匝道线元法
怎样计算不完整缓和曲线起点及终点的坐标及切线方位角资料

通过弧长计算出园心角,通过园心角计算出弦长,以及这段园曲线的弦切角,直线的方位角加上(左转减,右转加)这个弦切角就是弦的方位角,这样就可以求出园曲线的终点(也就是下一段曲线的直缓点)的坐标.怎样计算不完整缓和曲线起点及终点的坐标及切线方位角以上为一条匝道的曲线图及要素表。
第一缓和段长度根据公式c=R*L及C=A*A,图中A=100,R=150,可算出第一缓和段的长度为66.667米。
而HY里程减去YH里程为60.902米。
因此此段缓和曲线是在离其起点5.765米的地方与前段圆曲线相交。
图上标为YH点。
固此YH点并非第一缓和段起点。
第二缓和段也有同样的问题,DZD点亦非第二缓和段终点。
问题:怎样计算第一缓和段真正起点的坐标和第二缓和段真正终点的坐标。
及切线方位角。
本人水平有限,苦苦思索未得其解。
在此劳烦各位同仁给予小弟支援。
不胜感谢!测量路上诚与仁兄们携手同行,让我们的测量之路多一丝欣慰,少一分苦闷。
QQ26889412E-mail: yujuying@ 注:曲线要素表可能看不清楚。
但可以把图片另存为一个文件。
然打开此文件就非常清楚了。
1.计算出Y1H的坐标及方位角;2.计算出过渡段缓和曲线在Y1H点的支距dx,dy及偏角β;3.由Y1H的方位角及偏角β可反算出过渡缓和曲线虚起点的方位角。
4.由Y1H的坐标、dx,dy及方位角可反算出过渡缓和曲线起点的坐标。
(用支距到大地坐标的变换公式反算。
关于不同类型缓和曲线的判断及起点、终点曲率半径的计算方法目前在匝道或线路施工坐标计算中经常遇到缓和曲线,实际中相信有很多测友选择用积木法或叫线元法正反算程序进行线路坐标计算,这就牵涉到线元的起点终点曲率半径判断的问题,一般的直线元,圆曲线元的起点终点半径判断,比较容易,可能令大家感觉麻烦的就是缓和曲线起点终点半径判断问题,缓和曲线有时候判断算对了,有时候却坐标算不对,究其原因,其实问题出于该缓和曲线是否是完整缓和曲线引起的。
Casio5800交点法与线元法(积木法)匝道坐标正反算放样程序

Casio5800交点法与线元法(积木法)匝道坐标正反算放样程序1主程序名:ZBZFS(功能:进入计算主程序)65→Dimz↙Deg:Fix 3↙"1.JD ZFS 2. ZHADAO ZFS"? I: I→Z[61]: "1.ZHONG SHU JS 2. JS"? I↙If I=1: Then Goto1: Else Goto2:IfEnd↙LbI 1 :If Z[61]=1: Then Prog"JDYS":Else Cls:"K0"?A:"KN"?L :"X0"?U :"Y0"?V :"F0"?W :"R0"?P :"RN"?Q:"ZX:-1,+1,0"?G:IfEnd↙LbI 2 :Prog"JS"2子程序名:JS(功能:选择正算或反算模式)Cls:"XC"?H:"YC"?Z↙Cls:"1.ZS 2.FS"? I: I=2=>Goto 3↙LbI 1 : Cls: If Z[61]=1: Then"JD ZS KX+XXX"?K :Prog"4": Else "ZHADAO ZS KX+XXX"?K :IfEnd↙LbI 2: Cls:90→B: Cls:"RJ Or 0 To K"?B:B=0 =>Goto 1:"Z"?T↙Prog "XY-A"↙X+Tcos(M+B)→X↙Y+Tsin(M+B)→Y↙360Frac((M+360)÷360→M↙Pol(X-H,Y-Z : 360Frac((J+360)÷360→J↙2→O: Prog "XY-B":Goto 2↙LbI 3 : Cls: If Z[61]=1: Then"JD FS KN+"?K:"X"?C:"Y"?D:Prog"4":Else Cls: "ZHADAO FS":"X"?C:"Y"?D:IfEnd↙LbI 4 :Prog "XY-A"↙(D-Y)sin(M)+(C-X)cos(M)→H↙If Abs(H)>X10-3 :Then K+H→K:Goto 4:IfEnd↙(D-Y)÷cos(M)→T↙3→O: