水力计算案例分析

合集下载

水力计算案例分析解答

水力计算案例分析解答

案例一 年调节水库兴利调节计算要求:根据已给资料推求兴利库容和正常蓄水位。

资料:(1) 设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1,渗漏损失以相应月库容的1%计。

(2) 水库面积曲线和库容曲线如下表2。

(3) V 死 =300万m 3。

表1 水库来、用水及蒸发资料 (P=75%)表2 水库特性曲线解:(1)在不考虑损失时,计算各时段的蓄水量由上表可知为二次运用,)(646031m V 万=,)(188032m V 万=,)(117933m V 万=,)(351234m V 万=,由逆时序法推出)(42133342m V V V V 万兴=-+=。

采用早蓄方案,水库月末蓄水量分别为:32748m 、34213m 、、34213m 、33409m 、32333m 、32533m 、32704m 、33512m 、31960m 、3714m 、034213m经检验弃水量=余水-缺水,符合题意,水库蓄水量=水库月末蓄水量+死V ,见统计表。

(2)在考虑水量损失时,用列表法进行调节计算: 121()2V V V =+,即各时段初、末蓄水量平均值,121()2A A A =+,即各时段初、末水面积平均值。

查表2 水库特性曲线,由V 查出A 填写于表格,蒸发损失标准等于表一中的蒸发量。

蒸发损失水量:蒸W =蒸发标准⨯月平均水面面积÷1000渗漏损失以相应月库容的1%,渗漏损失水量=月平均蓄水量⨯渗漏标准 损失水量总和=蒸发损失水量+渗漏损失水量 考虑水库水量损失后的用水量:损用W W M +=多余水量与不足水量,当M W -来为正和为负时分别填入。

(3)求水库的年调节库容,根据不足水量和多余水量可以看出为两次运用且推算出兴利库容)(44623342m V V V V 万兴=-+=,)(476230044623m V 万总=+=。

(4)求各时段水库蓄水以及弃水,其计算方法与不计损失方法相同。

排水系统水力计算例题

排水系统水力计算例题

排水系统水力计算例题例题:某一30层商住楼,五层以下为商场,以上为住宅。

现有一根排水总立管,承接住宅的10根排水立管,其中PL-1、PL-3和PL-6每层承接有洗涤盆和洗衣机的排水,PL-10每层只承接洗涤盆的排水;PL-5、PL-8每层承接有浴盆、坐便器及洗脸盆的排水,PL-2、PL-4、PL-6和PL-9每层承接有蹲便器及洗脸盆的排水。

排水平面大样及系统原理图如图所示。

试进行水力计算,以确定各管段的管径和坡度。

解:由于为高层建筑,排水管采用机制排水铸铁管。

计算方法采用:排水横支管采用最小管径法确定各管段的管径和坡度;立管(包括总立管)采用临界流量法确定管径,且立管管径不发生变化;横干管及排出管采用水力计算法确定各管段的管径和坡度。

一、排水横支管的计算根据规范第4.4.12至4.4.15和4.4.9之规定,可确定出下列排水横支管各管段的管径和坡度:1.厨房洗涤盆排水管:DN75,坡度0.02 2.厨房洗衣机地漏排水管:DN50,坡度0.03 3.卫生间洗脸盆排水管:DN50,坡度0.03 4.卫生间浴盆排水管:DN50,坡度0.03 5.卫生间大便器排水管:DN100,坡度0.02 二、排水立管的计算由于立管的管径一般不变化,因此计算时按立管最大设计秒流量不超过规范4.4.11表中的通水能力确定管径。

1.确定秒流量计算公式m a x m a x 18.012.0q N q N q p p p +=+=α 其中α=1.52.各卫生器具当量数 洗涤盆:N p =1洗衣机地漏:N p =1.5 洗脸盆:N p =0.75低水箱坐便器:N p =6.0 蹲便器:N p =4.5 浴盆:N p =3.0三、排水横干管、立管及排出管的计算1.进行管段编号,如图所示。

