高中数学专题_抛物线
高中数学必修五抛物线的定义知识点

高中数学必修五抛物线的定义知识点
高中数学抛物线的定义知识点(一)
抛物线方程
1设,抛物线的标准方程、类型及其几何性质:
图形
焦点
准线
范围
对称轴轴轴
顶点(0,0)
离心率
焦点
注:①顶点
.
②则焦点半径
;则焦点半径为
.
③通径为2p,这是过焦点的所有弦中最短的.
④(或)的参数方程为
(或
)(为参数).
高中数学抛物线的定义知识点(二)
抛物线的性质(见下表):
抛物线的焦点弦的性质:
关于抛物线的几个重要结论:
(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是
抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点
的两条切线交于点M(x0,y0),则
(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,又若切线PA⊥PB,则AB必过抛物线焦点F.。
高中数学《抛物线》典型例题12例(含标准答案)

《抛物线》典型例题12例典型例题一例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程.(2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程.解:(1)2=p Θ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x ay 12=,a p 12=∴①当0>a 时,ap 412=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41-=. ②当0<a 时,a p 412-=,抛物线开口向左, ∴焦点坐标是)0,41(a ,准线方程是:ax 41-=. 综合上述,当0≠a 时,抛物线2ay x =的焦点坐标为)0,41(a,准线方程是:ax 41-=. 典型例题二例2 若直线2-=kx y 与抛物线x y 82=交于A 、B 两点,且AB 中点的横坐标为2,求此直线方程.分析:由直线与抛物线相交利用韦达定理列出k 的方程求解.另由于已知与直线斜率及弦中点坐标有关,故也可利用“作差法”求k .解法一:设),(11y x A 、),(22y x B ,则由:⎩⎨⎧=-=x y kx y 822可得:04)84(22=++-x k x k .∵直线与抛物线相交,0≠∴k 且0>∆,则1->k . ∵AB 中点横坐标为:2842221=+=+∴k k x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y .解法二:设),(11y x A 、),(22y x B ,则有22212188x y x y ==.两式作差解:)(8))((212121x x y y y y -=+-,即2121218y y x x y y +=--. 421=+x x Θ444)(22212121-=-+=-+-=+∴k x x k kx kx y y ,448-=∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y .典型例题三例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12MM AB =,则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作l MM ⊥1于1M ,则由抛物线的定义可知:BF BB AF AA ==11, 在直角梯形A A BB 11中:AB BF AF BB AA MM 21)(21)(21111=+=+=AB MM 211=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交.典型例题四例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面积为9时,求P 点坐标.分析:(1)题可利用弦长公式求k ,(2)题可利用面积求高,再用点到直线距离求P 点坐标.解:(1)由⎩⎨⎧+==kx y x y 242得:0)44(422=+-+k x k x设直线与抛物线交于),(11y x A 与),(22y x B 两点.则有:4,122121k x x k x x =⋅-=+[][])21(5)1(54)(5))(21(22212212212k k k x x x x x x AB -=--=-+=-+=∴53)21(5,53=-∴=∴k AB ,即4-=k (2)9=∆S Θ,底边长为53,∴三角形高5565392=⨯=h ∵点P 在x 轴上,∴设P 点坐标是)0,(0x 则点P 到直线42-=x y 的距离就等于h ,即55612402220=+--x 10-=∴x 或50=x ,即所求P 点坐标是(-1,0)或(5,0).