MLCC用高介电常数陶瓷介质材料的研究现状及发展趋势

MLCC用高介电常数陶瓷介质材料的研究现状及发展趋势
MLCC用高介电常数陶瓷介质材料的研究现状及发展趋势

高K栅介质材料的研究进展

高K栅介质材料的研究进展 摘要:对于纳米线宽的集成电路, 需要高介电常数( 高k) 的栅极介质材料代替二氧化硅以保持一定的物理厚度和优良的漏电性能. 这些栅极候选材料必须有较高的介电常数, 合适的禁带宽度, 与硅衬底间有良好界面和高热稳定性. 此外, 其制备加工技术最好能与现行的硅集成电路工艺相兼容. 本文阐述了选择高k 栅介质材料的基本原则, 介绍了典型高k 栅介质材料性能, 并展现了引入高k 栅介质材料存在的问题. 关键词: 高k 栅介质金属氧化物 HfO2 1.传统晶体管结构及瓶颈 20世纪80年代以来,CMOS集成电路的快速发展大大促进了硅基微电子工业的发展,使其在市场的份额越来越大。而CMOS集成电路的快速发展又是得益于其电路基本单元——场效应管尺寸的缩小。场效应管尺寸缩小的关键因素就是作为栅介质层的二氧化硅(SiO2)膜厚的减小。二氧化硅的作用是隔离栅极和硅通道。作为栅介质层,二氧化硅有很多优点,如热和电学稳定性好,与硅的界面质量很好以及很好的电隔离性能等。但是随着器件尺寸的不断缩小,二氧化硅的厚度被要求减到2nm以下,随之产生了许多问题 例如:1、漏电流的增加,对于低功率器件,这将是不能忍受的,而事实上,现在低功率器件的市场需求却越来越大 2、杂质扩散。栅极、二氧化硅和硅衬底之间存在杂质的浓度梯度,所以杂质会从栅极中扩散到硅衬底中或者固定在二氧化硅中,这会影响器件的阈值电压,从而影响器件的性能。当二氧化硅的厚度减小时,杂质就更容易从栅极中扩散到硅衬底中。 所以,有必要寻求一种新的栅介质层来替代二氧化硅。从以上两个存在的问题可以看出,为了减小漏电流和降低杂质扩散,最直观的方法就是增加栅介质层的厚度,但是为了保持介质层的电容不变,新的栅介质层的介电常数必须比二氧化硅要大,而且介质层的介电常数越大,膜的厚度就可以越大,因此我们引入了高K介质。 2.高k 栅介质材料要求 ( 1) 高介电常数k.高介电常数k 能维持驱动电流, 减小漏电流密度. ( 2) 较大的禁带宽度. ( 3) 与Si 导带间的偏差大于1eV. ( 4) 在Si 衬底上有良好的热力学稳定性, 生产工艺过程中尽量不与Si 发生反应, 并且相互之间扩散要小. ( 5) 与Si 界面质量应较好.新型栅介质材料与Si 之间的界面, 界面态密度和缺陷密度要低, 尽量接近于SiO2 与Si 之间的界面质量, 以削弱界面电子俘获和载流子迁移率降低造成的影响。 ( 6) 非晶态结构.非晶结构栅介质材料是各向同性的, 不存在晶粒间界引起漏电流增大的现象,且较容易制备, 是新型栅介质材料的理想结构。 3 高k 材料的选择 最有希望取代SiO2 栅介质的高k 材料主要有两大类: 氮化物和金属氧化物. 3.1 氮化物 氮化物主要包括Si3N4, SiON 等.Si3N4 介电常数比SiO2 高, 作栅介质时漏电流比SiO2 小几个数量级, Si3N4 和Si 的界面状态良好, 不存在过渡层.但Si3N4 具有难以克服的硬度和脆性, 在硅基片上的界面态密度为1.2×1012eV- 1cm- 2, 因此Si3N4 并非理想的栅介质材料.超薄SiOxNy 可代替SiO2 作为栅介质, 这主要是由于SiOxNy 的介电常数比SiO2 要高, 在相同的 等效栅氧化层厚度下, SiOxNy 的物理厚度大于SiO2, 漏电流有所降低.在SiO2- Si 界面附近含有少量的氮, 这可以降低由热电子引起的界面退化, 而且氮可以阻挡硼的扩散. 东芝

介电常数

介电常数 求助编辑 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。 目录 编辑本段简介 介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*e-12,F/m。 一个电容板中充入介电常数为ε的物质后电容变大ε倍。 介电常数 电介质有使空间比起实际尺寸变得更大或更小的属性。例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。 当电磁波穿过电介质,波的速度被减小,有更短的波长。 相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。然后相对介电常数可以用下式计算εr=Cx/C0

编辑本段相关解释 "介电常数" 在工具书中的解释 1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。介电常数愈小绝缘性愈好。空气和CS2的ε值分别为1.0006和 2.6左右,而水的ε值特别大,10℃时为 8 3.83,与温度t的关系是 介电常数 查看全文 2.介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。介电常数用ε表示,一些常用溶剂的介电常数见下表: "介电常数" 在学术文献中的解释

