matlab程序绘图(精选)
Matlab图形绘制技巧与实例展示

Matlab图形绘制技巧与实例展示一、介绍Matlab是一种功能强大的计算机软件,常用于科学计算和数据可视化分析。
其中,图形绘制是Matlab的一项重要功能,能够直观地展示数据和结果。
本文将探讨一些Matlab图形绘制的技巧,并通过实例展示其应用。
二、基础图形绘制Matlab提供了多种基础图形绘制函数,如plot、scatter、bar等。
这些函数可以用来绘制折线图、散点图、柱状图等常见图形。
例如我们可以使用plot函数绘制一个简单的折线图:```matlabx = 1:10;y = [1, 2, 3, 4, 5, 4, 3, 2, 1, 0];plot(x, y);```运行以上代码,就可以得到一个由点连接而成的折线图。
通过修改x和y的取值,可以得到不同形状和样式的折线图。
三、图形修饰在绘制图形时,我们通常需要添加标题、坐标轴标签、图例等进行修饰。
Matlab提供了相应的函数,如title、xlabel、ylabel、legend等。
下面是一个例子:```matlabx = 1:10;y = [1, 4, 9, 16, 25, 16, 9, 4, 1, 0];plot(x, y);title('Parabolic Curve');xlabel('X-axis');ylabel('Y-axis');legend('Curve');```执行以上代码,我们得到一个带有标题、坐标轴标签和图例的折线图。
四、子图绘制有时候,我们希望在一幅图中同时显示多个子图,以便比较它们之间的关系。
Matlab提供了subplot函数来实现这个功能。
下面是一个例子:```matlabx = 1:10;y1 = [1, 2, 3, 4, 5, 4, 3, 2, 1, 0];y2 = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1];subplot(2, 1, 1);plot(x, y1);title('Subplot 1');subplot(2, 1, 2);plot(x, y2);title('Subplot 2');通过subplot函数,我们将一幅图分为两个子图,并在每个子图中绘制不同的折线图。
MATLAB绘图初步讲解实例教程

详细描述
MATLAB提供了交互式图形工具,如 `ginput`、`axes_crossing_info`等,使用户 能够与图形进行交互。通过这些工具,用户 可以获取图形的坐标值、筛选数据等操作, 从而更深入地分析数据。交互式图形在数据 探索和可视化方面具有很高的实用价值。
04
实例教程
绘制正弦函数和余弦函数
等,可以提高绘图效率和精度。
实践项目
02
通过实践项目来巩固和加深对MATLAB绘图的理解,例如数据
拟合、图像处理等。
参加在线课程和论坛
03
参加在线课程和论坛,与其他用户交流和学习,可以扩展视野
和知识面。
THANKS
感谢观看
mat制基本图形 • 图形进阶技巧 • 实例教程 • 总结与扩展
01
MATLAB绘图基础
绘图函数简介
bar()
绘制条形图,用于 展示分类数据或离 散数据。
hist()
绘制直方图,用于 展示数据的分布情 况。
plot()
绘制二维线图,是 MATLAB中最常用 的绘图函数。
05
总结与扩展
MATLAB绘图的优势与不足
强大的数据处理能力
MATLAB提供了丰富的数据处理函数,方便 用户进行数据分析和可视化。
丰富的图形样式
MATLAB支持多种图形样式,包括散点图、 线图、柱状图等,可以满足各种绘图需求。
MATLAB绘图的优势与不足
• 交互式绘图:MATLAB支持交互式绘图,用户可以通过鼠 标操作对图形进行缩放、旋转等操作。
```
绘制饼状图
在此添加您的文本17字
总结词:饼状图用于展示各类别数据在总数据中所占的比 例。
在此添加您的文本16字
matlab绘图(一维、二维、三维)

>> t=[0:0.1:20];
>> x=t;
>> y=sin(t); >> z=cos(t); >> plot3(x,y,z)
第25页,共42页。
数学实验
数学实验
先画点 (x,y,z),后连线,构成曲面网格图
点: ( xij , yij , zij ) i 1,,m, j 1,,n
x11 x12
第13页,共42页。
同时绘制多个函数图像
数学实验
plot(x1,y1,s1,x2,y2,s2, ... ,xn,yn,sn)
等价于:
hold on
plot(x1,y1,s1) plot(x2,y2,s2) ...
plot(xn,yn,sn)
属性选项 可以省略
第14页,共42页。
图形的其他属性
数学实验
Property: linewidth, markersize, fontsize, fontweight, fontname, …
第9页,共42页。
图形的其他属性
坐标轴标注 xlabel(’text’) 或 ylabel(’text’)
例:
数学实验
第10页,共42页。
图形的其他属性
添加图例 legend(string1,string2, ...) >> legend('cos(x)');
Matlab 绘图
数学实验
如何画出 y=sin(x) 在 [0, 2*pi] 上的图像?