典型例题五例5 已知定直线l 及定点A (A 不在l 上),n 为过A 且垂直于l 的直线,设N 为l 上任一点,AN 的垂直平分线交n 于B ,点B 关于AN 的对称点为P ,求证P 的轨迹为抛物线.分析:要证P 的轨迹为抛物线,有两个途径,一个证明P 点的轨迹符合抛物线的定义,二是证明P 的轨迹方程为抛物线的方程,可先用第一种方法,由A 为定点,l 为定直线,为我们提供了利用定义的信息,若能证明PN PA =且l PN ⊥即可.证明:如图所示,连结P A 、PN 、NB .由已知条件可知:PB 垂直平分NA ,且B 关于AN 的对称点为P . ∴AN 也垂直平分PB .则四边形P ABN 为菱形.即有PN PA =...l PN l AB ⊥∴⊥Θ则P 点符合抛物线上点的条件:到定点A 的距离与到定直线的距离相等,所以P 点的轨迹为抛物线.典型例题六例6 若线段21P P 为抛物线)0(2:2>=p px y C 的一条焦点弦,F 为C 的焦点,求证:p F P FP 21121=+. 分析:此题证的是距离问题,如果把它们用两点间的距离表示出来,其计算量是很大的.我们可以用抛物线的定义,巧妙运用韦达定理,也可以用抛物线的定义与平面几何知识,把结论证明出来.证法一:)0,2(pF Θ,若过F 的直线即线段21P P 所在直线斜率不存在时, 则有p F P F P ==21,p p p F P FP 2111121=+=+∴. 若线段21P P 所在直线斜率存在时,设为k ,则此直线为:)0)(2(≠-=k px k y ,且设),(),,(222111y x P y x P .由⎪⎪⎩⎪⎪⎨⎧-=-=)2()2(p x k y px k y 得:04)2(22222=++-p k x k p x k2221)2(k k p x x +=+∴ ①4221p x x =⋅ ②根据抛物线定义有:p x x P P px F P p x F P ++=∴+=+=21211211,2,2 则F P F P F P F P F P F P 21212111⋅+=+4)(2)2)(2(22121212121p x x p x x p x x p x p x p x x +++++=++++= 请将①②代入并化简得:p F P FP 21121=+ 证法二:如图所示,设1P 、2P 、F 点在C 的准线l 上的射影分别是'1P 、'2P 、F ',且不妨设1122P P m n P P '=<=',又设2P 点在F F '、11P P'上的射影分别是A 、B 点,由抛物线定义知,p F F m F P n F P ='==,,12 又AF P 2∆∽12BP P ∆,1221P P F P BP AF =∴即nm nn m n p +=-- pn m mnn m p 2112)(=+∴=+∴ 故原命题成立.典型例题七例7 设抛物线方程为)0(22>=p px y ,过焦点F 的弦AB 的倾斜角为α,求证:焦点弦长为α2sin 2pAB =. 分析:此题做法跟上题类似,也可采用韦达定理与抛物线定义解决问题.证法一:抛物线)0(22>=p px y 的焦点为)0,2(p,过焦点的弦AB 所在的直线方程为:)2(tan px y -=α由方程组⎪⎩⎪⎨⎧=-=px y p x y 2)2(tan 2α消去y 得:0tan )(tan 4tan 422222=+-αααp p x设),(),,(2211y x B y x A ,则⎪⎪⎩⎪⎪⎨⎧=⋅+=+=+4)cot 21(tan )2(tan 22122221p x x p p x x ααα 又)(tan 2121x x y y -=α[]ααααααααα242222222222122122212sin 2sin 14)cot 1(cot 4sec 44)cot 1()tan 1(4)()tan 1())(tan 1(pp p p p x x x x x x AB =⋅=+⋅=⎥⎦⎤⎢⎣⎡⋅-++=-++=-+=∴即α2sin 2pAB =证法二:如图所示,分别作1AA 、1BB 垂直于准线l .由抛物线定义有:ααcos cos 11⋅-==+⋅==BF p BB BF p AF AA AF于是可得出:αcos 1-=p AF αcos 1+=pBFαααα22sin 2cos 12cos 1cos 1p pp p BFAF AB =-=++-=+=∴ 故原命题成立.典型例题八例8 已知圆锥曲线C 经过定点)32,3(P ,它的一个焦点为F (1,0),对应于该焦点的准线为1-=x ,过焦点F 任意作曲线C 的弦AB ,若弦AB 的长度不超过8,且直线AB 与椭圆22322=+y x 相交于不同的两点,求 (1)AB 的倾斜角θ的取值范围.(2)设直线AB 与椭圆相交于C 、D 两点,求CD 中点M 的轨迹方程. 分析:由已知条件可确定出圆锥曲线C 为抛物线,AB 为抛物线的焦点弦,设其斜率为k ,弦AB 与椭圆相交于不同的两点,可求出k 的取值范围,从而可得θ的取值范围,求CD 中点M 的轨迹方程时,可设出M 的坐标,利用韦达定理化简即可.