高介电系数电介质材料的研究现状及发展

高介电系数电介质材料的研究现状及发展 摘要:随着信息、电子和电力工业的快速发展,以低成本生产具有高介电常数损耗的聚合物基复合材料成为行业关注的热点。因此,研究具有高介电常数的聚合物基复合材料具有十分重要的学术意义和实用价值。高介电常数的聚合物基电介质材料无论是在电力工程,还是在微电子行业都具有十分重要的作用。研究以纳米和微米尺度的高介电常数的制品,采用特殊的工艺制备了高介电常数的聚合物基纳米功能电介质复合材料。研究了制备工艺、添加物含量、以及微米/纳米等因素对复合电介质材料介电性能的影响。以及利用碳纳米管掺杂聚合物制备柔性高介电常数复合材料的研究现状。 关键词:高介电性能复合材料碳纳米管聚合物介电损耗 1电介质材料的应用领域 碳纳米管由于其独特的力学、磁学、电学等性能,在电介质材料领域其应用已涉及电极材料、纳米电子器件、复合材料等多方面逐渐形成了材料界和凝聚态物理界的前沿和热点。其中,具有高介电常数的聚合物基复合材料更是受到广泛的关注。这是因为,在电气工程领域,这类复合材料具有高介电常数、低密度以及易于低成本加工等优点,因此既可用作高储能密度电容器的介质材料,也可用作高压电缆均化电场的应力锥材料。在微电子领域,通过选择合适的聚合物基体,可以在印制电路板上快速大规模的制备高电容的嵌入式微电容器,这种高电容的微电容器可以保证集成电路的高速和安全运行。在微机电和生物工程领域,这类高介电常数柔性复合材料可被用于人工肌肉和药物释放智能外衣材料等。通常,提高聚合物基复合材料介电常数的方法主要是,将高介电常数的陶瓷粉末利用特殊的复合工艺添加到聚合物基体中形成。 2聚合物基复合体系的介电性 聚合物基复合体系的介电性能依赖于各组分材料的物理性质、复合材料的制备工艺、填料与聚合物间的表面与界面以及介电常数增加的机理等,特别是利用渗流效应提高材料的介电常数时,填料的形状和尺寸会大大影响复合材料的介电性能。如多壁碳纳米管(MWNT)改性前后填充的聚合物基复合材料的介电性能为主要内容,对引起复合材料介电性能和渗流阈值的差异进行了比较详细地分析。同时,基于研究的结果,展望了这类材料的未来发展动向。近年来,具有良好的压电和热电效应的柔性聚合物材料受到关注,特别是具有铁电性能的含氟聚合物。但是,在这些材料的一些应用领域(例如高储能电容器等),要求聚合物具有高的介电常数。由于这类材料本身的介电常数较高(接近10),所以选用PVDF作为基体材料,制备碳纳米管填充的复合材料,并研究复合材料的形貌、晶体结构和介电性能等。 3高介电常数高分子复合材料的研究进展

High-K和Low-K电介质材料

High-K和Low-K电介质材料 不同电介质的介电常数k 相差很大,真空的k 值为1,在所有材料中最低;空气的k值为1.0006;橡胶的k值为2.5~3.5;纯净水的k值为81。工程上根据k值的不同,把电介质分为高k(high-k)电介质和低k(low-k)电介质两类。介电常数k >3.9 时,判定为high-k;而k≤3.9时则为low-k。IBM将low-k标准规定为k≤2.8,目前业界大多以2.8作为low-k电介质的k 值上限。 一、High-K电介质材料 随着集成电路的飞速发展,SiO2作为传统的栅介质将不能满足MOSFET,器件高集成度的要求,需要一种新型High-k材料来代替传统的SiO2。[1]所谓High-K电介质材料,是一种可取代二氧化硅作为栅介质的材料。它具备良好的绝缘属性,同时可在栅和硅底层通道之间产生较高的场效应(即高-K)。两者都是高性能晶体管的理想属性。 High-K电介质材料应满足的要求::(1) 高介电常数,≤50 nm CMOS 器件要求k >20;(2)与Si 有良好的热稳定性;(3)始终是非晶态,以减少泄漏电流; (4)有大的带隙和高的势垒高度,以降低隧穿电流;(5) 低缺陷态密度/ 固定电荷密度,以抑制器件表面迁移率退化。[2] 最有希望取代SiO2栅介质的高K材料主要有两大类:氮化物和金属氧化物。 1.氮化物 氮化物主要包括Si3N4,SiON等。Si3N4介电常数比SiO2高,作栅介质时漏电流比SiO2小几个数量级,Si3N4和Si的界面状态良好,不存在过渡层。但Si3N4具有难以克服的硬度和脆性,因此Si3N4并非理想的栅介质材料。 超薄SiOxNy可代替SiO2作为栅介质,这主要是由于SiOxNy的介电常数比SiO2要高,在相同的等效栅氧化层厚度下,SiOxNy的物理厚度大于SiO2,漏电流有所降低。在SiO2-Si界面附近含有少量的氮,这可以降低由热电子引起的界面退化,而且氮可以阻挡硼的扩散。东芝公司2004年采用SiO2作为栅介质,多晶硅为栅极,试制成功等效氧化层厚度(EOT)为1nm的符合22nm工艺要求的