Prog "XY-B":Goto 3↙3子程序名:XY-A(功能:坐标计算程序)5→N: G(Q-1-P-1)÷Abs(L-A)→F: Abs(K-A)÷N→R: 90R÷π→S:W+(FNR+2GP-1)NS→M:1→E↙U+R÷6×(Cos (W)+Cos (M) +4∑(Cos (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(Cos (W+((EFR+2GP-1)ES,E,1,(N-1)))→X ↙V+R÷6×(sin (W)+sin (M) +4∑(sin (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(sin (W+((EFR+2GP-1)ES,E,1,(N-1)))→Y↙4子程序名:XY-B(功能:显示正算或反算结果)If O=2:Then↙Cls :"K×××=":"Z=":"X=":"Y=": Locate 6,1, K : Locate 4, 2, T : Locate 4,3, X : Locate 4,4, Y◢If T=0 :Then Cls :"QF(Z)=": Locate 8,1, M:M▼DMS◢IfEnd↙Cls :"K×××=":"S=": Locate 6,1, K : Locate 4, 2, I :"F=":J:J▼DMS◢IfEnd↙If O=3:Then "X=":"Y=":"K×××=":"Z=": Locate 4,1,C: Locate 4, 2, D : Locate 6,3,K :Locate 4,4,T◢IfEnd:Cls↙5子程序名:4(功能:将交点参数转为线元计算参数)LbI 1: IF Z[48]<0 :Then -1→Z[62] : Else:1→Z[62]:IfEndLbI 2: If K≥Z[57]:Then Z[57]→A:Z[1]→L:Z[23]→U:Z[24]→V : Z[31]→W : 10^45→P:10^45→Q : 0→G:IfEnd↙LbI 3:If K≥Z[1]:Then Z[1]→A : Z[2]→L : Z[19]→U : Z[20]→V:Z[29]→W : 10^45→P:Z[46]→Q : Z[62]→G: IfEnd↙LbI 4:If K≥Z[2]:Then Z[2]→A : Z[4]→L:Z[25]→U : Z[26]→V:Z[32]→W : Z[46]→P : Z[46]→Q : Z[62]→G: IfEnd↙LbI 5:f K≥Z[4]:Then Z[4]→A : Z[5]→L : Z[27]→U:Z[28]→V : Z[33]→W : Z[46]→P : 10^45→Q : Z[62]→G: IfEnd↙LbI 6:If K≥Z[5]:Then Z[5]→A : Z[5]+1000→L:Z[21]→U : Z[22]→V : Z[30]→W:10^45→P :10^45→Q : 0→G : IfEnd↙6子程序名:JDYS(功能:输入交点要素、显示交点要素及主点坐标)Cls : "BP"?H:H→Z[57]:"K(JD)"?K:K→Z[41] :"X(JD)"?X :X→Z[42]:"Y (JD)"?Y:Y →Z[43]:"LS1"?B:B→Z[44] :"LS2"?C:C →Z[45]: ?R:R →Z[46]:"(ZH)FWJ°"?M:M→Z[47] : "α(Z-,Y+)°"?O:O→Z[48] : Z[47]+Z[48]→Z[49]: Prog "1":Prog "2"↙Cls :"T1=":"T2=":"L=":"LY=": Locate 4,1, Z[50] : Locate 4,2, Z[51]: Locate 4,3, Z[52] : Locate 4,4, Z[53]◢Cls :"E=": Locate 7,1, Z[54]Cls :"K(QD)=": "X=": "Y=": "FWJ="Locate 7,1,Z[57] :Locate 7,2, Z[23] :Locate 7,3, Z[24] :Locate 