解:(1)由已知得4=PF .故P 到1-=x 的距离4=d ,从而d PF = ∴曲线C 是抛物线,其方程为x y 42=.设直线AB 的斜率为k ,若k 不存在,则直线AB 与22322=+y x 无交点. ∴k 存在.设AB 的方程为)1(-=x k y由⎩⎨⎧-==)1(42x k y x y 可得:0442=--k y ky设A 、B 坐标分别为),(11y x 、),(22y x ,则:442121-=⋅=+y y ky y222122122212)1(44)(1))(11(k k y y y y k k y y k AB +=-++=-+=∴∵弦AB 的长度不超过8,8)1(422≤+∴kk 即12≥k 由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k ∵AB 与椭圆相交于不同的两点,32<∴k 由12≥k 和32<k 可得:31<≤k 或13-≤<-k 故3tan 1≤≤θ或1tan 3-<<-θ 又πθ<≤0,∴所求θ的取值范围是:34πθπ<≤或4332πθπ≤< (2)设CD 中点),(y x M 、),(33y x C 、),(44y x D由⎩⎨⎧=+-=223)1(22y x x k y 得:0)1(24)32(2222=-+-+k x k x k 9325313231322232)1(2,324222224322132243<+≤∴<≤+-=∴+=+=+-=⋅+=+∴k k k x k k x x x k k x x k k x x ΘΘ则323211522<+-≤k 即3252<≤x .3)1(2)1(23221222222+-⋅-⋅=+=∴-=x y x y k k x x y k Θ 化简得:032322=-+x y x∴所求轨迹方程为:)3252(032322<≤=-+x x y x典型例题九例9 定长为3的线段AB 的端点A 、B 在抛物线x y =2上移动,求AB 的中点到y 轴的距离的最小值,并求出此时AB 中点的坐标.分析:线段AB 中点到y 轴距离的最小值,就是其横坐标的最小值.这是中点坐标问题,因此只要研究A 、B 两点的横坐标之和取什么最小值即可.解:如图,设F 是x y =2的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,又M 到准线的垂线为MN ,C 、D 和N 是垂足,则2321)(21)(21=≥+=+=AB BF AF BD AC MN .设M 点的横坐标为x ,纵坐标为y ,41+=x MN ,则454123=-≥x .等式成立的条件是AB 过点F . 当45=x 时,41221-=-=P y y ,故 22122)(212221221=-=++=+x y y y y y y ,221±=+y y ,22±=y . 所以)22,45(±M ,此时M 到y 轴的距离的最小值为45. 说明:本题从分析图形性质出发,把三角形的性质应用到解析几何中,解法较简.典型例题十例10 过抛物线px y 2=的焦点F 作倾斜角为θ的直线,交抛物线于A 、B 两点,求AB 的最小值. 分析:本题可分2πθ=和2πθ≠两种情况讨论.当2πθ≠时,先写出AB 的表达式,再求范围. 解:(1)若2πθ=,此时p AB 2=.(2)若2πθ≠,因有两交点,所以0≠θ.)2(tan p x y AB -=θ:,即2tan py x +=θ.代入抛物线方程,有0tan 222=--p y py θ. 故θθ22222212csc 44tan 4)(p p p y y =+=-, θθθ2222212212tan csc 4tan )()(p y y x x =-=-. 故θθθ422222csc 4)tan 11(csc 4p p AB =+=. 所以p p AB 2sin 22>=θ.因2πθ≠,所以这里不能取“=”.综合(1)(2),当2πθ=时,p AB 2=最小值.说明:(1)此题须对θ分2πθ=和2πθ≠两种情况进行讨论;(2)从解题过程可知,抛物线点弦长公式为θ2sin 2pl =;(3)当2πθ=时,AB 叫做抛物线的通径.通径是最短的焦点弦.典型例题十一例11 过抛物线px y 22=)0(>p 的焦点F 作弦AB ,l 为准线,过A 、B 作l 的垂线,垂足分别为'A 、'B ,则①''FB A ∠为( ),②B AF '∠为( ).A .大于等于︒90B .小于等于︒90C .等于︒90D 不确定分析:本题考查抛物线的定义、直线与圆的位置关系等方面的知识,关键是求角的大小以及判定直线与圆是否相切.解:①点A 在抛物线上,由抛物线定义,则21'∠=∠⇒=AF AA ,又x AA //'轴31∠=∠⇒.∴32∠=∠,同理64∠=∠,而︒=∠+∠+∠+∠1804632,∴︒=∠+∠9063,∴︒=∠90''FB A .选C .