点的应力状态

合集下载

描述空间一点的应力状态需要的应力分量

描述空间一点的应力状态需要的应力分量

描述空间一点的应力状态需要的应力分量应力是描述物体内部力状态的物理量,是单位面积上作用的力,是力对单位面积的作用力。

在空间中,一个点的应力状态可以用应力张量来描述。

应力张量是一个三维矩阵,包含了物体在三个坐标轴上的应力分量。

在三维空间中,一个点的应力状态可以用6个应力分量来描述,分别是xx分量(σxx)、yy分量(σyy)、zz分量(σzz)、xy分量(τxy)、xz分量(τxz)和yz分量(τyz)。

在应力张量中,对角线上的分量(σxx、σyy和σzz)是正应力分量,表示物体沿着各坐标轴方向的内部拉伸或压缩情况。

xz分量(τxz)和yx分量(τyx)是剪应力分量,表示物体在xz和yx平面上的内部剪切力情况。

yz分量(τyz)和xy分量(τxy)也是剪应力分量,表示物体在yz和xy平面上的内部剪切力情况。

应力分量的正负号表示该点的应力状态是拉伸还是压缩,正号表示拉伸,负号表示压缩。

如果某个应力分量为0,则表示该方向上不存在内部拉伸或压缩力。

应力分量的大小表示该方向上的内部力大小。

在实际应用中,应力分量可以通过力分析、力学实验或数值模拟等方法来确定。

不同材料和结构在不同应力状态下会有不同的应力分量,因此我们需要根据具体情况来确定应力分量。

在工程中,应力分量的大小和方向对材料的强度、稳定性和变形等性能有影响。

因此,了解和掌握应力分量的性质和变化规律对设计和优化结构非常重要。

总之,描述空间一点的应力状态需要的应力分量包括正应力分量和剪应力分量,正应力分量描述物体沿各坐标轴方向的内部拉伸或压缩情况,剪应力分量描述物体在不同平面上的内部剪切力情况。

应力分量的大小和方向对材料的性能有重要影响,因此需要根据具体情况来确定应力分量。

应力状态分析

应力状态分析

0 67.5o
HOHAI UNIVERSITY
思考题: 一个单元体中最大正应力所在面上的切应力是否 一定为零?最大切应力所在面上的正应力是否也一 定为零? τ
D2 A2 C D1 2α0
O
A1
σ
HOHAI UNIVERSITY
§5-3
基本变形杆件的应力状态分析
一、拉压杆件应力状态分析
分析单向受拉杆件中任一点的应力状态
应力状态分类: 单向应力状态: 一个主应力不为零的应力状态 二向应力状态: 两个主应力不为零的应力状态
平面应力 状态 空间应 力状态
三向应力状态: 三个主应力都不为零的应力状态 复杂应力状态: 二向和三向应力状态的统称
纯切应力状态:只有切应力,没有正应力
HOHAI UNIVERSITY
弯曲时工字形截面各点应力状态:
0 67.5o
主应力单元体为
HOHAI UNIVERSITY 3MPa
2.应力圆求解
1 0 67.5o
6MPa
x 6MPa
y 0
3
τ
x 3MPa
1 1.24MPa
D2
A2 C D1 O A1
2 0
σ
2α0
3 7.24MPa
2 0 135o
HOHAI UNIVERSITY
二、应力圆 σα= τα= σx +σy
2 σx -σy
2 σα-
+
σx -σy
2
cos2α -τxsin2α
sin2α +τxcos2α
σx +σy
2 τα=
=
σx -σy 2 σx -σy
cos2α -τxsin2α

