周期信号的频谱解读

合集下载

周期信号及其频谱

周期信号及其频谱

50
2A
2 2A 2A
T O T2 2
2
2
30 0周O 期0三角3波0 50
2A t 2 70
(a)
(b)
2
a0 T
T 2 0
A
2A T
t
dt
A 2
4
an T
T 2 0
A
2A T
tcosn0tFra bibliotekt4A
n2
2
0
其幅频谱(单边谱)如图(a)所示。
n 1,3,5, n 2,4,6,
aanAn
(傅a) 里叶级数
可x知(tA) ,a0=0,an=0,Abnn=
2A n
1
cos
n
T
T
2
2
O
t
A
O 0 30 50 70 90
30 50 70 9 (b)
x(t)
4A
sin 0t
1 3
sin
30t(a)
1 5
sin
50t
1 7
sin
70t
(幅b)频谱
1.4 复数形式的傅里叶级数
傅里叶级数也可以表示成复指数形式的展开式。根据欧拉公式
若用复数形式表示,则根据
Cn
Cn
1 2
an
C0 a0
可求得如图(b)所示的幅频谱(双边谱)。
通过以上例题可以看出,周期信号有以下几个特点: (1)周期信号的频谱是由无限多条离散谱线组成的,每一条谱线 (单边谱)代表一个谐波分量。 (2)各次谐波的频率只能是基波频率的整数倍。 (3)谱线的高度表示了相应谐波分量的幅值大小。对于工程中常见 的周期信号,其谐波幅值的总趋势是随着谐波次数的增高而减小。当谐 波次数无限增高时,其幅值就趋于零。

§3-1 周期信号的频谱分析

§3-1 周期信号的频谱分析
2 T 2 T 2
E Edt T 1(V )
2
2
2 T x(t ) cosk1tdt T
2 2
2
E cosk tdt
1
2
2E T
2E 1 2 cos k1tdt T k1 sin k1t | 2
2
2E T
2 sin(k1 k1
) 2
2E k 8 k sin( ) sin( ) k T k 4
bk
2 T
T 2
x(t ) sin k1tdt
T 2
2 T
2
E sin k tdt 0
1
2
求得傅里叶级数展开式:
8 1 k x(t ) a0 ak cos k1t 1 sin( ) cos k1t k 1 k 4 k 1
6
4 0 2 3 4 5 6 7 8 9
c0
c2
k1
0 1 2131415161718191
ห้องสมุดไป่ตู้
k

0 2 3 4 5 6 7 8 9
k

k1
7 5
2 3 4 5 6 7 8 9
三、周期信号展开为三角函数式的傅里叶级数 高等数学中学过,周期信号x(t)当满足狄利赫里条件, 即在一个周期中: ⑴ 只有有限个一类间断点;
⑵ 只有有限个极值点,或称有限次振荡;
⑶ 绝对可积
T 2

T 2
x(t ) dt
于是,信号可展开为以下傅里叶级数
x(t ) a0 [ak cosk1t bk sin 1t ]

4.2周期信号的频谱

4.2周期信号的频谱

2A ( n 1, 3, 5,) n 90o ( n 1,3,5,) n o ( n 1, 3, 5,) 90 Fn
信号与系统

周期矩形脉冲信号的频谱
对于周期矩形脉冲,在一个周期内为
A t t

4.2-5

f (t )
0

2 2
4A (n 1,3,5,...) nπ
矩形波:
图1
n 90o (n 1,3,5,...)
谱 线
相位值 振幅 图2 角频率
信号与系统
4.2

周期信号的频谱
4.2-3
4.2.1 周期信号频谱的特点
频谱特点:

离散性:每根谱线代表一个谐波分量, 称为离散谱线。 谐波性:基波1的整数倍频率 收敛性:高次谐波幅度渐小,当谐波次 数无限增多时,谐波分量的振幅趋于无 穷小。
4.2 周期信号的频谱

信号与系统
4.2-1
4.2.1 周期信号频谱的特点
将周期信号分解为傅里叶级数(简称傅氏级数),为在频域 中认识信号特征提供了重要的手段。由于在时域内给出的 不同信号,不易简明地比较它们各自的特征,而当周期信 号分解为傅氏级数后,得到的是直流分量和无穷多正弦分 量的和,从而可在频域内方便地予以比较。为了直观地反 映周期信号中各频率分量的分布情形,可将其各频率分量 的振幅和相位随频率变化的关系用图形表示出来,这就是 信号的“频谱图”。频谱图包括振幅频谱和相位频谱。前 者表示谐波分量的振幅An随频率变化的关系;后者表示谐 波分量的相位φn 随频率变化的关系。习惯上常将振幅频谱 简称为频谱。
奇谐函数
偶谐函数
注:指交流分量
信号与系统