7,4, Z[31] ◢Cls :"K(ZH)=": "X=": "Y=": "FWJ=":Locate 7,1,Z[1] : Locate 7,2, Z[19] :Locate 7,3, Z[20] :Locate 7,4, Z[29]◢Cls : "K(HY)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[2] : Locate 7,2, Z[25] :Locate 7,3, Z[26] :Locate 7,4, Z[32]◢Cls :"K(QZ)=": Locate 7,1,Z[3]◢Cls :"K(YH)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[4] : Locate 7,2, Z[27] :Locate 7,3, Z[28] :Locate 7,4, Z[33]◢Cls :"K(HZ)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[5] : Locate 7,2, Z[21] :Locate 7,3, Z[22] :Locate 7,4, Z[30]◢7子程序名:1(功能:计算交点要素)If Z[48]<0 :Then -1→Z[55] : Else 1→Z[55] : IfEnd : Z[55]* Z[48]→Z[56] ↙Z[44] 2 ÷24÷Z[46]- Z[44]^(4)÷2688÷Z[46] ^(3) →Z[6] ↙Z[45] 2 ÷24÷Z[46]- Z[45]^(4)÷2688÷Z[46] ^(3) →Z[7] ↙Z[44]÷2-Z[44]^(3)÷240÷Z[46]2 →Z[8] ↙Z[45]÷2-Z[45]^(3)÷240÷Z[46]2 →Z[9] ↙Z[8]+(( Z[46]+Z[7]-( Z[46]+Z[6])cos(Z[56]))÷sin(Z[56]))→Z[50]↙Z[9]+(( Z[46]+Z[6]-( Z[46]+Z[7])cos(Z[56]))÷sin(Z[56]))→Z[51]↙Z[46]* Z[56]π÷180+( Z[44]+ Z[45]) ÷2→Z[52]↙Z[46]* Z[56]π÷180-( Z[44]+ Z[45]) ÷2→Z[53]↙(Z[46]+(Z[6]+Z[7])÷2)÷cos(Z[56]÷2)- Z[46]→Z[54]↙Z[41]-Z[50]→Z[1] ↙↙Z[1]+Z[44]→Z[2] ↙↙Z[2]+Z[53]÷2→Z[3]↙Z[1]+Z[52]-Z[45]→Z[4]↙Z[4]+Z[45]→Z[5]↙8子程序名:2(功能:计算主点坐标及切线方位角)Z[42]-Z[50]cos(Z[47])→Z[19]: (直缓坐标)Z[43]-Z[50]sin(Z[47])→Z[20]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[29] (方位角)Z[42]+Z[51]cos(Z[49])→Z[21]: (缓直坐标)Z[43]+Z[51]sin(Z[49])→Z[22]↙Z[49]→Z: 360Frac((Z+360)÷360→Z[30] (方位角)Z[1]-Z[57]→L↙(H→Z[57]为前直线起点桩号)Z[42]-( Z[50]+L)cos(Z[47])→Z[23]↙(前直线起点坐标)Z[43]-( Z[50]+L)sin(Z[47])→Z[24]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[31]↙(方位角)Z[44]→Z[12]:Z[44]→Z[13]:Prog"3"↙Z[4]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[11]↙Z[46]sin(Z[11])+Z[8]→Z[14]:Z[46](1-cos(Z[11]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[27]↙(圆缓点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[28]↙Z[47]+Z[55]Z[11]→Z: 