介电常数

实 验 报 告 00系 2007级 姓名 宁盛嵩 日期 2008-11-24 台号 8号台 实验题目:简易介电常数测试仪的设计与制作 88 实验目的: (1)了解多种测量介电常数的方法及其特点和适用范围; (2)掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法; (3)用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 实验原理: 介质材料的介电常数一般采用相对介电常数ε r 来表示,通常采用 测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== (1) 式中ε为绝对介电常数,ε0为真空介电常数,m F /10 85.812 0-?=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 一、替代法 当实验室无专用测量电容的仪器,但有标准可变电容箱或标准可变电容器时,可采用替代法设计一简易的电容测试仪来测量电容。这种方法的优点是对仪器的要求不高,由于引线参数可以抵消,故测量精度只取决于标准可变电容箱或标准可变电容器读数的精度。若待测电容与标准可变电容的损耗相差不大,则该方法具有较高的测量精度。 替代法参考电路如图2.2.6-1(a)所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。将开关K 2打到B 点,让标准电容箱C s 和交流电阻箱R s 替代C x 调节C s 和R s 值,使I s 接近I x 。多次变换开关K 2的位置(A,B 位),反复调节C s 和R s ,使X S I I =。假定C x 上的介电损耗电阻R x

高k材料用作纳米级MOS晶体管栅介质薄层下-微纳电子技术

“半导体技术”2008年第二期趋势与展望 93-高k材料用作纳米级MOS晶体管栅介质薄层(下) 翁妍,汪辉98-塑封微电子器件失效机理研究进展 李新,周毅,孙承松102-光电光窗的封接技术 李成涛,沈卓身技术专栏(新型半导体材料) 106-(Bi3.7Dy0.3)(Ti2.8V0.2)O12铁电薄膜的制备 及退火影响唐俊雄, 唐明华, 杨锋, 等109-掺Al富Si/SiO2薄膜制备及紫外发光特性研究 王国立, 郭亨群113-氧分压对锰掺杂氧化锌结构及吸收性能的影响 杨兵初, 张丽, 马学龙, 等117-升级冶金级Si衬底上ECR-PECVD沉积 多晶Si薄膜崔洪涛, 吴爱民, 秦福文, 等121-用XPS法研究SiO2/4H-SiC界面的组成 赵亮, 王德君, 马继开, 等126-Al在生长InGaN材料中的表面活化效应 袁凤坡, 尹甲运, 刘波, 等器件制造与应用 129-4H-SiC MESFET直流I-V特性解析模型 任学峰, 杨银堂, 贾护军133-6H-和4H-SiC功率VDMOS的比较与分析 张娟, 柴常春, 杨银堂, 等137-智能LED节能照明系统的设计赵玲, 朱安庆141-InP基谐振隧穿二极管的研究 李亚丽,张雄文,冯震,等144-氧化硅在改善双极型晶体管特性上的作用 王友彬,汪辉工艺技术与材料 147-低温退火制备Ti/4H-SiC欧姆接触 陈素华, 王海波, 赵亮, 等151-精密掩模清洗及保护膜安装工艺赵延峰封装、测试与设备 155-测量计算金属-半导体接触电阻率的方法 李鸿渐,石瑛160-热超声倒装过程中的建模和多参量仿真 李丽敏,吴运新,隆志力集成电路设计与开发 164-微波宽带单片集成电路二分频器的 设计与实现陈凤霞,默立冬,吴思汉167-基于分组网络结构NOC的蚁群路由算法 陈青, 郝跃, 蔡觉平171-基于ARM+FPGA的大屏幕显示器 控制系统设计陈炳权176-新型异步树型仲裁器设计 徐阳扬,周端,杨银堂,等179-一种用于高速ADC的采样保持电路的设计 林佳明,戴庆元,谢詹奇,等技术产品专栏 183-飞思卡尔升级高品质车用i.MX应用处理器产业新闻 184-综合新闻

高k材料(精品文档)