2.列表,主要有:管段编号、当量总数、设计秒流量、管径、坡度、排水流量、备注等。

3.水力计算(1)设计秒流量计算,方法同上(2)确定管径、坡度根据设计秒流量,依据排水横管水力计算的4个规定,通过查表的形式,确定出各管段的管径和坡度。

河岸溢洪道水力计算实例

河岸溢洪道水力计算实例

河岸溢洪道水力计算实例一﹑ 资料及任务某水库的带胸墙的宽顶堰式河岸溢洪道,用弧形闸门控制泄流量,如图15.7所示。

溢洪道共三孔,每孔净宽10米。

闸墩墩头为尖圆形,墩厚2米。

翼墙为八字形,闸底板高程为33.00米。

胸墙底部为圆弧形,圆弧半径为0.53米,墙底高程为38.00米。

闸门圆弧半径为7.5米,门轴高程为38.00米。

闸后接第一斜坡段,底坡1i =0.01,长度为100米。

第一斜坡段后接第二斜坡段,底坡i 2=1:6,水平长度为60米。

第二斜坡段末端设连续式挑流坎,挑射角=α25°。

上述两斜坡段的断面均为具有铅直边墙,底宽B 1=34米的矩形断面,其余尺寸见图15.7。

溢洪道用混凝土浇筑,糙率n=0.014。

溢洪道地基为岩石,在闸底板前端设帷幕灌浆以防渗。

水库设计洪水位42.07米,校核洪水位为42.40米,溢洪道下游水位与流量关系曲线见图15.8。

当溢洪道闸门全开,要求: 1. 1.绘制库水位与溢洪道流量关系曲线; 2. 2.绘制库水位为设计洪水位时的溢洪道水面曲线; 3. 3.计算溢洪道下游最大冲刷坑深度及相应的挑距。

图7图8二﹑ 绘制库水位与溢洪道流量关系曲线 (一)确定堰流和孔流的分界水位宽顶堰上堰流和孔流的界限为=H e 0.65。

闸门全开时,闸孔高度e =38.0-33.0=5.0米,则堰流和孔流分界时的相应水头为H =7.765.00.565.0==e 米堰流和孔流的分界水位=33.0+7.7=40.7米。

库水位在40.7米以下按堰流计算;库水位在40.7米以上按孔流计算。

(二)堰流流量计算堰流流量按下式计算:2/302H g mB Q σε=式中溢流宽度B=nb=3×10=30米。

因溢洪道上游为水库,0v ≈0则0H ≈H 。

溢洪道进口上游面倾斜的宽顶堰,上游堰高a=33.0-32.5=0.5米,斜面坡度为1:5,则θctg =5(θ为斜面与水平面的夹角),宽顶堰流量系数m 可按H a及ctg θ由表11.7查得;侧收缩系数ε按下式计算:=ε1-0.2[(n -1)k ζζ+0]nb H 0其中孔数n=3;对尖圆形闸墩墩头,=0ζ0.25;对八字形翼墙,=k ζ0.7。

各种堰流各种条件下水力计算解析及实例pxs

各种堰流各种条件下水力计算解析及实例pxs

宽顶堰流的水力计算如图所示,水流进入有底坎的堰顶后,水流在垂直方向受到堰坎边界的约束,堰顶上的过水断面缩小,流速增大,势能转化为动能。

同时堰坎前后产生的局部水头损失,也导致堰顶上势能减小。

所以宽顶堰过堰水流的特征是进口处水面会发生明显跌落。

从水力学观点看,过水断面的缩小,可以是堰坎引起,也可以是两侧横向约束引起。

当明渠水流流经桥墩、渡槽、隧洞〈或涵洞)的进口等建筑物时,由于进口段的过水断面在平面上收缩,使过水断面减小,流速加大,部分势能转化为动能,也会形成水面跌落,这种流动现象称为无坎宽顶堰流,仍按宽顶堰流的方法进行分析、计算。

(一)流量系数宽顶堰的流量系数取决于堰的进口形状和堰的相对高度,不同的进口堰头形状,可按下列方法确定。

1、进口堰头为直角(8-22)2、进口堰头为圆角(8-23)3、斜坡式进口流量系数可根据及上游堰面倾角由表选取。

在公式(8-22)、(8-23)中为上游堰高。

当≥3时,由堰高引起的水流垂向收缩已达到相当充分程度,故计算时将不考虑堰高变化的影响,按=3代入公式计算值。

由公式可以看出,宽顶堰的流量系数的变化范围在0.32~0.385之间,当=0时,=0.385,此时宽顶堰的流量系数值最大。

比较一下实用堰和宽顶堰的流量系数,我们可以看到前者比后者大,也就是说实用堰有较大的过水能力。

对此,可以这样来理解:实用堰顶水流是流线向上弯曲的急变流,其断面上的动水压强小于按静水压强规律计算的值,即堰顶水流的压强和势能较小,动能和流速较大,故过水能力较大;宽顶堰则因堰顶水流是流线近似平行的渐变流,其断面动水压强近似按静水压强规律分布,堰顶水流压强和势能较大,动能和流速较小,故过水能力较小。