360Frac((Z+360)÷360→Z[33]↙(方位角)Z[2]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[58]↙Z[46]sin(Z[58])+Z[8]→Z[14]:Z[46](1-cos(Z[58]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[25]↙(缓圆点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[26]↙Z[47]+Z[55]Z[58]→Z: 360Frac((Z+360)÷360→Z[32]↙(方位角)9子程序名:3(主点坐标计算辅助程序)If Z[12]=0 :Then 0→Z[14]: 0→Z[15]:Else↙Z[12]- Z[12]^(5)÷40÷(Z[46]*Z[13])2+ Z[12]^(9)÷3456÷(Z[46]*Z[13])^(4) →Z[14]↙Z[12]^(3)÷6÷(Z[46]*Z[13])-Z[12]^(7)÷336÷(Z[46]*Z[13])^(3)+ Z[12]^(11) ÷42240÷(Z[46]*Z[13])^(5)→Z[15] ↙IfEnd↙程序说明:1、进入程序:1.JD ZFS 2. ZHADAO ZFS? 选1为交点法正反算(以后操作均为交点法计算),选2为线元法正反算(以后操作均为线元法计算)2、ZHONG SHU JS 2. JS?选1重输参数,选2直接进入交点法或线元法正反算(参数为已输过的参数)3、参数输入:一、交点法已知数据输入:BP?上一交点ZH桩号K(JD)?交点桩号X(JD)?交点X坐标Y(JD)?交点Y坐标LS1 ?第一缓和曲线长度LS2 ?第二缓和曲线长度R ? 圆曲线半径(ZH)FWJ°?交点前(即前交点至本交点也即ZH点)的正切线方位角α(Z-,Y+)?本交点处线路转角(左转为负,右转为正,度分秒输入)交点法计算要素显示:T1=第一切线长T2=第二切线长L=曲线总长LY=圆曲线长E=曲线外距K(ZH)=直缓点桩号K(HY)=缓圆点桩号K(QZ)=曲中点桩号K(YH)=圆缓点桩号K(HZ)=缓直点桩号二、线元法已知数据输入:K0?KN? R0? RN?F0?X0? Y0?ZX? 分别为线元起点桩号、终点桩号、起点半径、终点半径、起点切线方位角、起点X坐标、起点Y坐标、线元转向。
fx-9750GⅡ操作说明

免责申明:免费提供;仅供参考。
卡西欧(上海)贸易有限公司不对用户使用本程序发生的任何问题负责。
读者对本程序的问题请发电子邮件到775403338@ 邮箱咨询。
fx-9750GⅡ公路测量程序使用说明一、程序使用流程本程序数据和主程序是分开的,编程时将不同的工程数据存放到不同的数据文件里,如A匝道,文件名为A,将匝道A所有的曲线线元参数输入A文件里。
运行时只要运行文件名A的程序就可以了,具体运行流程见下图:二、数据文件的编写(一)交点法数据文件编辑交点法编写数据文件必须是对称型的,即直线段→缓和曲线段→圆曲线段→缓和曲线段→直线段,(如果任意一端没有直线段,则把直线段长度看做是0),另外圆曲线两侧缓和曲线的旋转常数必须相等,并且和直线段连接处的半径必须是无穷大。
交点法数据文件编写一般是根据设计图纸提供的平面曲线参数一览表提供的参数来编写,每个弯道包括:弯道起点方位角(C),交点X坐标(D),交点Y坐标(E),缓和曲线长度(F,当没有设缓和曲线时,F=0),交点转交(G,向左转弯,G为负值,向右转弯,G取正值),交点桩号(H),弯道圆曲线半径(R)。
下图是一段市政道路设计参数数据。
