OB
(4)M过(3p,0)
x1x2=9p2;y1y2=-6p2.
(5)M过。。。。。。。
y
A
M
x
B
y2=2px
l
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
得到一元一次方程
直线与抛物线的 对称轴平行或重合
相交(一个交点)
得到一元二次方程 计算判别式
>0 =0 <0 相交 相切 相离
例1 求过定点P(0,1)且与抛物线 y2 2x
只有一个公共点的直线的方程.
{ { 解:
(1)若直线斜率不存在,则过点P的直线方程是
x0
x 0
xy=0.
由 y2 2x 得 y0
OF
x
B` B
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
(5)以AB为直径的圆与准线相切.
证明:如图,
y
M M1
A A1
B B1 2
AF BF 2
AB 2
l A1
A
故以AB为直径的圆与准线相切.
F
O
M1
M
X
B1
B
过抛物线y2=2px(p>0)的焦点的一条直线和抛物线相交,两 交点为A(x1,y1)、B(x2,y2),则
yc
-
py1 2x1
-
py1 2 y12
p2 y1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档