(二)侧收缩系数宽顶堰的侧收缩系数仍可按公式(8-21)计算。

(三)淹没系数当堰下游水位升高到影响宽顶堰的溢流能力时,就成为淹没出流。

试验表明:当≥0.8时,形成淹没出流。

淹没系数可根据由表查出。

无坎宽顶堰流在计算流量时,仍可使用宽顶堰流的公式。

课程设计(水力计算)分析

课程设计(水力计算)分析

目錄一、水资源规划及利用课程设计任务书⋯⋯⋯⋯⋯⋯⋯ P3~P6二、水文计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P7~P101、径流剖析算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P7~P82、洪水及程的推求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P8~P9`3、典型洪水⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P9~P104、放大典型洪水程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P10~P11 三、兴利调理计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ P11~P14 1.制水位 -容曲⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ P11 2.不算水量失⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P11(1)求利容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P11(2)确立正常高水位⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P113.考虑水量损失机⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P12(1)利容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ P12(2)正常高水位⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ P12四、防洪计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P12~P141、水洪助曲算程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P12~P132、洪演算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯P13~P143、求洪水位,校核洪水位、洪容、洪容和最大下泄量五、水库水能计算⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ P14~P15 六、参照书本⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ P16设计任务和要求1、设计任务某一综合利用的水库水电站水文与水利计算。

2、要求1)求丰水年( P=10%)、平水年( P=50%)、枯水年( P=90%)三种典型年的年径流量及年内分派。

2)设计洪水及其过程线的推求(设计P=2%、校核 P=0.2%)。

3)兴利调理计算和兴利库容及正常蓄水位的推求。

4)水库的调洪计算和泄洪建筑物的尺寸及设计、校核洪水位的选择。

5)水库最正确消落深度的计算和水库死水位确实定。

水闸水力计算实例

水闸水力计算实例

水闸水力计算实例一、资料和任务某平底水闸担负汛期某河部分排洪的任务。

汛期当邻闸泄洪流量达5000米3/秒时,本闸开始泄洪。

根据工程规划,进行水力计算的有关资料有: 1. 1. 水闸宽度设计标准。

(1)设计洪水流量为1680米3/秒,相应的上游水位为7.18米,下游水位为6.98米; (2)校核洪水流量为1828米3/秒,相应的上游水位为7.58米,下游水位为7.28米。

2.消能设计标准因水闸通过设计洪水流量时,上下游水位差很小,过闸水流呈淹没出流状态,故不以设计洪水流量作为消能设计标准。

现考虑汛期邻闸泄洪流量为5000米/3秒时,本闸开始泄洪,此时上下游水位差最大,可作为消能设计标准,其相应的上游水位为5.50米,下游水位为2.50米,并规定闸门第一次开启高度e =1.2米。