根据上图提供的数据,可以编辑成如下的数据文件:文件名:CHLNR在上图中,有两个条件转移语句即If L>0:Then 98°39°35.12°→C:4774.384→D: 2415.861→E:140→F:31°17°23°→G:410.007→H:600→R:IfEndIf L>1060:Then 129°56°58.19°→C:4206.421→D: 3093.946→E:70→F:-33°50°48°→G:1285.437→H:600→R:IfEnd……如果还有其他弯道,可以继续完后加。
在这些存放设计参数的语句前后的程序表达式是固定的。
道路平曲线概念讲解

道路平曲线概念讲解道路平曲线是什么意思呢?其实可以理解不同坡度的道路之间,用于过渡的曲线,防止坡度突然变化影响车辆的平稳,坡度变化过大且没有平曲线的话车辆容易腾空或者挂碰车辆底盘,造成危险。
所以在道路测量中就离不开道路平曲线这个概念了。
但是很许多刚入门的测量新手对道路平曲线的概念还不是很了解,今天就为大家讲解一下道路平曲线的概念。
首先是道路中线的组成,道路的中线,包括立交匝道的中线,无论多么复杂的线形,都是由直线、圆曲线和缓和曲线三个基本线元组成,如图所示:、直线概念:直线:具有固定的曲率半径,且曲率为0(半径无穷大),可理解为一种特殊的圆曲线。
特点:1)两点之间以直线为最短。
2)笔直的道路给人以短捷、直达的良好印象。
3)汽车在直线上行驶受力简单,方向明确,驾驶操作简易。
4)测设施工方便。
二、缓和曲线概念:缓和曲线:为了使路线的平面线形更加符合汽车的行驶轨迹、离心力逐渐变化,确保行车的安全和舒适,需要在直线和圆曲线之间或半径相差较大的两个同向圆曲线之间设置一段曲率连续变化的曲线,此曲线称为缓和曲线。
目前我国公路设计中,以回旋线作为缓和曲线。
缓和曲线类型:1•完整缓和曲线:判断标准:A2=RxLs2、非完整缓和曲线:判断标准:A2/RxLsA=缓和曲线参数在道路及立交匝道设计中,实际采用的线形往往是直线、圆曲线、缓和曲线中的一种或几种组合而成。
主要有以下几种:(1)基本型曲线是按“直线-回旋曲线-圆曲线-回旋曲线-直线”的顺序组合起来的线型。
基本型中,又可以根据其中两个回旋曲线参数相等与否而分为对称式和不对称式两种。
(2)S 型曲线把两个反向圆曲线用回旋曲线连接起来的线型,GQ 处R=8。
两个反向回旋曲线的参数可以相等,也可以不相等。
-II) 【【ti8 (3)C 型曲线同向曲线的两回旋曲线在曲率为0处径相衔接的形式。
C 型曲线连接处的曲率为0,即GQ 处R=8,相当于两同向曲线中间直线长度为0,对行车和线形都有一定影响,所以C 型曲只有在特殊地形条件下方可使用。
fx9750卡西欧9750公路线元法计算程序

新版程序把线元法和交点法已经集成在一个模块中了,用户只需修改JD程序和ZA程序中的数据部分即可,其余不需作任何的改动。
2.因为每条路高程计算不尽相同,且比较复杂,现在可利用PC机EXCEL计算好打印成表格带到工地上使用,所以本版程序未对线路高程序进行专门的编程计算,而是利用统计计算模式中来输入桩号(第一列X)及左、右高程(第二、三列Y,Freq),这种输入数据的方式最为直观,易发现错误,也易修改,输入完毕后运行S 程序对数据按桩号进行排序,在程序中通过调用GG程序来进行内插计算,SG=-1得左标高,SG=1得右标高(若SG输入0,则可进行一般的线性内插计算)。
3.在JD程序和XY程序中,先将一个计算单元的数据置入矩阵F中(1行8列或1行9列),这样程序可读性极好。
4.相比原CASIO4850程序操作习惯,作了一点小小的改动,测站坐标存在Z[10],N中,X坐标原存在M中容易被误操作修改,而设计标高存在M中,这样易于修改,因为CASIO5800没有IN,OUT功能,很不方便。
4.程序利用Z[2]变量值来判断是采用交点法还是线元法模型计算,Z[2]=0为线元法,否则为交点法。
一、PQX程序:计算中边桩坐标及近似的桩号反算,在运行模式直接调用。
① Z*10+→S:”XO”?S:S→Z*10+:”YO”?N:Prog “AU”② Lbl 2:?L:Prog “Z”:Prog “E”:1n→O:90→S③ Lbl 4:”JJ”?S:”YC”?O:SO=0 =>Goto 2‘原来lbl 后没有标号4的。