②过AB 中点M 作l MM ⊥',垂中为'M , 则AB BF AF BB AA MM 21)(21)(21'''=+=+=.∴以AB 为直径的圆与直线l 相切,切点为'M .又'F 在圆的外部,∴︒<∠90'B AF .特别地,当x AB ⊥轴时,'M 与'F 重合,︒=∠90'B AF .即︒≤∠90'B AF ,选B .典型例题十二例12 已知点)2,3(M ,F 为抛物线x y 22=的焦点,点P 在该抛物线上移动,当PF PM +取最小值时,点P 的坐标为__________.分析:本题若建立目标函数来求PF PM +的最小值是困难的,若巧妙地利用抛物线定义,结合图形则问题不难解决.解:如图,由定义知PE PF =,故213=≥≥+=+MN ME PM PF PF PM .取等号时,M 、P 、E 三点共线,∴P 点纵坐标为2,代入方程,求出其横坐标为2,所以P 点坐标为)2,2(.。
高中数学解析几何抛物线大题

高中数学解析几何抛物线大题
抛物线大题:
一、抛物线的定义
1、抛物线是二次曲线的一种,它的方程式一般可表示为
$y=ax^2+bx+c$,当$a<0$时,得到的曲线是向下凹的,即为抛物线。
2、抛物线的凹顶是位于曲线上一点,它是抛物线上最高点,也称为顶点,当a<0时,顶点的坐标为$( -\frac{b}{2a},\frac{4ac-b^2}{4a} )$。
二、抛物线的过程
抛物线的运动轨迹实际上是一个二次函数的图形,它的轨迹可以概括为如下四个特点:
1、抛物线最开始是一条负斜率直线,也就是抛出物体时在水平移动,且斜率为负数。
2、当抛物线经过顶点,斜率从负值变为正值,即抛物线开始反弹Test 栏。
3、当抛物线接近水平线时,斜率极小,且小于零,此时抛物线开始向下倾斜。
4、当抛物线趋于水平线时,斜率终于变成负数,到达最终形状,也就是它在水平线上的运动。
三、抛物线的应用
抛物线的应用非常广泛,如:
1、抛物线在现实世界中被广泛应用于物理、力学及许多其他领域,如抛物线运动、摆动运动等。
2、抛物线在计算机图形学中被用于表示图形的光滑与曲线,以及在人工智能中用于处理数字图像。
3、抛物线也常常被用于描述经济上的一些需求量及供给量等关系,以便进行更合理的调控。
四、抛物线的性质
抛物线的一些基本性质有:
1、轴对称性:抛物线所围成的图形与其凹顶点关于y轴对称。
2、放射性:抛物线与任一垂线所形成的三角形均具有放射性。
3、相反照应:抛物线与任一对称轴所形成的图形是反照的。
4、重心:抛物线的重心坐标为$( \frac{a}{3},\frac{-b^2}{9a})$。
高中数学知识点精讲精析 抛物线

2.4 抛物线1.定义平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。
另外,F称为"抛物线的焦点",l称为"抛物线的准线"。
定义焦点到抛物线的准线的距离为"焦准距",用p表示.p>0.以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。
2.抛物线的标准方程右开口抛物线:y^2=2px左开口抛物线:y^2=—2px上开口抛物线:x^2=2py下开口抛物线:x^2=—2pyp为焦准距(p>0)抛物线的标准方程有四个:(开口向右);(开口向左);(开口向上);(开口向下);在抛物线y^2=2px中,焦点是(p/2,0),准线l的方程是x=—p/2;在抛物线y^2=—2px 中,焦点是(—p/2,0),准线l的方程是x=p/2;在抛物线x^2=2py 中,焦点是(0,p/2),准线l的方程是y=—p/2;在抛物线x^2=—2py中,焦点是(0,—p/2),准线l的方程是y=p/2;抛物线3.抛物线相关参数(对于向右开口的抛物线)离心率:e=1焦点:(p/2,0)准线方程l:x=-p/2顶点:(0,0)通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):2P4.它的解析式求法:以焦点在X轴上为例知道P(x0,y0)令所求为y^2=2px则有y0^2=2px0∴2p=y0^2/x0∴抛物线为y^2=(y0^2/x0)x5.抛物线的一段的面积和弧长公式面积 Area=2ab/3弧长 Arc length ABC=√(b^2+16a^2 )/2+b^2/8a ln((4a+√(b^2+16a^2 ))/b)6..其他抛物线:y = ax^2 + bx + c (a≠0)就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x-h)^2 + k就是y等于a乘以(x-h)的平方+kh是顶点坐标的xk是顶点坐标的y 标准形式的抛物线在x0,y0点的切线就是 :yy0=p(x+x0) 一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py7.关于抛物线的相关结论过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A (x1,y1),B(x2,y2),有① x1*x2 = p^2/4 , y1*y2 = —P^2②焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2]③(1/|FA|)+(1/|FB|)= 2/P④若OA垂直OB则AB过定点M(2P,0)⑤焦半径:|FP|=x+p/2 (抛物线上一点P到焦点F距离等于到准线L距离)⑥弦长公式:AB=x1+x2+p⑦△=b^2-4ac⑴△=b^2-4ac>0有两个实数根⑵△=b^2-4ac=0有两个一样的实数根⑶△=b^2-4ac<0没实数根⑧由抛物线焦点到其切线的垂线,是焦点到切点的距离,与到顶点距离的比例中项。