3.闸身稳定计算标准(考虑闸门关闭,上下游水位差最大的情况)。

(1)设计情况:上游水位为6.50米,下游水位为-1.20米; (2)校核情况:上游水位为7.00米,下游水位为-1.20米。

4.水闸底板采用倒拱形式,底板前段闸坎用浆砌块石填平。

为了与河底高程相适应,闸坎高程定为-1.00米,倒拱底板高程为-1.50米。

5.闸门、闸墩及翼墙型式:闸门为平面闸门,分上下两扇。

闸墩墩头为尖圆形,墩厚d 。

=1米。

翼墙为圆弧形,圆弧半径r =12米。

6.闸址处河道断面近似为矩形,河宽0B =160米。

7.闸基土壤为中等密实粘土。

8.水闸纵剖面图及各部分尺寸见图1。

水力计算任务:1.确定水闸溢流宽度及闸孔数;2.闸下消能计算;3.闸基渗流计算。

图1二、确定水闸溢流宽度及闸孔数平底水闸属无坎宽顶堰。

先判别堰的出流情况。

已知设计洪水流量Q=1680米3/秒,相应的上游水位为7.18米。

闸坎高程为-1.00米,则宽顶堰堰上水头H = 7.18 –( -1.00) =8.18米 又知河宽0B = 160米,则0v =H B Q 0=18.8160680.1 =1.28米/秒g 2=8.92⨯=0.084米0H =H +g av 220=8.18+0.084=8.264米下游水位为6.89米,则下游水面超过堰顶的高度 s h =6.98-(-1.00)=7.98米0H h s =264.898.7=0.965>0.86由《水力计算手册》宽顶堰淹没系数表查得,该出流为宽顶堰淹没出流。

水力计算案例分析

水力计算案例分析

西昌学院工程技术学院课程设计任务书2013年12 月2 日至2013 年12 月20 日课程名称:工程水文案例分析及实训专业班级:2011级水利水电工程1班姓名:李飘学号:1115030041指导教师:洪晓江2013年12月2日案例一流域产流与汇流计算习题4-2 某流域1992年6月发生一次暴雨,实测降雨和流量资料见表4-13。

该次洪水的地面径流终止点在27日1时。

试分析该次暴雨的初损量及平均后损率,并计算地面净雨过程。

案例二设计年径流量分析计算习题7-2 某水利工程的设计站,有1954~1971年的实测年径流资料。

其下游有一参证站,有1939~1971年的年径流系列资料,如表7-7所示,其中1953~1954年、1957~1958年和1959~1960年,分别被选定为P=50%、P=75%和P=95%的代表年,其年内的逐月径流分配如表7-8示。

试求:m s表7-7 设计站与参证站的年径流系列单位:3/注本表采用的水利年度为每年7月至次年6月。

(1)根据参证站系列,将设计站的年径流系列延长至1939~1971年。

(2)根据延长前后的设计站年径流系列,分别绘制年径流频率曲线,并分析比较二者有何差别。

(3)根据设计站代表年的逐月径流分配,计算设计站P=50%、P=75%和P=95%的年径流量逐月径流分配过程。

表7-8 设计站代表年月径流分配 单位:3/m s案例三 洪峰流量推求计算习题8-1 某河水文站有实测洪峰流量资料共30年(表8-10),根据历史调查得知1880年和1925年曾发生过特大洪水,推算得洪峰流量分别为32520/m s 和32100/m s 。

试用矩法初选参数进行配线,推求该水文站200年一遇的洪峰流量。

表8-10 某河水文站实测洪峰流量表案例四 暴雨资料推求设计洪水习题9-3 已知设计暴雨和产、汇流计算方案,推求P=1%的设计洪水。

资料及计算步骤如下。

(1)已知平恒站以上流域(2992F km =) 1%P =的最大24h 设计面雨量为152mm ,其时程分配按1969年7月4日13时至5日13时的实测暴雨进行(表9-9),Δt 取3h ,可求得设计暴雨过程。

供热管网水力平衡计算及分析

供热管网水力平衡计算及分析

供热管网水力平衡计算及分析1 问题的提出中南建筑设计院西区(生活区)集中低温热水采暖系统于1991年完成设计及施工,并于当年年底投入运行。

系统运行至今已有十年,大大改善了我院职工的生活条件。

但该热水采暖系统自运行之初起,就存在着热力失衡问题。

后随着用户的增加,管网作用半径的增大,随着燃煤蒸汽锅炉、汽-水换热器、热水循环泵运行效率的降低,也随着采暖系统阀件及沿程管道性能的弱化,采暖系统运行效率降低,热力失衡问题越来越严重,具体表现在管网末端用户的采暖效果越来越差。

为配合我院沿街开发的形势,院西区两栋临街多层住宅拆除,由于采暖用户(以下均指单栋或单元建筑)减少采暖外网须相应调整,此举可部分程度缓解采暖系统效果恶化情况,但热力管网水力失衡问题尚未得到解决。