工程力学7第七章应力状态和应变状态分析

工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布





• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y

y

y
y
y
n
y

x
a
x

e
d
x

x
x
bz
x
x

x
e
x
x




y


f
yy
x
x

b


c
y

y

y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2

第8章 点的应力状态

第8章 点的应力状态

第八章 点的应力状态
三. 平面应力状态中的正应力 极值和剪应力极值
第八章 点的应力状态
本节将对平面应力公式
2 σ xx+σ yy σ xx-σ yy + σ α= cos2α-τ xy sin2α xy α 2 2 进行讨论,主要内容有:
(1)平面应力状态中的正应力极值和极值面方位 以及正应力极值面上的剪应力; (2)平面应力状态中的剪应力极值和极值面方位 以及剪应力极值面上的正应力.
第八章 点的应力状态
(4) σmax× σmin可大于或小于零,也可等于零. 对于前两种情况, 称原 单元体为平面应力或二 单元体为 向应力状态;对后一种情 况,称原单元体为单向应 力状态. 若构件上某点是平面 应力状态,则描述该点应 力状态的单元体有无数 多个,但该点的主单元体 表述却是唯一的,这是一 种既简单且又能反映一 点应力状态本质内涵的 表述. 只要知道某点应力的 一个单元体表述,就能 找到它的主单元体表述.
第八章 点的应力状态
由四个主平面围成的单元体称为原单元体的主 单元体,在主单元体上剪应力为零。若围绕研 究点取出的是它的主单元体,则称该点的应力 表述为主单元体表述或主应力表述。 2τ xy kπ 1 − arctan ; k = 0,±1,±2 主方向角 α p = σ x −σ y 2 2
⎛ 2 τ xy ⎞ ⎛ 2 τ xy ⎞ tan 2 2α p 1 2 (3) 主应力: 将 tan 22α pp=⎜⎜ cos 2α p = ± ; sin 2α p = ± ⎟ tan 2α =⎜ ⎟ 2 ⎜ σ x − σ y ⎟代入 ⎟ 1 + tan 2α p 1 + tan 2 2α p ⎝ σ x −σ y ⎠ ⎝ ⎠
第八章 点的应力状态

材料力学第8章应力状态分析

材料力学第8章应力状态分析

点。设想以A点为中心,用相互垂直的6个截面截取一个边长无限小的立方
体,我们将这样的立方体称为单元体。取决于截取平面的倾角变化,围绕同 一个点,可以截取出无数个不同的单元体,
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形式),而 图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉伸时,横 截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图8.1(b) 中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的单元体, 根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力又有切应 力。
又有切应力。围绕A,B,C三点截取单元体如图8.2(d)所示,单元体的前后
两面为平行于轴线的纵向截面,在这些面上没有应力,左右两面为横截面的 一部分,根据切应力互等定理,单元体B和C的上下两面有与横截面数值相等
的切应力。至此,单元体各面上的应力均已确定。注意到图8.2(d)各单元
体前后面上均无应力,因此也可用其平面视图表示(见图8.2(e))。
图8.2
从受力构件中截取各面应力已知的单元体后,运用截面法和静力平衡条件, 可求出单元体任一斜截面上的应力,从而可以确定出极值应力。
围绕构件内一点若从不同方向取单元体,则各个截面的应力也各不相同。其
中切应力为零的截面具有特殊的意义,称为主平面;主平面上的正应力称为 主应力。一般情况下,过构件内任一点总能找到3个互相垂直的主平面,因
图8.3
运用截面法可以求出与 z 截面垂直的任意斜截面 ac 上的应力(见图 8.3
( a ))。设斜截面 ac 的外法线 n 与 x 轴的夹角为 α (斜截面 ac 称 为 α 截面),并规定从 x 轴正向逆时针转到斜截面外法线 n 时 α 角为正

点应力状态概念及其表示方法

点应力状态概念及其表示方法

一点应力状态概念及其表示方法凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。

因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。

例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力;图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。

2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。

应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。

如图8-3是通过轴向拉伸杆件内点不同(方向)截面上的应力情况(集合)3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。

如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。

特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

§8-2平面应力状态的工程实例1.薄壁圆筒压力容器为平均直径,为壁厚由平衡条件得轴向应力:(8-1a)图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面)由平衡条件或, 得环向应力:(8-1b)2.球形贮气罐(图8-6)由球对称知径向应力与纬向应力相同,设为对半球写平衡条件:得(8-2)3.弯曲与扭转组合作用下的圆轴4.受横向载荷作用的深梁§8-3平面一般应力状态分析——解析法空间一般应力状态如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。

1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。

由剪应力互等定理,有:,,。

2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。

3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。

(精品)一点的应力状态-经典

(精品)一点的应力状态-经典

t 30 0
b
解:x 1 0 M P a, y 3 0 M P a
t t x y 2 0 M P a , y x 2 0 M P a , 30
x
20MPa
x 2 y x 2 yco s2 txysin2
1 0 3 0 1 0 3 0 c o s6 0 2 0 sin 6 0
3 0
2
2
第七章
应力状态分 析
7.1 应力状态的概述 7.2 平面应力状态分析——解析法 7.3 平面应力状态分析——图解法 7.4 三向应力状态 7.5 广义虎克定律
§7-1 应力状态的概述 一、什么是应力状态? 二、为什么要研究应力状态? 三、如何描述一点的应力状态?
一、什么是应力状态? 应力的点
应力的面
(一)、应力的点的概念:
tm
a
T
x
tm
a
t
T
Ip
x
(实心截面)
M y
Mz
Iz
FQ
t
F
S
S
* z
bI z
横截面上的正应力分布
横截面上的切应力分布
结果表明:
同一面上不同点的应力各不相同,即应力的点的概念。
(二)应力的面的概念
FP
FP
FP
FP
F
F
A
F
co2s
t
t
2
sin2
过同一点不同方向面上的应力各不相同, 即应力的面的概念
x y 0
t xy t
(2)求主应力
m mainxx 2y
x
y
2
2
t
2 xy
1
t
1 t