高中数学复习专题讲解与练习-----抛物线定义的应用

2. 直线 y = k(x−1)与抛物线 y2 = 4x 交于 A, B 两点,若 AB = 16 ,则 k = __________. 3
【答案】:± 3
3. 已知点 是抛物线 的对称轴与准线的交点,点 为抛物线的焦点,点 在抛物线上且满足 ,若 取最大值时,点 恰好在以 为焦点的双曲线上,则双曲线的离心率为( )
证明: 是 的等差中项.
【分析】:先化简
得到
,再根据线段 的中垂线的性质得到
,
把这两个式子结合起来即可证明 是 的等差中项.
【解析】:设
,由抛物线定义知
又 中垂线交 轴于 ,故
,
因为 ,所以
,
,
故
即 , 是 的等差中项.学-科网 【点评】:由抛物线定义将 m 转化为 AB 的横坐标的表达式,再利用垂直平分线的性质得到另外一组表达式, 化简后即可得到所证目标. 【规律总结】: 与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点 到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物
所以最小值为4 + 2 −1 = 5 .
6. 设 , 分别为曲线 上不同的两点, ,若
,且
,则
__________. 【答案】:8
7.
过抛物线C : y2
= 4x 的焦点 F
的直线l 与抛物线C
交于P,Q 两点,与其准线交于点M
,且 uuuuv FM
=
uuuv 3FP
,
则
uuuv FP
高中数学 抛物线

高中数学抛物线抛物线是数学中的一种曲线,它的特点是呈现出对称性和开口朝上或朝下的形状。
在高中数学中,我们经常会遇到抛物线的相关知识,包括抛物线的标准方程、顶点坐标、焦点坐标等等。
本文将围绕抛物线展开讨论,介绍一些与抛物线相关的基本概念和性质。
一、抛物线的定义和基本性质抛物线可以用数学形式表示为二次函数的图像。
一般来说,抛物线可以分为开口朝上和开口朝下两种情况。
对于开口朝上的抛物线,其标准方程为y = ax^2 + bx + c,其中a不等于0;而对于开口朝下的抛物线,其标准方程为y = -ax^2 + bx + c,其中a不等于0。
抛物线的顶点是抛物线的最低点或最高点,也是抛物线的对称轴与抛物线的交点。
对于标准方程y = ax^2 + bx + c,抛物线的顶点坐标可以通过公式(-b/2a, f(-b/2a))求得,其中f(x)表示函数y = ax^2 + bx + c。
二、抛物线的焦点和准线抛物线还有两个重要的特殊点,即焦点和准线。
对于开口朝上的抛物线,焦点位于抛物线的顶点上方,对称轴与焦点之间的距离称为焦距;而对于开口朝下的抛物线,焦点位于抛物线的顶点下方。
焦点的坐标可以通过公式((-b/2a), (1-4ac-b^2)/4a)求得。
准线是与对称轴平行且与焦点相切的直线,其方程为y = (1+4ac-b^2)/4a。
三、抛物线的图像和应用抛物线的图像具有很多特点和应用。
首先,抛物线是对称的,对称轴是抛物线的一条重要特征,它将抛物线分为两个完全对称的部分。
这种对称性质使得抛物线在几何中有广泛的应用,例如建筑物的设计、桥梁的结构等。
抛物线还具有最值性质。
对于开口朝上的抛物线,最低点就是顶点,也是抛物线的最小值;而对于开口朝下的抛物线,最高点就是顶点,也是抛物线的最大值。
这一性质在实际问题中有着广泛的应用,例如求解最优化问题、确定物体的最佳轨迹等。
抛物线还与抛物运动密切相关。
抛物线可以用来描述抛出物体在无阻力情况下的运动轨迹,例如抛出的物体在空中飞行的轨迹、水平抛出的物体在竖直方向上的运动等。
高中数学抛物线及其性质知识点大全

抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。
高中数学课件-第7讲 抛物线