2 管网水力计算及平衡分析基于上述原因,我们对院西区采暖热网进行水力计算及分析,拟采取水力平衡阀等技术措施对该采暖热网进行水力平衡,以期改善西区整体采暖效果。

2.1 计算条件已知条件(1)外网各环路管段管径及沿程长度,各单位采暖设计热负荷及总设计热负荷。

各环路用户采暖热负荷说“表1”表一1,34,7北大28单29单幼儿幼儿用户名称单元单元单元单元单元板元元园南园北热负荷126.1 126.1 160.0 51.0 33.6 44.1 38.0 70.7 70.7 78.2 (kw) 续表一3334357,1011,14中南海15,21用户名称 23户中单单元单元单元单元单元单元热负荷(kw) 55.7 60.9 60.9 155.8 184.7 184.7 527.6 115.0(2)各环路用户室采暖水系统所需资用压头,由各单体采暖设计图纸及资料获得,参见“表四”及“表五”中“用户所需资用压头”项。

假定条件:(1)由于锅炉及换热器效率的降低,根据该系统运行经验采暖供水最高温度为80?,最大供回水温差15,18?。

采暖供回水温度取80/60?。

(2)由于系统运行多年外管内壁粗糙度增大,外管内壁粗糙度取K=0.5mm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例一年调节水库兴利调节计算
要求:根据已给资料推求兴利库容和正常蓄水位。

资料:
(1) 设计代表年(P=75%)径流年内分配、综合用水过程及蒸发损失月分配列于下表1,渗漏损失以相应月库容的1%计。

(2) 水库面积曲线和库容曲线如下表2。

(3) V死=300万m3。

表1 水库来、用水及蒸发资料(P=75%)
表2 水库特性曲线
解:本题为考虑水库水量损失时计算兴利库容和正常蓄水位的列表见表3计损失的年调节计算表,下面是表的各列数据来源的说明
1,先不考虑损失情况,水库的兴利调节计算。

将表1中的来水量和用水量分别列入表3的第(2)、(3)列。

2,根据来水量和用水量计算出该月份的余、缺水分别列入第(4)、(5)列中。

2,根据表中数据可以看出该年为二次运用,且V
3>V
2
,V
3
<V
4
所以V
兴1
= V
2
+V
4
-V
3
=4213(万
m3)。

4,将水库蓄水量列入表3的第6列。

5,根据V
p =1/2(V

+V

)将月平均蓄水量列入第(7)列。

6,由蓄水库容查表2水库特性曲线得各月平均水面面积,并将其列入表3的第(8)列7,将蒸发标准列入第(9)列。

蒸发损失水量=(8)×(9)÷1000将所得数据列入第(10)列得各月蒸发损失量。

8,由条件可知渗漏损失以相应月库容的1%计。

所以由月库容乘上1%得各月的渗漏损失量列入(11)列。

9,总损失量由蒸发损失和渗漏损失构成。

所以(10)+(11)就是总损失量将其列入第(12)列。

10,将考虑损失后的各月用水量列入第(13)列,由来水量和考虑损失后的用水量可得出考虑损失后的余、缺水量分别列入(14)、(15)列
11,同样根据余、缺水量可得该年是二次运用,且V
3>V
2
,V
3
<V
4
所以V

= V
2
+V
4
-V
3
=4430.03
(万m3)。

12,将考虑损失后的蓄水量和弃水量分别列入(16)、(17)列。

13,校核检查结果是否正确。

水库经过充蓄和泄放到6月末,水库兴利库容应该放空,即
放到死库容300万m3 。

由表3可知计算正确。

再根据水量平衡方程∑W
来-∑W

-∑W

-∑W

=0进行校核,即(2)-(3)-(12)-(17)=0,经校核计算结果正确。

14,根据所得兴利库容4430.03(万m3)查表2水库特性曲线图1可得正常蓄水位为865m。

所以V
兴=4430.03(万m3) H

=865m
案例二水库调洪演算
要求:
(1)推求拦洪库容;(2)最大泄流量qm 及相应时刻;(3)水库最高蓄水位;(4)绘制来水与下泄流量过程线
资料:开敞式溢洪道设计洪水过程线如下表1,水库特征曲线如表2,堰顶高程140m,相应容305×104m3,顶宽10m,流量系数m=1.6,汛期水电站水轮机过水流量QT=5m3/s,计算时段△t采用1h或0.5h。