高k栅介质材料研究 黄玲10092120107 摘要 在传统的MOSFET中,栅介质材料大部分采用二氧化硅,因为SiO2具有良好的绝缘性能及稳定的二氧化硅—硅衬底界面。然而对于纳米线宽的集成电路,需要高介电常数(高k)的栅极介质材料代替二氧化硅以保持优良的漏电性能。这些栅极候选材料必须有较高的介电常数,合适的禁带宽度,与硅衬底间有良好界面和高热稳定性。此外,其制备加工技术最好能与现行的硅集成电路工艺相兼容。 关键字:高介电常数;MOSFET; 1.引言 过去的几十年中,SiO2容易在硅表面氧化生长,工艺简,单热稳定性好,作为栅介质材料,是一种非常重要的绝缘材料。但随着集成电路规模的不断增大,需要减小器件的特征尺寸。对于给定的电压,增加电容量有两种途径:一种是减小栅绝缘层的厚度,一种是增加绝缘层的介电常数。对于SiO2来说,由于其介电常数较小,只有3. 9 ,当超大规模集成电路的特征尺寸小于0. 1μm时,SiO2绝缘层的厚度必须小于2nm ,这时,无法控制漏电流密度。而且,当SiO2薄膜的厚度小于7nm 时,很难控制这么薄SiO2薄膜的针孔密度。另外SiO2难以扩散一些电极掺杂物,比如硼。薄氧化层带来的另一个问题是,因为反型层量子化和多晶硅栅耗尽效应的存在,使等效电容减小,导致跨导下降。因此,有必要研究一种高介质材料(又叫高- k 材料)来代替传统的SiO2。 2.1传统晶体管结构的瓶颈及转变方向 进入21 世纪以来集成电路线宽进一步缩小,SiO2栅介质层厚度成为首个进入原子尺度的关键参数,由公式 C=ε *ε0* A/Tox, 为了保证CMOS 晶体管的功能特性,增大C,最直接的做法是降低二氧化硅的厚度Tox,然而当Tox很小时会产生以下问题: (1)漏电流增加,使MOSFET功耗增加。(2)杂质扩散更容易通过SiO2栅介质薄膜,从栅极扩散到衬底,影响MOSFET参数,如阈值电压(3)因为反型层量子化和多晶硅栅耗尽效应的存在,使等效电容减小,导致跨导下降。(4)当SiO2栅介质薄膜做到很薄时,难以控制SiO2薄膜的针孔密度。(5)制作如此薄的SiO2栅介质在工艺上很难做到。 于是,在不能再减小Tox的情况下,研究方向转为增大ε,由于SiO2介电常

ZST介电陶瓷的研究

ZST介电陶瓷的研究 摘要:本文以高纯度ZrO2、TiO2、SnO2为主要原料,采用固相合成法获得(Zr0.8Sn0.2)TiO4粉体;然后用传统工艺制备(Zr0.8Sn0.2)TiO4体系陶瓷。同时,研究了NiO 添加剂量分别为0.2wt%和0.4wt%时,ZnO不同加入量对(Zr0.8Sn0.2)TiO4体系介电陶瓷性能的影响。XRD结果表明,掺杂ZnO和NiO的(Zr0.8Sn0.2)TiO4材料,在1180 ℃保温6 h,可以得到单相的ZrTiO4晶体。随着ZnO含量的增加,陶瓷的致密度提高,介电常数升高,介质损耗降低,而随着ZnO含量的继续增加,陶瓷的介电常数反而下降和介质损耗上升。当NiO的加入量为0.4wt%,ZnO的加入量为0.6wt%时,陶瓷的介电常数最大:εmax= 39.185,介质损耗最小:tanδ=1.50×10-4。 关键词:ZST;ZnO;介电陶瓷;性能;研究 1 引言 (Zr1-xSnx)TiO4是由Sn添加到ZrTiO4中形成的固溶体[1],其晶体结构与ZrTiO4相同,掺杂的Sn4+取代了Zr4+的位置。三种阳离子Sn4+、Zr4+和Ti4+随机分布在空间群Pbcn 的4c2位置上。由于这三种阳离子半径相差较大(Sn4+、Zr4+、Ti4+半径分别为0.069 nm、0.072 nm、0.061 nm),氧八面体

有很大的变形,可以有效地抑制其相转变,从而获得了性能较稳定的结构。同时氧八面体空隙中分布的Ti4+、Zr4+使系统具有了较高的介电常数,而Sn4+的引入可以调整Q值。 介电常数是衡量电介质储存电荷能力的参数。电介质材料在没有外场的作用下,其正负电荷的中心通常是重合的,对外也不呈现出极性,在外场作用下,正负中心离开平衡位置,发生相对位移,电荷中心不再重合,形成感生偶极矩,这个过程称为电介质极化。陶瓷介质在电导和极化过程中伴有能量损耗,一部分电场能化为热能,单位时间消耗的能量称为介质损耗。它对化学组分、相结构、相组成等因素很敏感。引起介电陶瓷的损耗机制包括本征损耗、非本征损耗两种机制。本征损耗是由于电介质材料内部的原子、离子或电子的本身振动所引起的损耗,它与材料内部的分子种类、分子结构有关。非本征损耗主要是由晶体中的缺陷、相界、粒界及成分偏析等造成的,可以通过调整陶瓷制备工艺降低材料的非本征损耗。介电常数和介质损耗是衡量介电陶瓷主要的两个性能指标,气孔、玻璃相的含量等是影响性能的主要因素。本文通过掺杂NiO和ZnO,分别考察不同掺杂量对陶瓷的性能和结构的影响。 2 实验内容 2.1 (Zr0.8Sn0.2)TiO4陶瓷的制备 (Zr0.8Sn0.2)TiO4陶瓷的制备工艺流程示意图如图1