第7讲 抛物线1.理解抛物线的定义、几何图形和标准方程,以及它们的考试要求简单几何性质(范围、对称性、顶点、离心率).2.理解抛物线的简单应用.01聚焦必备知识知识梳理1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,点F叫做抛物线的焦点,直线l叫做抛物线的准线.2.抛物线的标准方程和几何性质常用结论夯基诊断××√×2.回源教材(1)抛物线y 2=10x的焦点到准线的距离是________.答案:5抛物线的方程为y 2=10x ,则p =5,所以抛物线y 2=10x 的焦点到准线的距离是5.(2)过点P(-2,3)的抛物线的标准方程为________.(3)已知抛物线C:y2=4x的焦点为F,点A为抛物线C上一点,若|AF|=3,则点A的横坐标为________.答案:202突破核心命题例1 (1)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,点A 是抛物线C 上一点,AD ⊥l ,交l 于D .若|AF |=4,∠DAF =60°,则抛物线C 的方程为________.考 点 一 抛物线的方程与几何性质答案:y 2=4x(2)(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线方程为________.1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.2.应用抛物线的几何性质解题时,常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性.训练1 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )C答案:16例2 (2024·福州质检)在平面直角坐标系Oxy 中,动点P (x ,y )到直线x=1的距离比它到定点(-2,0)的距离小1,则P 的轨迹方程为( )A.y 2=2xB.y 2=4xC.y 2=-4xD.y 2=-8x考 点 二抛物线的定义及应用考向 1求轨迹方程DD 由题意知动点P(x,y)到直线x=2的距离与到定点(-2,0)的距离相等,由抛物线的定义知,P的轨迹是以(-2,0)为焦点,x=2为准线的抛物线,所以p=4,轨迹方程为y2=-8x.例3 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为__________.2最值问题与抛物线有关的最值问题的两个转化策略(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.反思感悟DA考 点 三抛物线的综合问题1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.反思感悟训练3 过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,|AF|=2.(1)求抛物线C的方程;(2)若抛物线C上存在点M(-2,y0),使得MA⊥MB,求直线l的方程.03限时规范训练(六十三)A级 基础落实练1.(2023·临汾第一次适应性训练)已知抛物线C的焦点F关于其准线对B称的点为(0,-9),则C的方程为( )A.x2=6yB.x2=12yC.x2=18yD.x2=36y2.(2024·昆明一中月考)过抛物线y2=8x的焦点的直线l与抛物线相交于M,N两点.若M,N两点到直线x=-3的距离之和等于11,则这样的直线l( C )A.不存在B.有且仅有一条C.有且仅有两条D.有无穷多条C 由题意知M,N两点到准线x=-2的距离之和等于9,由抛物线定义得|MN|=9.又抛物线y2=8x的通径长为2p=8<|MN|=9根据过焦点的弦的对称性知,这样的弦有且仅有两条,故选C.图① 图②A.1 B.2C.3D.4ABB6.(多选)已知抛物线y2=2px(p>0)的焦点F到准线的距离为4,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),若M(m,2)是线段AB的中ACD点,则下列结论正确的是( )A.p=4B.抛物线方程为y2=16xC.直线l的方程为y=2x-4D.|AB|=10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线专题复习标准方程图形顶点对称轴焦点准线离心率焦半径焦点弦公式()022>=p pxyxyOFl()0,0x 轴 ⎪⎭⎫ ⎝⎛0,2p 2p x -= 1=e 02x pPF +=)(21x x p AB ++=()022>-=p pxyxyO F l()0,0x 轴 ⎪⎭⎫⎝⎛-0,2p2p x = 1=e 02x p PF -=)(21x x p AB +-=()022>=p pyx()0,0y轴⎪⎭⎫ ⎝⎛2,0p 2p y -= 1=e 02y pPF +=)(21y y p AB ++=()022>-=p pyx()0,0y轴⎪⎭⎫ ⎝⎛-2,0p2p y = 1=e 02y pPF -=)(21y y p AB +-=通径:过焦点且垂直于对称轴的相交弦 通径:d 2=AB 为抛物线px y 22=的焦点弦,则=B A x x 42p ,=B A y y 2p -,||AB =p x x B A ++考点1 抛物线的定义[例1 ]已知点P 在抛物线x y 42=上,则点P 到点)1,2(-Q 的距离与点P 到抛物线焦点距离之和的最小值为 考点2 抛物线的标准方程[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点)2,3(-; (2)焦点在直线240x y --=上 考点3 抛物线的几何性质[例3 ]设B A ,为抛物线px y 22=上的点,且O AOB (2π=∠为原点),则直线AB 必过的定点坐标为_______[例4 ]设F 是抛物线2:4G x y =的焦点.