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1、周期信号频谱的特点
(1)周期信号频谱是指周期信号的函数X(t)的傅里叶变换结果。

它由若干不同的频率的正弦波组成,这些正弦波的频率正是信号的基本频率。

正弦波的幅值与其相应的频率乘积成正比,而每种频度的信号都有一个相应的幅值谱和一个同频率相等的相位谱。

(2)对小波周期信号出现的情况而言,它的频谱具有带状分布特点。

假设一个小波信号X(t)的基本频率为F0,它的频谱X(f)的分布范围接近[F0, 2F0]之间,其中最大的幅值在F0处,幅值谱有一个主峰,而且相位谱空间分布也同样有一个主峰。

(3)小波周期信号具有连续宏观理论谱线的特点,实际谱线与理论谱线相比会有一个谷底,其图形模型会形成一回带状,理论上谷底深度接近0.
(4)周期信号频谱中有定向性,主要表现在除脉冲信号以外的其他周期信号中。

针对某一个方向发射信号,其谱仍然会有以频率以F0作为中心呈现梯度变化和微小平移的特点。

如果从不同方向发射信号,最终得到的谱会有一定的差异,但其趋势仍然相同。

2、周期信号频谱的作用
(1)周期信号频谱是信号分析的基础,它包括了信号的基本指标,包括信号的频率、幅值谱和相位谱,可用于分析信号的特性和特征。

(2)有了周期信号频谱,可以更准确地测量一个周期信号的实际频率,利用其中的相位谱可以判断信号之间是否存在某些相关性。

(3)频谱可以用于检测信号中的杂波,如果周期信号频谱发现不属于原有频率的有害信号,则说明信号中出现了一些杂波,可以使用滤波等方法对这部分信号进行处理,从而提高信号的有效性。

(4)同时,周期信号频谱也可以用来研究信号强度分布情况,可以查看赋予信号的频率和相位,从而进行有效的信号处理。

§3.2 周期信号的频谱和功率谱

§3.2 周期信号的频谱和功率谱

不变,T增大,谱线间隔
1
2 T
减小,谱线逐渐密集,幅度
A T
பைடு நூலகம்


当 T
1 0
A 0 T
非周期信号连续频谱
非周期信号 n1 连续频率
2.当T不变, 减小时
T不变
1
2 间隔不变
T
A 振幅为0的谐波频率
T
2
,
4
,......
信号与系统
练习:周期信号的频谱描绘
不改变 不改变 不改变
Fn
2 T
2
f (t)dt
T
2 A
2
Adt
2
T
信号与系统
练习:周期信号的频谱描绘
a 2 nT
T
2 T
2
f (t) cos n1tdt
2A sin n n T
2 A
T
sin n
T
n
2A Sa(n )
T
T
T
f (t)
A
T
2 A
T
n 1
Sa( n
T
)
cos(n1t )
A 2A
TT
S a(
立叶展开式并画出其频谱图。
1
解: f(t) 在一个周期内可写为如下形式
Tt
f (t) 2 t T t T
T
22
f(t) 是奇函数,故 an 0
信号与系统
4
bn T
T 2 0
f (t) sin n1tdt
4 T
T 2 0
2t T
sin
n1tdt
(1
2
T
)
An &n 2