Dielectric Constant(介电常数表)超全

ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块 2.4-4.1 ABS RESIN, PELLET丙烯晴-丁二烯-苯乙烯树脂球 1.5-2.5 ACENAPHTHENE二氢苊21 3.0 ACETAL聚甲醛21 3.6 ACETAL BROMIDE溴代乙缩醛二乙醇16.5 ACETAL DOXIME乙二醛肟20 3.4 ACETALDEHYDE乙醛521.8 ACETAMIDE乙酰胺2041 ACETAMIDE乙酰胺8259 ACETANILIDE乙醛22 2.9 ACETIC ACID乙酸20 6.2 ACETIC ACID乙酸2 4.1 ACETIC ANHYDRIDE乙酸酐1921.0 ACETONE丙酮2520.7 ACETONE丙酮5317.7 ACETONE丙酮0 1.0159 ACETONITRILE乙睛 2137.5 ACETOPHENONE苯乙酮2417.3 ACETOXIME丙酮肟-43 ACETYL ACETONE乙酰丙酮2023.1 ACETYL BROMIDE乙酰溴2016.5 ACETYL CHLORIDE乙酰氯2015.8 ACETYLE ACETONE乙酰丙酮2025 ACETYLENE乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE己基甲酮1927.9 ACRYLIC RESIN丙烯酸树脂 2.7 - 4.5 ACTEAL乙醛21.0-3.6 AIR空气1 AIR (DRY)空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL工业酒精16-31 ALKYD RESIN醇酸树脂 3.5-5 ALLYL ALCOHOL丙烯醇1422 ALLYL BROMIDE溴丙烯197.0 ALLYL CHLORIDE烯丙基氯208.2 ALLYL IODIDE碘丙烯19 6.1 ALLYL ISOTHIOCYANATE异硫氰酸丙烯酯1817.2 ALLYL RESIN (CAST)烯丙基脂(CAST) 3.6 - 4.5 ALUMINA氧化铝9.3-11.5 ALUMINA氧化铝 4.5 ALUMINA CHINA氧化铝瓷 3.1-3.9 ALUMINUM BROMIDE溴化铝100 3.4 ALUMINUM FLUORIDE氟化铝 2.2 ALUMINUM HYDROXIDE氢氧化铝 2.2 ALUMINUM OLEATE油酸铝20 2.4 ALUMINUM PHOSPHATE硷式磷酸铝-14 ALUMINUM POWDER铝粉 1.6-1.8 AMBER琥珀 2.8-2.9 AMINOALKYD RESIN酸硬化树脂 3.9-4.2 AMMONIA血氨-5925

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

一种高介电常数X8R型MLCC介质材料及其制备方法

说明书摘要 一种高介电常数X8R型MLCC介质材料及其制备方法,以100重量份的钛酸钡为基材,添加有如下重量份的成分:1.6-2.5份的铌钴化合物;0.722-1.805份的钛铋钠化合物; 1.25- 2.0份的锆钙化合物;1-3份的玻璃粉;0.369-1.2份的Ce、Yb、Dy、Ho的氧化物中的一种或多种复合;0.1-0.25份的碳酸锰。本发明以钛酸钡为基础,添加适量铌钴化合物,易形成“核-壳”结构,这种“核-壳”有利于提高介质材料的介温稳定性,降低材料的容温变化率;适量添加碳酸锰、稀土元素、锆钙化合物为本发明的重点与核心,稀土元素在钛酸钡基介电陶瓷材料中既可以作为施主也可以作为受主进行掺杂改性,能抑制本征氧空位以及其他B位施主掺杂带来的氧空位的迁移,提高材料系统的绝缘电阻率、抗老化性能和抗还原性能,可用于制作银-钯电极和镍电极MLCC。