表1 洪水过程线 (P=1%)
解:通过表2,画出水库水位-库容曲线如下图1
图1.水库水位-库容曲线
计算并绘制q~V ∆t +q
辅助线。

为了提高图解得精度,计算中V 值用的堰上库容,计算时段∆t =1h 。

,计算过程见表3,
利用表中第(5)、(7)栏的相应数据绘制的辅助线如图2所示。

图2 q~V ∆t +q
辅助线
根据表3中水库水位z 和流量,绘制出水库水位与下泄流量曲线,水库水位与下泄流量曲线如图3.
图3 水位线与下泄流量的关系去线图
调洪计算求q-t 过程和水库水位过程。

调洪的起始条件为为已知条件q=5m³/s 。

V
∆t
+q
=2.55m³/s ,水位Z=140m 。

计算过程见下表,表4 表4 半图解发调洪计算表
时间 t (h ) 入库流量Q m /s
平均入库流量Q 平 m /s V ∆t +q 2 (m³/s) q (m³/s) 水库水位Z
(m) 0 5 17.7 2.5 5 140 1 30.3 15.2 7.9 140.3 2 55.5 42.9 50.2 19 140.91 3 37.5 46.5 77.7 30.1 141.35 4
25.2
31.4
78.9
30.8
141.38
1020304050607080901000
50
100
150
200
250
V ∆t +q
(m /s 139.5
140140.5141141.5142142.5143143.50
20
40
60
80
100
q ( /s )
q (m /s )
Z (m )
对于第一时段,Q1=5m/s,Q=30.3m/s,q1=5m/s,于是由q1查图2辅助曲
线得(V
∆t +q)=2.5m/s,代入式子V2
∆t
+q2=V1
∆t
+q1+Q

q1可以求得(V
∆t
+q)=15.2
m/s,以此查图2得q ==7.9m/s,用同样的方法以此类推,可以求出其他时段的泄量,并计入表4中。

由表4中的时间和来水流量、时间和下泄流量,在同一图中,绘制出入库流量与时间的曲线和下泄流量与时间的曲线,绘制的曲线如图4.
图4 入库流量与时间的曲线和下泄流量与时间的曲线
图4中,两条曲线的交点既是下泄流量最大点,也是水位最高点,由图查的q m=31.4 m/s T=3.45h。

在图查的q m=31.4 m/s用此值可在图3中即可查的最高蓄水位Z m=141.4 m。

有在图3中查的的最高蓄水位Z m=141.4 m,用此值可在图1中查得拦洪库容V=370万m³。

案例三小型水电站的水能计算
11—5.某以发电为主的年调节水电站,其设计枯水年各月来水量如表11—10所示,该水库的兴利库容为110(m/s)∙月,供水期上游平均水位40m,下游平均水位20m,A=7,出力
倍比系数C=3.0.每月可按30.4d计算。

(1)推求水库供水期和蓄水期的调节流量(不计损失)。

(2)该水电站保证出力是多少?
(3)水电站的装机容量是多少(100KW的倍数)?
(4)3月份发电量是多少?
流量为
Q
P供=供
+

T

=
(5+5+5+5+5+5)+110
6
=23.33m/s
次流量与天然来水量比较,发现9、10、次年5月的天然流量还是小于Q
P供
,所以应该重新计算供水期为9月到次年5月共9个月,则调节流量为
Q
P供=供
+

T

=
(20+10+5+5+5+5+5+5+10)+110
9
=20m/s
现将6、7、7、8月设为蓄水期,蓄水期也按等流量调节,其调节流量为
Q
P蓄=蓄兴
T

=
(70+80+80)110
3
=
40m
s
(2)保证出力的确定
由已知得供水期上游平均水位40m,下游平均水位20m。

所以H P=Z上Z下=4020= 20m
由公式N P=A∙Q P∙H P得
N P=7×20×20=2800kw
(3)装机容量的确定
用保证出力倍比法来确定装机容量。

倍比系数C=3.0,故装机容量为
N

=CN P=3.0×2800=8400kw
因为装机容量为100kw的倍数且考虑到套用定型机组.所以选择装机容量为8500kw ,可安装3台2000kw的和1台2500kw的机组。

(4)3月份发电量的确定
每月按30.4天计算。

则3月共有30.4×24=7296.个小时。

3月份的发电量为
E=30.4×24×N P=30.4×24×2800=204.288万kw∙h。

相关文档
最新文档