第1页,共42页。
Matlab 绘图
数学实验
手工作图
找点: x=0, pi/3, pi/2, 2*pi/3, pi, …
matlab各种三维绘图及实例

Matlab绘制三维图形三维曲线plot3函数与plot函数用法十分相似,其调用格式为:plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n)其中每一组x,y,z组成一组曲线的坐标参数,选项的定义和plot函数相同.当x,y,z是同维向量时,则x,y,z 对应元素构成一条三维曲线.当x,y,z是同维矩阵时,则以x,y,z对应列元素绘制三维曲线,曲线条数等于矩阵列数.例绘制三维曲线。
程序如下:t=0:pi/100:20*pi;x=sin(t);y=cos(t);z=t。
*sin(t).*cos(t);plot3(x,y,z);title(’Line in 3—D Space’);xlabel(’X’);ylabel(’Y’);zlabel('Z');三维曲面1.产生三维数据在MATLAB中,利用meshgrid函数产生平面区域内的网格坐标矩阵.其格式为:x=a:d1:b; y=c:d2:d;[X,Y]=meshgrid(x,y);语句执行后,矩阵X的每一行都是向量x,行数等于向量y的元素的个数,矩阵Y的每一列都是向量y,列数等于向量x的元素的个数。
2.绘制三维曲面的函数surf函数和mesh函数的调用格式为:mesh(x,y,z,c):画网格曲面,将数据点在空间中描出,并连成网格。
surf(x,y,z,c):画完整曲面,将数据点所表示曲面画出。
一般情况下,x,y,z是维数相同的矩阵。
x,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。
例绘制三维曲面图z=sin(x+sin(y))-x/10。
程序如下:[x,y]=meshgrid(0:0。
25:4*pi); %在[0,4pi]×[0,4pi]区域生成网格坐标z=sin(x+sin(y))—x/10;mesh(x,y,z);axis([0 4*pi 0 4*pi -2。
教你如何用matlab绘图(全面)

强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。
此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
一.二维绘图二维图形是将平面坐标上的数据点连接起来的平面图形。
可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。
二维图形的绘制是其他绘图操作的基础。
一.绘制二维曲线的基本函数在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。
1.plot函数的基本用法plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。
plot函数的应用格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗口中输入以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。
例52 绘制曲线这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线以上提到plot函数的自变量x,y为长度相同的向量,这是最常见、最基本的用法。
MATLAB图形绘制技巧与实例

MATLAB图形绘制技巧与实例介绍:MATLAB是一种功能强大,广泛应用于科学计算和工程领域的软件平台。
它拥有丰富的图形绘制功能,可以用于可视化数据和传达研究成果。
本文将探讨一些MATLAB图形绘制的技巧和提供一些实例,让读者了解如何高效地利用MATLAB 绘制各种类型的图形。
一、基本绘图函数MATLAB中最基本的绘图函数是plot,它可以绘制二维图形。
可以通过指定x和y向量作为输入参数,将数据点连线绘制出来。
除了plot函数,还有其他一些常用的绘图函数,如scatter用于绘制散点图,bar用于绘制条形图,hist用于绘制直方图等。
这些函数具有丰富的参数选项,可以根据需要进行调整,以得到满意的图形效果。
二、自定义图形样式在MATLAB中,可以通过一些简单的命令实现图形样式的自定义。
例如,可以通过修改线型、颜色和点标记等属性,使得图形更加美观和易读。
除了利用内置的属性选项,还可以使用一些自定义的方法,如在plot函数中添加字符串参数来自定义线型和颜色。
三、多图绘制在某些情况下,需要在一个图形窗口中展示多个图形。
MATLAB提供了subplot函数,可以将图形窗口划分为多个小的绘图区域,并在每个区域中绘制不同的图形。
这对于比较不同数据集之间的关系或展示多个实验结果非常有用。
另外,还可以使用hold on和hold off命令,以在同一个图形窗口中绘制多个图形,并在绘制后保持图形的可编辑性。
四、3D图形绘制除了二维图形,MATLAB还支持绘制三维图形。
可以使用plot3函数将数据点绘制成三维曲线或散点图。
也可以使用mesh和surf函数绘制三维表面图,这在可视化函数和曲面的形状时非常有用。
通过调整视角和添加颜色映射等设置,可以使得3D图形更加生动和具有立体感。
五、图形标注和注释为了更好地传达和解释图形的含义,MATLAB提供了一些标注和注释功能。
可以使用xlabel、ylabel和title函数添加坐标轴标签和标题。
MATLAB作图(超详细)

2020/5/31
数学建模
3. 对数坐标图
在很多工程问题中,通过对数据进行对数转换可以 更清晰地看出数据的某些特征,在对数坐标系中描绘数 据点的曲线,可以直接地表现对数转换.对数转换有双对 数坐标转换和单轴对数坐标转换两种.用loglog函数 可以实现双对数坐标转换,用semilogx和semilogy 函数可以实现单轴对数坐标转换. loglog(Y) 表示 x、y坐标都是对数坐标系
单击鼠标左键,则在当前图形窗口中,以鼠标点中的点为 中心的图形放大2倍;单击鼠标右键,则缩小2倍.