1、一种高介电常数X8R型MLCC介质材料,其特征在于:以100重量份的钛酸钡为基材,添加有如下重量份的成分: 1.6- 2.5份的铌钴化合物; 0.722-1.805份的钛铋钠化合物; 1.25- 2.0份的锆钙化合物; 1-3份的玻璃粉; 0.369-1.2份的Ce、Yb、Dy、Ho的氧化物中的一种或多种复合; 0.1-0.25份的碳酸锰。 2、如权利要求1所述的一种高介电常数X8R型MLCC介质材料,其特征在于:所述铌钴化合物中Nb/Co原子摩尔比为3-5。 3、如权利要求1所述的一种高介电常数X8R型MLCC介质材料,其特征在于:所述钛铋钠化合物化学式为Bi0.5Na0.5TiO3、Bi0.6Na0.4TiO3或Bi0.4Na0.5TiO3。 4、如权利要求1所述的一种高介电常数X8R型MLCC介质材料,其特征在于:所述锆钙化合物化学式为CaZrO3。 5、如权利要求1所述的一种高介电常数X8R型MLCC介质材料,其特征在于:所述玻璃粉由如下重量份数的成分制得:35-42份Bi2O3、18-24份ZnO、8-12份TiO2、6-10份H3BO3、8-12份SiO2和10-14份Ba(OH)2。 6、一种高介电常数X8R型MLCC介质材料的制备方法,其特征在于:包括如下步骤: (1)将Nb2O5与Co2O3、CoO和Co3O4三者中的至少一种按Nb/Co原子摩尔比3-5进行配比、称量、混合、过筛并于800-900℃煅烧,球磨、烘干获得铌钴化合物; (2)按化学式Bi0.5Na0.5TiO3、Bi0.6Na0.4TiO3或Bi0.4Na0.5TiO3的要求对TiO2、Na2O、Bi2O3进行配比,制得Bi0.5Na0.5TiO3、Bi0.6Na0.4TiO3或Bi0.4Na0.5TiO3; (3)按化学式CaZrO3的要求对CaO和ZrO2进行配比、称量、混合、过筛并于1150-1200℃煅烧,球磨、烘干获得CaZrO3; (4)按如下重量份数对35-42份Bi2O3、18-24份ZnO、8-12份TiO2、6-10份H3BO3、8-12份SiO2和10-14份Ba(OH)2进行配比、称量、混合、过筛并于1200℃熔融后水淬,磨细过筛,制得玻璃粉; (5)以100重量份的钛酸钡为基材,添加有如下重量份的成分1.6-2.5份的铌钴化合物、0.722-1.805份的钛铋钠化合物、1.25-2.0份的锆钙化合物、1-3份的玻璃粉、0.369-1.2

低介电常数材料论文

低介电常数材料的特点、分类及应用 胡扬 摘要: 本文先介绍了低介电常数材料(Low k Materials)的特点、分类及其 在集成电路工艺中的应用。指出了应用低介电常数材料的必然性,举例说明了低介电常数材料依然是当前集成电路工艺研究的重要课题,并展望了其发展前景。正文部分综述了近年研究和开发的low k材料,如有机和无机低k材料,掺氟低k材料,多孔低k材料以及纳米低k材料等,评述了纳米尺度微电子器件对低k 薄膜材料的要求。最后特别的介绍了一种可能制造出目前最小介电常数材料的技术: Air-Gap。 关键词:低介电常数;聚合物;掺氟材料;多孔材料;纳米材 料 ;Air-Gap 1.引言 随着ULSI器件集成度的提高,纳米尺度器件内部金属连线的电阻和绝缘介质层的电容所形成的阻容造成的延时、串扰、功耗就成为限制器件性能的主要因素,微电子器件正经历着一场材料的重大变革:除用低电阻率金属(铜)替代铝,即用低介电常数材料取代普遍采用的SiO2(k:3.9~4.2)作介质层。对其工艺集成的研究,已成为半导体ULSI工艺的重要分支。 这些低k材料必须需要具备以下性质:在电性能方面:要有低损耗和低泄漏电流;在机械性能方面:要有高附着力和高硬度;在化学性能方面:要有耐腐蚀和低吸水性;在热性能方面:要有高稳定性和低收缩性。 2.背景知识 低介电常数材料大致可以分为无机和有机聚合物两类。目前的研究认为,降低材料的介电常数主要有两种方法: 其一是降低材料自身的极性,包括降低材料中电子极化率(electronic polarizability),离子极化率(ionic polarizability)以及分子极化率(dipolar polarizability)。在分子极性降低的研究中,人们发现单位体积中的分子密度对降低材料的介电常数起着重要作用。材料分子密度的降低有助于介电常数的降低。这就是第二种降低介电常数的方法:增加材料中的空隙密度,从而降低材料的分子密度。 针对降低材料自身极性的方法,目前在0.18mm技术工艺中广泛采用在二氧化硅中掺杂氟元素形成FSG(氟掺杂的氧化硅)来降低材料的介电常数。氟是具有强负电性的元素,当其掺杂到二氧化硅中后,可以降低材料中的电子与离子极化,