周期信号频谱的特点

周期信号频谱的特点

周期信号频谱的特点
1.频谱中存在基波和谐波:周期信号的频谱中不仅包含了基波分量,还包括了各个谐波分量。

基波分量对应信号的基本周期,而谐波分量则是基波频率的整数倍。

基波和谐波分量在周期信号频谱中呈现出一定的规律性,即谐波分量的幅值逐渐减小,但频率却逐渐增大。

2.频谱具有离散特性:周期信号频谱中的频率值是离散的,即频谱中只有一系列离散的频率分量。

这是因为周期信号具有固定的周期,其频谱中的各个频率值与基波频率和谐波频率有关。

3.频谱对称性:周期信号频谱在频率轴上具有对称性。

具体而言,当周期信号是实值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。

当周期信号是复值信号时,其频谱是共轭对称的,即频谱图中的正频率部分与负频率部分关于频率轴对称。

4.频谱幅度递减:周期信号频谱中各个频率分量的幅度递减性质。

基波分量的幅度最大,而谐波分量的幅度逐渐减小。

如果周期信号中存在无穷多个谐波分量且每个谐波分量的幅度适当,则可以近似地表示任意的周期信号。

5.频谱包含整个频率范围:周期信号频谱中包含了整个频率范围,即从直流成分到无限大频率。

直流成分对应于基波分量,而高频成分对应于谐波分量。

因此,周期信号的频谱图是一个连续的、无缺口的频率分布。

总之,周期信号频谱的特点可以概括为:包含基波和谐波分量,具有离散特性,具有对称性,谐波分量幅度递减,频率范围包含整个频域。

通过对周期信号频谱的分析,可以了解信号的频率分布情况,从而更好地理解和处理周期信号。

周期信号的频谱分析

周期信号的频谱分析

周期信号的频谱分析周期信号是指在一定时间内重复出现的信号,其频谱分析是对周期信号在频域上的描述和分析。

频谱分析是信号处理领域中的重要内容,它能够揭示周期信号的频率成分以及它们在信号中的相对强度。

周期信号可以用正弦函数来表示,即一个频率为f的正弦波。

频谱分析的目的就是要确定这个周期信号中包含的各个频率成分。

为了进行频谱分析,我们通常使用傅里叶变换。

傅里叶变换可以将一个周期信号转换为一系列频率成分的复数表示。

傅里叶变换将一个周期信号分解成一系列复振幅和相位分量。

复振幅表示了信号中每个频率分量的强度,而相位则表示了每个频率分量的相对位置。

通过傅里叶变换,我们可以得到一个频谱图,它显示了信号中各个频率成分的幅度和相位信息。

在频谱图中,横轴表示频率,纵轴表示振幅。

每个频率成分对应的幅度可以通过幅度谱来表示,而相位信息则可以通过相位谱来表示。

通过分析频谱图,我们可以得到周期信号中的主要频率成分、频率分量的强度以及它们在信号中的相对位置。

频谱分析在信号处理领域中有着广泛的应用。

例如,它可以用于音频信号的处理与分析。

在音频信号中,不同的频率成分对应着不同的音调和音色。

通过频谱分析,我们可以识别音频信号中的主要频率分量,从而实现对音频信号的合成、去噪等处理操作。

另外,频谱分析也可以用于振动信号和通信信号的分析。

在振动信号分析中,频谱分析可以帮助我们了解结构的固有频率以及存在的振动模态。

而在通信信号分析中,频谱分析可以帮助我们了解信号的带宽和调制方式,从而实现信号的解调和解码。

总之,周期信号的频谱分析是对周期信号在频域上的描述和分析。

通过傅里叶变换,我们可以将周期信号分解成一系列频率成分,并通过频谱图来展示这些成分的幅度和相位信息。

频谱分析在信号处理领域中有着广泛的应用,对于理解和处理周期信号具有重要作用。

MATLAB周期信号的频谱分析解读

MATLAB周期信号的频谱分析解读

0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8
y=sawtooth((t-1) *pi) (see also)
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -10
-1 -10
-8
-6
-4
-2
0
2
4
6
8
10
-8
-6
-4
-2
0
2
4
6
8
10
MATLAB在信号与系统课程中的应用
EE of BUPT
7.2 三角函数形式的傅里叶级数
1.三角函数集
cosn 1t , sinn 1t 是一个完备的正交函数集
由积分可知
t在一个周期内,n=0,1,...
cos n1 t sin m1 dt 0 T T , 2 T2 cos n1t cos m1t dt 2 0, T T , 2 T2 sin n1t sin m1t dt 2 0,
PAUSE causes a procedure to stop and wait for the user to strike any key before continuing.
MATLAB在信号与系统课程中的应用
EE of BUPT
结果显示
1.5
1
0.5
0
-0.5
-1
-1.5
0
1
2
3
4
5
6
7
line([1,2,3],[4,5,7]) text(2.1,4.8,'here')
7 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X

3.3.2 周期矩形脉冲信号的频谱
本小节以周期矩形脉冲信号为例进行分析
7 页
主要讨论:频谱的特点,频谱结构,
频带宽度,能量分布。
X

一.频谱结构
f (t ) E
8 页
脉宽为 脉冲高度为E
T1
t
T1
O 2 2
周期为T1
1. 三角函数形式的谱系数 2. 指数函数形式的谱系数 3. 频谱特点

2
0
2


n 1
X
不变, T1改变
E 2π T1 幅度 , 谱线 间隔1 T1 T1
f (t )
2π 第一个过零点频率 不变
第 13 页
当ET1 ,时, 1 0, 为无限小, T1 f t 由周期信号 非周期信号。 4