(I )过点(04)P -,作抛物线G 的切线,求切线方程; (II )设A B ,为抛物线G 上异于原点的两点,且满足,0=⋅→→FB FA 延长AF ,BF 分别交抛物线G 于点C D ,,求四边形ABCD 面积的最小值.二.基本题型1.过抛物线x y 42=的焦点作直线交抛物线于1122(,),(,)A x y B x y 两点,如果621=+x x ,那么||AB =( ) (A )10 (B )8 (C )6 (D )42.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且||1F P 、||2F P 、||3F P 成等差数列, 则有 ( )A .321x x x =+B . 321y y y =+C .2312x x x =+ D. 2312y y y =+3.已知M 为抛物线x y 42=上一动点,F 为抛物线的焦点,定点()1,3P ,则||||MF MP +的最小值为( ) (A )3 (B )4 (C )5 (D )6 4.过抛物线()02>=a axy 的焦点F 作直线交抛物线于P 、Q 两点,则=+||1||1QF PF ( ) (A )a 2 (B )a 21 (C )a 4 (D )a 4 5.已知抛物线C :24y x =的焦点为,F 准线为,l 过抛物线C 上的点A 作准线l 的垂线,垂足为M ,若△AMF 与△AOF (其中O 为坐标原点)的面积之比为3:1,则点A 的坐标为( )A .(2,22)B .(2,-22)C .(2,±2)D .(2,±22)6.过抛物线焦点F 的直线与抛物线交于两点A 、B,若A 、B 在抛物线准线上的射影为11,B A ,则=∠11FB A ( ) A.45 B.60 C.90 D.1207.两个正数a 、b 的等差中项是92,一个等比中项是,b a >则抛物线2()y b a x =-的焦点坐标为( ) A .1(0,)4- B .1(0,)4C .1(,0)2- D .1(,0)4-8.抛物线,42F x y 的焦点为=准线为l l ,与x 轴相交于点,E 过F 且倾斜角等于3π的直线与抛物线在x 轴上方的部分相交于点,,l AB A ⊥垂足为,B 则四边形ABEF 的面积等于( )A .33B .34C .36D .389.已知抛物线C :212x y =,过点(0,4)A -和点(,0)B t 的直线与抛物线C 没有公共点,则实数t 的取值围是( )A .(,1)(1,)-∞-+∞ B. 2(,(,)-∞+∞ C .(,(22,)-∞-+∞ D .(,(2,)-∞-+∞ 10.如果1P ,2P ,…,8P 是抛物线24y x =上的点,它们的横坐标依次为1x ,2x ,…,8x ,F 是抛物线的焦点,若)(,,,21*∈N n x x x n 成等差数列且45921=+++x x x ,则||5F P =( ).A .5B .6C . 7D .911.设O 是坐标原点,F 是抛物线24y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为 .12.若直线10ax y -+=经过抛物线24y x =的焦点,则实数a =13.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值 14.(文)如图,过抛物线y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,交抛物线于A 、B 两点,且|FA |=3,则抛物线的方程是________.15.抛物线的顶点在原点,开口向上,F 为焦点M ,为准线与y 轴的交点A ,为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程.16.在抛物线24y x =上求一点,使该点到直线45y x =-的距离为最短,求该点的坐标.17.设抛物线22y px =(0p >)的焦点为,F 经过点F 的直线交抛物线于B A ,两点.点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .18.已知直线b x y +=与抛物线px y 22=()0>p 相交于A 、B 两点,若OB OA ⊥,(O 为坐标原点)且52=∆AOB S ,求抛物线的方程.19.