9.4_完全平方公式(一)

合集下载

初中数学课件-完全平方公式演示课件北师大版1

初中数学课件-完全平方公式演示课件北师大版1
完全平方公式
知识回顾
多项式乘多项式的法则
(a + b)(p + q)= ap + aq + bp + bq
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项 式的每一项,再把所得的积相加.
这个式子有什么特点?
这是两个数的平方和 你知道怎么算这种式子吗?
下面就来探究一下.
探究 计算下列各式:
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
代数证明
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
=
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
几何证明
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
练习
1.在等号右边的括号内填上适当的项,并用去括号法则检验.
(1)a+b-c=a+(

(2)a-b-c=a-(

(3)a+b-c=a-(

(4)a+b+c=a-(

初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
ab ab
=
初中数学课件-完全平方公式演示课件 北师大 版1( 精品课 件)
完全平方差
观察式子,回答下列问问题: ①等式左边都是两个数__差__的__平___方____ ②等式右边都是两个数__平__方___的__和____,再减去这两个数 __积__的___两__倍____

完全平方公式

完全平方公式

完全平方公式(1)教案背景:本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

关键信息:1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。

首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。

通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。

学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学生的数学思维。

教学课题:完全平方公式(1)教材分析:知识与技能:经历由一般的多项式乘法向乘法公式过渡的探究过程,进一步培养学生归纳总结的能力,并给公式的应用打下坚实的基础。

数学思考:能收集、选择、处理数学信息,并做出合理的推断或大胆的猜测;解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,通过对解决问题过程的反思,获得解决问题的经验。

情感与态度:敢于面对数学活动中的困难,并有独立克服困难勇气和运用知识解决问题的成功体验,有学好数学的自信心;体验数、符号和图形是有效的描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具,通过观察、实验、归纳、类比、推断可以获得数学猜想,体验数学活动充满着探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性;在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解;能从交流中获益。

教学方法:1、教师是学生学习的组织者、促进者、合作者:本节的教学过程,要为学生的动手实践,自主探索与合作交流提供机会,搭建平台;尊重和自己意见不一致的学生,赞赏每一位学生的结论和对自己的超越,尊重学生的个人感受和独特见解;帮助学生发现他们所学东西的个人意义和社会价值,作学生健康心理、健康品德的促进者、催化剂。

完全平方公式ppt课件

完全平方公式ppt课件

4. 解法:
(1)先把二次方程化为完全 平方公式的形式: ax² + bx + c = 0
完全平方公式
(2)然后将方程按照完全平方公式的标准形式:
(x + p)² + q = 0
01
(5)求出方程的根:
x1 = -p + √(-q)
04
x2 = -p - √(-q)
(3)求出p、q的值:
02
p = -b/2a q = c - b²/4a
一、完全平方公式
演讲人 2023-01-14
目录
01
02
完全平方公式
实例
完全平方公式
1. 定义:
完全平方公式,又称为对称二 次方程,指的是可以表示为一
个完全平方式的二次方程。
2. 标准形式:
ax² + bx + c = 0
3. 用途:
完全平方公式可以用来解决二 次方程,求解方程的根,从而
解决一些数学问题。
04
0 5
(1)将二次方程化为完全平方公式的形式:
x² - 10x + 25 = 0
(3)求出p、q的值:
p = -10/2 q = 25 - 100/4
实例
x1 = 5 + √24 01
03 x1 = 9
(5)求出方程 的根:x2 = 5 - √2 0204 x2 = 1
谢谢
03
(4)由求出的p、q值代入完全平方公式中:
(x + p)² + q = 0
实例
例1:解x² - 10x + 25 = 0
在右侧编辑区输入内容
(2)按照完全平方公式的标准形式:

完全平方公式

完全平方公式

9.3运用公式法――完全平方公式(1)教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法2.理解完全平方式的意义和特点,培养学生的判断能力.3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点重点:运用完全平方式分解因式.难点:灵活运用完全平方公式公解因式.教学过程一、复习1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?答:有完全平方公式.请写出完全平方公式.完全平方公式是:(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2.这节课我们就来讨论如何运用完全平方公式把多项式因式分解.二、新课和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2.这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.问:具备什么特征的多项是完全平方式?答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.问:下列多项式是否为完全平方式?为什么?(1)x2+6x+9; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1.答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以x2+6x+9=(x+3)2.(2)不是完全平方式.因为第三部分必须是2xy.(3)是完全平方式.25x4=(5x)2,1=1 ,10x2=2·5x2·1,所以25x4-10x2+1=(5x-1)2.(4)不是完全平方式.因为缺第三部分.请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?答:完全平方公式为:其中a=3x,b=y,2ab=2·(3x)·y.例1 把25x4+10x2+1分解因式.分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2例2 把1-12m+116m2分解因式.问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“116m2”是m4的平方,第二项“-12m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式解法1 1-12m+116m2=1-2·1·m4+(m4)2=(1-m4)2.解法2 先提出,则1-12m+116m2=116(16-8m+m2)=116(42-2·4·m+m2)=116(4-m)2.三、课堂练习(投影)1.填空:(1)x2-10x+()2=()2;(2)9x2+()+4y2=()2.2.下列各多项式是不是完全平方式?如果是,可以分解成什么式子?如果不是,请把多项式改变为完全平方式.(1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;(4)9m2+12m+4.3.把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2答案:1.(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2.2.(1)不是完全平方式,如果把第二项的“-2x”改为“-4x”,原式就变为x2-4x+4,它是完全平方式;或把第三项的“4”改为1,原式就变为x2-2x+1,它是完全平方式.(2)不是完全平方式,如果把第二项“4x”改为“6x”,原式变为9x2+6x+1,它是完全平方式.(3)是完全平方式,a2-4ab+4b2=(a-2b)2.(4)是完全平方式,9m2+12m+4=(3m+2) 2.(5)是完全平方式,1-a+a2/4=(1-a2)2.3.(1)(a-12) 2; (2)(2ab+1) 2;(3)(13x+3y) 2; (4)(12a-b)2.四、小结运用完全平方公式把一个多项式分解因式的主要思路与方法是:1.首先要观察、分析和判断所给出的多项式是否为一个完全平方式,如果这个多项式是一个完全平方式,再运用完全平方公式把它进行因式分解.有时需要先把多项式经过适当变形,得到一个完全平方式,然后再把它因式分解.2.在选用完全平方公式时,关键是看多项式中的第二项的符号,如果是正号,则用公式a2+2ab+b2=(a+b) 2;如果是负号,则用公式a2-2ab+b2=(a-b) 2.五、作业把下列各式分解因式:1.(1)a2+8a+16; (2)1-4t+4t2;(3)m2-14m+49; (4)y2+y+1/4.2.(1)25m2-80m+64; (2)4a2+36a+81;(3)4p2-20pq+25q2; (4)16-8xy+x2y2;(5)a2b2-4ab+4; (6)25a4-40a2b2+16b4.3.(1)m2n-2mn+1; (2)7am+1-14am+7am-1;答案:1.(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)22.(1)(5m-8) 2; (2)(2a+9) 2;(3)(2p-5q) 2; (4)(4-xy) 2;(5)(ab-2) 2; (6)(5a2-4b2) 2.3.(1)(mn-1) 2; (2)7a m-1(a-1) 2.文案编辑词条B 添加义项?文案,原指放书的桌子,后来指在桌子上写字的人。

9.4_完全平方公式(一)第七周开课版

9.4_完全平方公式(一)第七周开课版

议一议
如何计算
解:
2 (a+b+c) 2 =[(a+b)+c]
2 (a+b+c)
2 2 =(a+b) +2·(a+b)·c+c 2 2 2 =a +2ab+b +2ac+2bc+c
2 2 2 =a +b +c +2ab+2ac+2bc
应用新知 2 2001 = 2 99 =
体会成功:
通过这节课的学 习你学到了什么
课堂小结
1.能运用完全平方公式进行相关计算.
2.能够掌握完全平方公式推导方法, 并体会换元和数形结合思想;
完全平方差公式 的图形理解 b a
ab
b² ab

2
( a b) a ab ab b 2 2 a 2ab b
2
a b
2
作业
P65 页2 、4、
课堂检测
(1)(6a+5b)2 2 (2)(4x-3y)
b ab a

ab b
2 2
(a+b)²

a
2
( a b) a +2ab +b
完全平方和公式
例1 计算:(例题解析1 a – b )2
想一想:你有几种方法计算 (a-b)2
方法一:
解:(a-b)2= (a-b) (a-b)
=a2 –ab –ab +b2
=a2 -2ab +b2
例1 计算:(a-b)2
算一算:
2 (a+b)
=(a+b) (a+b) 2 2 = a +ab +ab +b 2 2 = a +2ab+b