同一点应力状态的三个主应力数值

同一点应力状态的三个主应力数值

同一点应力状态的三个主应力数值在力学中,应力是指物体内部受到的力的作用。

在三维空间中,一个点的应力状态可以由三个主应力来描述,分别为最大主应力、中间主应力和最小主应力。

无论力的方向如何,应力状态在一个点处总是具有对称性,即主应力方向相互垂直且大小按由大到小的顺序排列。

应力状态越复杂,三个主应力的差异也越大。

最大主应力是应力变化中最强的。

如果一个物体承受一条单向载荷,最大主应力就在这个方向上。

而如果一个圆柱体在一个向上的载荷下,最大主应力将位于圆柱体底部。

中间主应力表示两个最大和最小主应力之间的应力。

在一个均匀的球形体受到的压力相等时,中间主应力的值等于零。

最小主应力是应力状态中最弱的。

最小主应力的值与应力最强的方向相垂直。

在一个圆柱体上,最小主应力位于圆柱体的侧面上。

三个主应力的数值可以用数学公式来计算。

一个三维应力状态可用一个张量来描述,它被称为应力张量。

应力张量可以表示为一个3×3的矩阵,其中每个元素代表一个分量。

根据线性代数,应力张量可对称分解为三个正交矩阵,每个矩阵对应一个主应力方向和大小。

最大主应力的大小等于应力张量的最大特征值,中间主应力的大小则等于次大特征值,而最小主应力的大小就等于最小特征值。

三个主应力的数值决定了一个物体在应力下的断裂点。

在工程学中,登录这些应力的值非常重要。

例如,在地震工程中,地震的荷载将产生最大主应力,因此可以在修建建筑物之前对地震的强度进行评估。

在地质工程中,岩石层的抗拉强度对于油气开采来说是非常重要的,而最小主应力决定了产储层中的裂缝走向。

总之,同一点的三个主应力的数值是描述物体应力状态必不可少的三个参数。

通过计算这些值,可以更好地理解物体在不同应力下的响应和行为,从而有助于进行工程设计、地震评估、油气勘探等应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)单向应力状态。 三个主应力中仅一个不为零,称单向应力状态,又称 为简单应力状态。
点的应力状态
(3)二向应力状态。 三个主应力中,有两个不为零,称为二向应力状态。 单向和二向应力状态统称为平面应力状态。 (4)三向应力状态。 间
应力状态。 二向应力状态和三向应力状态统称为复杂应力状态。
工程力学
点的应力状态
1. 应力状态的概念
应力是相对点、截面而言的。就是说,一般 情况下,不同点其应力不同;同一点在过这点不 同方位的截面上,其应力也不相同。把受力物体 内一点处在所有截面上应力状况的全体称为该点 的应力状态。由一点处某些已知截面上的应力确 定其他截面上的应力及其变化规律的过程,称为 该点的应力状态分析。
点的应力状态
2. 应力状态的研究方法
点的应力状态是通过单元体来研究的。通常是假想围绕 该点取出一个边长无限小的正六面单元体,并认为各面上及 其任何斜截面上的应力都是均匀分布的。在单元体两个相对 平行面上的应力等值反向;在两个相互垂直的面上,切应力 满足切应力互等定理。
单元体通常取法是以一对横截面和两对相互垂直的纵 截面截取,因为横截面上的应力是确定的。单元体各面上的 应力一旦确定,其任意斜截面上的应力可用截面法和平衡条 件来确定。可见,一点的应力状态完全可用该点的单元体各 面上的应力来描述。
点的应力状态
应力状态分析是强度计算的基础。前面研究的 是基本变形情况下的横截面上的应力及横截面的强度 条件。例如,前面曾研究过拉(压)杆斜截面上的应力, 这就回答了低碳钢为什么在拉至屈服时,表面出现与 轴线成45°的滑移线;圆轴铸铁杆在扭转时,为什么 会沿45°螺旋线面破坏,以及复杂应力状态下如何判 断其破坏形式和建立相应的强度条件等,就需要通过 应力状态分析来解决。
【例9-1】
点的应力状态
点的应力状态
点的应力状态
图9-1
点的应力状态
3. 应力状态分类
(1)主平面、主应力。 单元体上切应力为零的截面称为主平面;主平面上的 正应力称为主应力。 弹性理论已证明,构件内任意点均存在三个互相垂直 的主平面,每点都有三个主应力。这三个主应力按代数值由 大到小顺序是σ1、σ2、σ3,即σ1≥σ2≥σ3。
工程力学
相关文档
最新文档