zoom off 关闭缩放模式
grid on
%标注格栅
MATLAB liti37
例 创建一个简单的半对数坐标图. 解 输入命令:
x=0:.1:10;
semilogy(x,10.^x)
MATLAB liti38
例 绘制y=x3的函数图、对数坐标图、半对数坐标图.
2020/5/31
MATLAB liti22 数学建模
返回
三维图形 1. 空间曲线 2. 空间曲面
semilogx(Y) 表示 x坐标轴是对数坐标系
semilogy(…) 表示y坐标轴是对数坐标系
plotyy 有两个y坐标轴,一个在左边,一个在右边
2020/5/31
数学建模
例 用方形标记创建一个简单的loglog.
解 输入命令:
x=logspace(-1,2);
loglog(x,exp(x),’-s’)
数学建模
返回
2. 定制坐标 Axis([xmin xmax ymin ymax zmin zmax])定制图形坐标
x、y、z的最大、最小值
Axis
将坐标轴返回到自动缺省值
Matlab中的图形绘制技巧

MATLAB中的图形绘制技巧概述:MATLAB是一种用于科学计算和数据可视化的强大工具,它提供了丰富的图形绘制功能,使用户能够清晰地展示和分析数据。
本文将介绍一些MATLAB中的图形绘制技巧,帮助读者更加熟悉和灵活运用这些功能。
一、基本图形绘制1.折线图(Line Plot):折线图是用于显示随时间、变量或其他条件变化而变化的数据的理想选择。
例如,假设我们想要展示一段时间内气温的变化趋势,可以使用MATLAB中的plot 函数来生成折线图。
通过在X轴上放置时间(日期)或变量,将温度值绘制在Y 轴上,我们可以清晰地看到气温的变化。
2.散点图(Scatter Plot):散点图用于观察两个连续变量之间的关系。
在MATLAB中,可以使用scatter 函数生成散点图。
例如,我们可以绘制一个散点图来观察身高和体重之间的关系,每个点代表一个人,x轴表示身高,y轴表示体重。
通过观察图形,我们可以直观地看到身高和体重之间是否存在某种关联。
3.柱状图(Bar Plot):柱状图适用于对各个组或类别之间的数值进行比较。
使用bar函数可以在MATLAB中绘制柱状图。
例如,如果我们想要比较不同地区的人口数量,可以使用柱状图将不同地区的人口数量以柱状图的形式展示出来。
不同地区的柱状图高度不同,可以直观地看到不同地区的人口数量差异。
4.饼图(Pie Chart):饼图用于表示不同类别之间的比例关系,MATLAB中的pie函数可以用来生成饼图。
例如,我们可以使用饼图展示一份问卷调查中各个选项的比例,饼图的每个扇区表示一个选项,扇区的面积大小代表该选项占总数的比例。
通过观察饼图,我们可以更加直观地了解各个选项之间的比例关系。
二、高级图形绘制技巧1.子图(Subplot):在MATLAB中,我们可以使用subplot函数创建一个包含多个子图的大图。
通过在subplot函数中指定行数和列数,可以将图形划分为不同的区域,并在每个区域中绘制不同的图形。