T1 2T1
T1 5E
Fn

O 1 2 1


第一个零点集中了信号绝大部分能量(平均功率)
由频谱的收敛性可知,信号的功率集中在低频段。
X

周期矩形脉冲信号的功率
1 P T
16 页

T
0
f 2 ( t )dt
n


Fn
2

n


F ( n1 )
2
1 1 以 s, T1 s为例,取前5 次谐波 20 4
X
1 2 1



4.讨论
2π 谱 线 间 隔1 不变 T1不变, 改变 T1 E 2π 幅 度 , 第 一个 过零 点 T1
f (t ) E
12 页
T1 5
2E 5
Fn

T1
t
f (t )
E
T1 10
t

2
0
2
4



n1
E 5
Fn

T1
P5 n F 0 F 1 F 2 1 F 3 1 F 4 1
2 2 2 2
2
F 1 F 2 1 F 3 1 F 4 1
2 2 2
2
0.181E 2 1 T1 2 2 f ( t ) d t 0 . 2 E 而总功率 T1 0 P5 n 二者比值 90.5% P
§3.3 周期信号的频谱
•周期信号的频谱 • 周期矩形脉冲信号的频谱

3.3.1 周期信号的频谱
幅度频谱(简称幅度谱):
2 页
各次谐波振幅随频率变化的关系 相位频谱(简称相位谱) 各次谐波相位随频率变化的关系
X

1、单边频谱
f ( t ) A0
3 页
A cos(n t
n 1 n 1
X
3.频谱及其特点
图中T 5
E T1
E Fn Sa n1 T1 2
第 11 页
Fn

O
( 5 )Fn 是复函数(此处为实 函 数),幅度 / 相位
Fn 0,相位为 0,Fn 0, 相位为 π 。
E 。 (1)包络线形状 抽样函数 ( 2)其最大值在 n 0处,为 T1 2π ( 4)第一个零点坐标: (3)离散谱(谐波性) 2π 令 = 当 n 1时取值 2
n n
X

双边频谱图
1 1 1 1
6 页
j ( t ) j ( t ) j ( 3 t ) j ( 3 t ) E E E 2 2 2 2 f (t ) [e e ] [e e ] 2 3 j ( 5 t ) j ( 5 t ) j ( 7 t ) j ( 7 t ) E E 1 1 1 1 2 2 2 2 [e e ] [e e ] 5 7
X

1.三角形式的谱系数
f (t ) E
9 页
T1

f t 是个偶函数
bn 0, 只有a0 , an
O 2 2
T1
t
X

2.指数形式的谱系数
1 Fn T1
10 页

1 = T1
T1 2 T 1 2
f ( t )e jn1t d t

2
E 1 jn 1 t jn 1 t 2 E e d t e 2 T1 jn 1
X

单边频谱图
An
4 页
n
离散谱,谱线
1
2E 3 2E 5
5 1
2E E 2

2E 7
71 9 1
0
31
51
7 1
91
n1

0
1
3 1
n1


2
An ~ 曲 线
n ~ 曲 线
幅度谱
相位谱
X

ห้องสมุดไป่ตู้
2、双边频谱
f (t )
n
5 页


Fn e jn1 t

n)
E

f (t )
E 2E 1 f (t ) [sin(1 t ) sin(31 t ) 2 3 1 1 sin(51 t ) sin(n1 t ) ] 5 n

T1

T1 2
0
T1 2
T1
t
n 1,3,5,
E 2E 2E f (t ) cos(1 t ) cos(31 t ) 2 2 3 2 2E 2E cos(51 t ) cos(71 t ) 5 2 7 2
Fn Fn e j n
n
幅 度 谱 :Fn ~ 相位谱: n ~
关系
1 Fn An n 0 2
1 Fn An e j ( n 1) 21 F n An e j ( n 1) 2
n
F0 A0 a0
● 幅度频谱为偶函数 ● 相位频谱为奇函数
Fn F n
2E 5
Fn
t



2

0 2 T1
2
4


n 1
f (t )
E
T1 10
4 2
E 5
Fn

T1
t
0 2 T1
2
4
n 1
X

5、结论:
矩形脉冲的频谱说明了周期信号频谱的特点:
14 页
离散性
谐波性
收敛性
X

二.频带宽度
1.问题提出
E T1
15 页
jn 1 jn1 2 2 e e

2
E jn 1T1


2E sin n 1 n 1T1 2 sin n 1 E 2 E Sa n 1 T1 T1 2 n 1
相关文档
最新文档