《完全平方公式》教案

《完全平方公式》教案

《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。

引导学生通过实际例子发现完全平方公式的规律。

1.2 教学内容完全平方公式的定义和表达式。

完全平方公式的推导和证明。

1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。

1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。

观察学生在练习中的表现,及时给予指导和帮助。

第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。

引导学生通过证明理解完全平方公式的正确性。

2.2 教学内容完全平方公式的推导方法。

完全平方公式的证明过程。

2.3 教学方法使用图表和动画演示完全平方公式的推导过程。

引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。

2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。

观察学生在证明过程中的思路和推理是否清晰。

第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。

引导学生通过完全平方公式简化计算过程。

3.2 教学内容完全平方公式在实际问题中的应用。

完全平方公式在简化计算过程中的作用。

3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。

使用图表和动画演示完全平方公式在计算过程中的应用。

3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。

观察学生在解题过程中的思路和计算是否准确。

第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。

引导学生通过完全平方公式的扩展形式解决更复杂的问题。

4.2 教学内容完全平方公式的扩展形式。

完全平方公式的扩展形式在解决问题中的应用。

4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。

使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。

4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。

初中数学《完全平方公式》实用ppt北师大版1

初中数学《完全平方公式》实用ppt北师大版1

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
a 2 b 2 ( a b ) 2 2 ab (ab)2 2ab
4a b(ab)2(ab)2
课本P156习题15.2—2、3、4题, 《同步导学》P97-98.
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
(2)(x -y)2 =x2 -y2 错 (x -y)2 =x2 -2xy +y2
(3) (-x +y)2 =x2+2xy +y2错
(-x +y)2 =x2 -2xy +y2
(4) (2x+y)2 =4x2 +2xy +y2 错
(2x +y)2 =4x2+4xy +y2
例1、运用完全平方公式计算:
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
3.把握好故事情节,是欣赏小说的基础, 也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点, 从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
例3.
若 ab5,a b6,求 a2b2,a2ab b2.

9.4乘法公式

9.4乘法公式

9.4乘法公式(完全平方公式)班级 姓名 学号 等第 教学目标:(1) 探索并推导完全平方公式、并能运用公式进行简单的计算; (2) 引导学生感受转化的数学思想以及知识间的内在联系。

教学重点:完全平方公式;教学难点:正确的应用完全平方公式、进行计算教学方法:探索、引导法教具准备:三角尺、投影仪 a 教学过程:一. 情景创设 b如右图:你能通过不同的方法计算大正方形的面积吗? 从而你发现了什么? 二. 探索活动问题一:如何用字母表示上图中大正方形的面积? 生: 将上图看成一个大正方形,则面积为 2)(b a +。

师:很好,还有没有其它的方法呢?生:可将上图看成是由两个小长方形和两个小正方形组成的图形,那么它的面积为222b ab a ++。

师:两种方法都求出了大正方形的面积,从而我们可以发现什么呢? 生:2)(b a +=222b ab a ++ 这个公式就叫做一个完全平方公式。

问题二:你能用多项式的乘法法则推导公式2)(b a +=222b ab a ++吗? 生:2)(b a +=))((b a b a ++=22b ba ab a +++=222b ab a ++ 师:很好,你能用同样的方法计算2)(b a -吗?生:222222))(()(b ab a b ba ab a b a b a b a +-=---=--=- 即:2222)(b ab a b a +-=-,这是我们要学习的另一个完全平方公式。

完全平方公式:2)(b a + 222b ab a ++=2222)(b ab a b a +-=-师:你能用文字语言叙述这两个公式吗?两数和 (差)的平方等于这两数的平方和加上 (减去)这两数乘积的两倍师:你能说出这两个公式的特点吗?生:左边是:两数和 (差)的平方. 右边是: 两数的平方和加上(减去)这两数乘积的两倍. 三. 范例点睛例1 计算:( a – b )2想一想:你有几种方法计算 (a -b )2例2 用完全平方公式计算(1) ( 5 + 3p )2 (2) ( 2x - 7y )2例3 用完全平方公式计算(1)( -x + 2y )2 (2) ( -2a - 5)2例4 用完全平方公式计算 (1)9982 (2) 1012例4:填空题:(注意分析,找出a 、b )①()()2216=++x ; ②()()()22243=+-y x③()()22=+-ab a ;④()()225025=++ab a ⑤()-+=⎪⎭⎫ ⎝⎛-2224116214y x y x⑥()()222b ab a b a ++=+- ()()222b ab a b a +-=-+例5.已知3=+y x ,2=xy ,求①22y x +;②yx 11+四.随堂练习1、用完全平方公式计算 (1)(1+x )2 (2) (y -4)2(3) ( x − 2y )2 (4) (2x y + x )22. 一个正方形的边长为a c m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式 的图形理解
完全平方和公式:
b ab a