椭圆12222=+b y a x 上有一点)59,4(-在抛物线px y 22=(p>0)的准线l 上,抛物线的焦点也是椭圆焦点. (1)求椭圆方程;(2)若点N 在抛物线上,过N 作准线l 的垂线,垂足为Q 距离,求||||NQ MN +的最小值.20.椭圆C 1:2221(04x y b+=<b <2)的离心率e =3,2抛物线C 2:22(x py p =>0)的焦点在椭圆C 1的顶点上. (1)求抛物线C 2的方程;(2)若过(1,0)M -的直线l 与抛物线C 2交于E 、F 两点,又过E 、F 作抛物线C 2的切线l 1、l 2,当l 1⊥l 2时,求直线l 的方程.21.已知抛物线C :24y x =的焦点为,F 过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:,点F 在直线BD 上;(2)设8.9FA FB →→⋅=求BDK ∆的切圆M 的方程.20.(文)[解析] (1)已知椭圆的长半轴长为a =2,半焦距c =4-b 2,由离心率e =c a =4-b 22=32得,b 2=1.(理)如图,过抛物线y 2=2px (p >0)的焦点的直线l 依次交抛物线及其准线于点A 、B 、C ,若|BC |=2|BF |,且|AF |=3,则抛物线的方程是________.∴椭圆的上顶点为(0,1),即抛物线的焦点为(0,1),∴p =2,抛物线的方程为x 2=4y .(2)由题知直线l 的斜率存在且不为零,则可设直线l 的方程为y =k (x +1),E (x 1,y 1),F (x 2,y 2), ∵y =14x 2,∴y ′=12x ,∴切线l 1,l 2的斜率分别为12x 1,12x 2,当l 1⊥l 2时,12x 1·12x 2=-1,即x 1·x 2=-4,由⎩⎪⎨⎪⎧y =k x +1x 2=4y 得:x 2-4kx -4k =0,由Δ=(-4k )2-4×(-4k )>0,解得k <-1或k >0.又x 1·x 2=-4k =-4,得k =1. ∴直线l 的方程为x -y +1=0.21.[解析] 设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0) (1)将x =my -1(m ≠0)代入y 2=4x 并整理得y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4①直线BD 的方程为y -y 2=y 2+y 1x 2-x 1(x -x 2),即y -y 2=4y 2-y 1⎝ ⎛⎭⎪⎫x -y 224令y =0,得x =y 1y 24=1,所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2,x 1x 2=(my 1-1)(my 2-1)=1因为FA →=(x 1-1,y 1),FB →=(x 2-1,y 2),FA →·FB →=(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+4=8-4m 2, 故8-4m 2=89,解得m =±43,直线l 的方程为3x +4y +3=0,3x -4y +3=0. 从而y 2-y 1=±4m2-4×4=±437,故4y 2-y 1=±37因而直线BD 的方程为3x +7y -3=0,3x -7y -3=0.因为KF 为∠BKD 的角平分线,故可设圆心M (t,0),(-1<t <1),M (t,0)到直线l 及BD 的距离分别为3|t +1|5,3|t -1|4, 由3|t +1|5=3|t -1|4得t =19或t =9(舍去),故圆M 的半径为r =3|t +1|5=23, 所以圆M 的方程为⎝ ⎛⎭⎪⎫x -192+y 2=49.例4(I )设切点2004x Q x ⎛⎫ ⎪⎝⎭,.由2xy '=,知抛物线在Q 点处的切线斜率为02x ,故所求切线方程为2000()42x x y x x -=-.即20424x x y x =-.因为点(0)P -4,在切线上.所以2044x -=-,216x =,04x =±.所求切线方程为24y x =±-. (II )设11()A x y ,,22()C x y ,.由题意知,直线AC 的斜率k 存在,由对称性,不妨设0k >. 因直线AC 过焦点(01)F ,,所以直线AC 的方程为1y kx =+.点A C ,的坐标满足方程组214y kx x y =+⎧⎨=⎩,,得2440x kx --=,由根与系数的关系知121244.x x k x x +=⎧⎨=-⎩,24(1)AC k ===+.因为AC BD ⊥,所以BD 的斜率为1k -,从而BD 的方程为11y x k=-+. 同理可求得22214(1)41k BD k k ⎛⎫+⎛⎫=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭.2222218(1)18(2)322ABCD k S AC BD k k k +===++≥. 当1k =时,等号成立.所以,四边形ABCD 面积的最小值为32.。