LTCC微波介电陶瓷知识介绍

概念: LTCC低温共烧陶瓷技术是于1982年由休斯公司开发的新型材料技术,它采用厚膜材料,根据预先设计的结构,将电极材料、基板、电子器件等一次性烧成,是一种用于实现高集成度、高性能电路封装技术,普遍应用于多层芯片电路模块化设计中。 工艺流程: 从国内外技术的应用领域来看,主要应用于以下几个方面: 一、高频无线通讯领域:基于材料具有优异的高频性能,同时还具有低成本、高集成度等特点 二、航空、航天工业领域,例如,美国的空间系统制造公司,为满足通讯卫星上控制电路。产线宽,每层个以上通孔的一组件的电路要求,选用了杜邦公司的材料技术。 三、存储器、驱动器、滤波器、传感器等电子元器件领域可以通过埋植内电容、内电感等形成三维结构,缩小电路体积,提高电性能。日本太阳诱电公司采用插人应力释放层的方法,研制出了。规格的片式叠层组合元件。 以LTCC技术制造片式滤波器,陶瓷材料应具备以下几个要求: ①烧结温度应低于950℃ ②介电常数和介电损耗适当,一般要求值越大越好,谐振频率的温度系数应小 ③陶瓷与内电极材料等无界面反应,扩散小,相互之间共烧要匹配 ④粉体特性应利于浆料配制和流延成型等。 3.2L TCC技术的主要优点 LTCC技术除了在成本和集成封装方面的优势外,在布线线宽和线间距、低 阻抗金属化、设计的多样性、器件可靠性及优良的高频性能等方面都具备许多其 它基板技术所没有的优点 (1)LTCC技术结合了共烧技术和厚膜技术的优点,减少了昂贵、重复的烧结过程,所有电路被叠层热压并一次烧结,印制精度高,多层基板生瓷带可进行逐步检查,方便灵活,有利于生产效率的提高,降低了成本。 (2)LTCC技术可使每一层电路单独设计而不需要很高成本,能使多种电路封装在同一多层结构中,可集成数字、模拟、射频、微波及内埋置无源元件,降低了组装复杂程度。由于使用嵌入元件而不是线路板上的表面贴装元件,模块尺寸减小20%~40%,系统成本更低。采用LTCC工艺可实现无源器件的高度集成,减少了表面安装元件的数量,提高了布线密度,减少了引线连接与焊点的数目,提高了电路的可靠性。

常见介电常数

Material物质名* 温度(°C) 介电常数 ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块2.4-4.1 ABS RESIN, PELLET 丙烯晴-丁二烯-苯乙烯树脂球1.5-2.5 ACENAPHTHENE 二氢苊21 3.0 ACETAL 聚甲醛21 3.6 ACETAL BROMIDE 溴代乙缩醛二乙醇16.5 ACETAL DOXIME 乙二醛肟20 3.4 ACETALDEHYDE 乙醛5 21.8 ACETAMIDE 乙酰胺20 41 ACETAMIDE 乙酰胺82 59 ACETANILIDE 乙醛22 2.9 ACETIC ACID 乙酸20 6.2 ACETIC ACID 乙酸2 4.1 ACETIC ANHYDRIDE 乙酸酐19 21.0 ACETONE 丙酮25 20.7 ACETONE 丙酮53 17.7 ACETONE 丙酮0 1.0159 ACETONITRILE 乙睛21 37.5 ACETOPHENONE 苯乙酮24 17.3 ACETOXIME 丙酮肟-4 3 ACETYL ACETONE 乙酰丙酮20 23.1 ACETYL BROMIDE 乙酰溴20 16.5 ACETYL CHLORIDE 乙酰氯20 15.8 ACETYLE ACETONE 乙酰丙酮20 25 ACETYLENE 乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE 己基甲酮19 27.9 ACRYLIC RESIN 丙烯酸树脂2.7 - 4.5 ACTEAL 乙醛21.0-3.6 AIR 空气1 AIR (DRY) 空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL 工业酒精16-31 ALKYD RESIN 醇酸树脂3.5-5 ALLYL ALCOHOL 丙烯醇14 22 ALLYL BROMIDE 溴丙烯19 7.0 ALLYL CHLORIDE 烯丙基氯20 8.2 ALLYL IODIDE 碘丙烯19 6.1 ALLYL ISOTHIOCYANATE 异硫氰酸丙烯酯18 17.2 ALLYL RESIN (CAST) 烯丙基脂(CAST) 3.6 - 4.5 ALUMINA 氧化铝9.3-11.5 ALUMINA 氧化铝4.5 ALUMINA CHINA 氧化铝瓷3.1-3.9 ALUMINUM BROMIDE 溴化铝100 3.4 ALUMINUM FLUORIDE 氟化铝2.2 ALUMINUM HYDROXIDE 氢氧化铝2.2 ALUMINUM OLEATE 油酸铝20 2.4 ALUMINUM PHOSPHATE 硷式磷酸铝-14 ALUMINUM POWDER 铝粉1.6-1.8 AMBER 琥珀2.8-2.9 AMINOALKYD RESIN 酸硬化树脂3.9-4.2 AMMONIA 血氨-59 25 DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表Material 物质名* 温度(°C) 介电常数DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表AMMONIA 血氨-34 22 AMMONIA 血氨4 18.9 AMMONIA 血氨21 16.5 AMMONIA (GAS? ) 血氨(气体)0 72 AMMONIUM BROMIDE 溴化铵7.2 AMMONIUM CHLORIDE 氯化铵7 AMYL ACETATE 醋酸戊酯20 5 AMYL ALCOHOL 戊醇-118 35.5 AMYL ALCOHOL 戊醇20 15.8 AMYL ALCOHOL 戊醇60 11.2 AMYL BENZOATE 苯甲酸戊酯20 5.1 AMYL BROMIDE 溴化环戊烷10 6.3 AMYL CHLORIDE 戊基氯11 6.6 AMYL ETHER 戊基醚16 3.1 AMYL FORMATE 甲酸戊基19 5.7 AMYL IODIDE 碘化戊基17 6.9 AMYL NITRATE 硝酸戊基17 9.1 AMYL THIOCYANATE 硫氰酸盐戊基20 17.4 AMYLAMINE 戊胺22 4.6 AMYLENE 戊烯21 2 AMYLENE BROMIDE 溴戊烯14 5.6 AMYLENETETRARARBOXYLATE 19 4.4 AMYLMERCAPTAN 戊基硫醇20 4.7 ANILINE 苯胺0 7.8 ANILINE 苯胺20 7.3 ANILINE 苯胺100 5.5 ANILINE FORMALDEHYDE RESIN 苯氨-甲醛树脂3.5 - 3.6 ANILINE RESIN 苯胺树脂3.4-3.8 ANISALDEHYDE 茴香醛20 15.8 ANISALDOXINE 茴香肟63 9.2 ANISOLE 苯甲醚20 4.3 ANITMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY PENTACHLORIDE 五氯化锑20 3.2 ANTIMONY TRIBROMIDE 三溴化锑100 20.9 ANTIMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY TRICHLORIDE 三溴化锑74 33 ANTIMONY TRICODIDE 三碘化锑175 13.9 APATITE 磷灰石7.4 ARGON 氩-227 1.5