ab b
2 2
(a+b)²

a
2
(a b) a +2 ab +b
完全平方公式 的图形理解
完全平方差公式:
b a
ab

a² ab
(a-b)²
(a b) a ab ab b
2
a b
2
2
a 2ab b
2
复习提问:
1、多项式的乘法法则是什么?
用一个多项式的每一项乘以另一 个多项式的每一项,再把所得的积相加.
(a+b) (m+n) = am+an + bm+bn
算一算:
2 (a+b)
=(a+b) (a+b) 2 +ab +ab +b2 =a 2 +2ab+b2 =a =(a-b) (a-b) 2 - ab - ab +b2 =a 2 - 2ab+b2 =a
例1
运用完全平方公式计算:
2 (1)(x+2y)
解:
2= x2 (x+2y)
+2•x •2y +(2y)2 + 2 ab +
2 +4y
2 b
(a
2= +b)
2 a
2 +4xy =x
例1
运用完全平方公式计算:
2 (2)(x-2y)
解:
2= (x-2y)
2 x 2 a
-2•x •2y +(2y)2 - 2 ab +
(1)(x+y)2=x2 +y2 错 (x +y)2 =x2+2xy +y2
(2)(x -y)2 =x2 -y2 错 (x -y)2 =x2 -2xy +y2 (3) (x -y)2 =x2+2xy +y2 错
(x -y)2 =x2 -2xy +y2 错 (4) (x+y)2 =x2 +xy +y2 (x +y)2 =x2+2xy +y2
例3 计算:
2 2 3 3 (1) a b 2 3
2
3 3 2 2 解:原式= b a 3 2 9 6 4 4 2 3 b 2a b a 4 9
2 (a-b) 2 =(b-a)
2
3 2 1 2 (2) (- x y ) 2 4 3 2 1 2 解:原式= ( x y ) 2 4
解题过程分3步:
记清公式、代准数式、准确计算。
算一算
2-7y)2= 1.(3x
2+3b3)2= 2.(2a
议一议
如何计算
解:
2 (a+b+c) 2 =[(a+b)+c]
2 (a+b&#)·c+c2 =(a+b) 2+2ab+b2+2ac+2bc+c2 =a
2+b2+c2+2ab+2ac+2bc =a
作业
P65 页 2、 3、
1、
其指数;
课堂检测
(1)(6a+5b)2 2 (2)(4x-3y)
解:
(3)(-2m-1)2 2 (4)(2m-1)
2 (1) (6a+5b)2 (3) (-2m-1) =36a2+60ab+25b2 =4m2+4m+1 (2) (4x-3y)2 (4) (2m-1)2 2-4m+1 =16x2-24xy+9y2 =4m
2 b
(a -
2= b)
2 -4xy =x
+4y2
算一算
2 (1)(x+2y) 2 (2)(4-y)
=
=
(3)(2m-n)2=
例2、运用完全平方公式计算:
(1) ( 4m2 - n2 )2 (a-b)2= a2 - 2ab+b2 分析:
解: 4m2 - n2)2 (
2 4m 2 n
a b
=(4m2)2-2(4m2)·n2 )+( n2 )2 ( =16m4-8m2n2+n4
9 4 2 3 2 1 x y x y 4 4 16
2 (-a-b) 2 =(a+b)
你会了吗
2= 1.(-x-y) 2+b)2= 2.(-2a
通过这节课的学 习你学到了什么
小结: (a+b)2= a2 +2ab+b2 1、完全平方公式:
(a-b)2= a2 - 2ab+b2 2、注意:项数、符号、字母及
2 (a-b)
§9.4完全平方公式(一)
完全平方公式的数学表达式: (a+b)22= a22 +2ab+b2 (a+b) = a +b2 +2ab
(a-b)22= a22 - 2ab+b2 (a-b) = a +b2 - 2ab
完全平方公式的文字叙述:
两个数的和(或差)的平方, 等于它们的平方和,加上(或减去) 它们的积的2倍。
2
2= (a+b)
2 a
2 +2ab+b
公式特点:
2= (a-b)
2 a
-
2 2ab+b
1、积为二次三项式; 2、积中两项为两数的平方和; 3、另一项是两数积的2倍,且与乘式中
首平方,末平方, 间的符号相同。 首末两倍中间放
4、公式中的字母a,b可以表示数,单项式和
多项式。
下面各式的计算是否正确?如果不正确, 应当怎样改正?
运用完全平方公式进行简便计算: (1) 1042 解: 1042 = (100+4)2 =10000+800+16 =10816 (2) 99.92 解: 99.92 = (100 –0. 1)2 =10000 -20+0.01 =9998.01
利用完全平方公式计算:
2= 101 2= 8.9 2= 199
相关文档
最新文档