折射率与介电常数之间的关系

折射率与介电常数之间的关系 1 可见光和金属间的相互作用 可见光入射金属时,其能是可被金属表层吸收,而激发自由电子,使之具有较高的能态。当电子由高能态回到较低能态时,发射光子。金属是不透光的,故吸收现象只发生在金属的厚约 100nm 的表层内,也即金属片在 100nm 以下时,才是“ 透明” 的。只有短波长的X -射线和γ -射线等能穿过一定厚度的金属。所以,金属和可见光间的作用主要是反射,从而产生金属的光泽。 2 可见光和非金属间的作用 1) 折射 当光线以一定角度入射透光材料时,发生弯折的现象就是折射 ( Refraction ),折射指数n 的定义是: 光从真空进入较致密的材料时,其速度降低。光在真空和材料中的速度之比即为材料的折射率。 如果光从材料 1 ,通过界面进入材料 2 时,与界面法向所形成的入射角、折射角与材料的折射率、有下述关系:

介质的折射率是永远大于 1 的正数。如空气的 n=1.0003 ,固体氧化物 n=1.3 ~ 2.7 ,硅酸盐玻璃 n=1.5 ~ 1.9 。不同组成、不同结构的介质,其折射率不同。 影响 n 值的因素有下列四方面: a) 构成材料元素的离子半径 根据 Maxwell 电磁波理论,光在介质中的传播速度应为: μ 为介质的导磁率, c 为真空中的光速,ε 为介质的介电常数,由此可得: 在无机材料这样的电介质中,μ = 1 ,故有 说明介质的折射率随其介电常数的增大而增大。而介电常数则与介质极化有关。由于电磁辐射和原子的电子体系的相互作用,光波被减速了。

当离子半径增大时,其介电常数也增大,因而 n 也随之增大。因此,可以用大离子得到高折射率的材料,如 PbS 的 n=3.912 ,用小离子得到低折射率的材料,如 SiCl 4 的 n=1.412 。 b) 材料的结构、晶型和非晶态 折射率还和离子的排列密切相关,各向同性的材料,如非晶态(无定型体)和立方晶体时,只有一个折射率 (n 0 ) 。而光进入非均质介质时,一般都要分为振动方向相互垂直、传播速度不等的两个波,它们分别有两条折射光线,构成所谓的双折射。这两条折射光线,平行于入射面的光线的折射率,称为常光折射率 (n 0 ) ,不论入射光的入射角如何变化,它始终为一常数,服从折射定律。另一条垂直于入射面的光线所构成的折射率,随入射光的方向而变化,称为非常光折射率 (n e ) ,它不遵守折射定律。当光沿晶体光轴方向入射时,只有 n 0 存在,与光轴方向垂直入射时, n e 达最大值,此值为材料的特性。 规律:沿着晶体密堆积程度较大的方向 n e 较大。 c) 材料所受的内应力 有内应力的透明材料,垂直于受拉主应力方向的 n 大,平行于受拉主应力方向的 n 小(提问:为什么?)。 规律:材料中粒子越致密,折射率越大。

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯pvc 3 173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

相关文档
最新文档