④ O=-1 =>Goto 6⑤ “X,Y”:R+OCos(Z+S)→X▲U+OSin(Z+S)→Y▲Prog“D”:Goto 4⑥ Lbl 6:Z*7+→X:Z*8+→Y:”XF”?X:”YF”?Y:XY=0 =>Goto 4⑦ X→Z*7+:Y→Z*8+:Pol(X-R,Y-U+1p):Z+S-J→J:”YC,DL,L”:ICos(J)→O▲ISin(J)→I▲L+I▲Goto 6二、P程序:在程序中提供一个自由运算的模式。
计算器中的测量软件----道路之星操作手册 (1)

柃路园柃路园9860计算器与道路之星销售靠的是诚信与服务来经营店铺,店铺诚信服务、服务第一。
在本店铺购买后包教会道路之星安装与使用,并解决购买者任何测量问题,同时赠送各种常用软件及测量文件案例,并对新手及老手测量人员提供测量服务。
柃路园—(服务淘宝第一、价格淘宝最低)购买者请看准测量服务:网店网址:按住Ctrl并点击鼠标“柃路园—(淘宝网址)”以跟踪连接教程网址:按住Ctrl并点击鼠标“(道路之星软件视频讲解_道路之星软件使用教程 - )”以跟踪连接QQ测量服务群:128528455 电话138****4860基于Casio计算器的中文测量计算系统道路之星V1.22操作手册目录第一章概述- 1 - 第二章系统安装- 3 - 第一节电脑端程序- 3 - 第二节计算器与电脑交换数据- 5 - 第三节计算器程序- 7 - 第四节计算器程序基本操作- 11 - 第五节简易操作指南- 14 - 第三章常规计算- 16 - 第四章水准网记录及平差- 20 - 第五章控制测量记录与平差- 26 - 第六章道路测设- 30 - 第一节项目管理- 30 - 第二节道路正反算- 36 - 第三节路基路面控制- 44 - 第四节边坡计算- 49 - 第五节结构物及桥梁计算及检测- 53 - 第六节隧道超欠挖计算- 60 - 第七章计算器数据输入- 68 -道路之星用户手册第一章概述第一章概述一、功能和特点道路之星适用于公路、铁路、城市道路主线、立交匝道、隧道的勘测设计与施工放样工作。
软件分为两个部分:a.电脑端数据处理负责设计输入输出、设计成果的复核、现场采集数据的分析计算以及与计算器进行文件传输;b.计算器端施工现场计算基于Casio fx9750、fx9860、fxCG20计算器设计,负责现场的施工指导和相关数据的采集。
(一)、道路全线测设系统:将道路全线或一个标段所有数据一次性输入,主线、匝道可以存入一个文件,用路线名进行标识,一个项目文件可以包含任意多条路线。
最新Qh2-8线元法任意路线与匝道曲线坐标正、反算程序

Q h2-8线元法任意路线与匝道曲线坐标正、反算程序5800计算器坐标计算程序(线元法任意路线与匝道曲线坐标正、反算程序)程序1:QH2-8"ROUTE Or RAMP QH2-8"◢书中多了个个双引号(这里说的书是产品配备的说明书)Deg:Fix 3:书中Freqon取消"NEW(0),OLD(≠0)DATA="?→CIf C≠0:Then "RECOMP(0),NO(≠)= "?→G书中0取消If G=0:Then Goto T:Else Goto J: IfEnd“CURVE NUM=”?N1→Q:5N+11→DimZ“START a(Deg)=”?→Z[5]For 1→I To N“n=”:I◢“START R(m)=”?→Z[5I-4]Z[5I-4]=0=>1X1030→Z[5I-4]“END R(m)=”?→Z[5I-3]Z[5I-3]= 0=>1X1030→Z[5I-3]“LENGTH(m)=”?→Z[5I-2]If Z[5I-4]<1X1030 Or Z[5I-3] <1X1030Then “DEFLEX L(-1),R(1)=”?→Z[5I-1]:IfEnd 注意-1是减1NEXT“[MODE][1] =>Stop!”◢Lb1 T:0→I:For 1→I To NList X[I]+Rep(Z[5I-2])→List X[I+1]List X[I+1]→ZIf Z[5I-4]=Z[5I-3]And Z[5I-4]= 1X1030Then 0→S:0→T:Z[5I-2]→DProg “SUBQ2-84”:Goto 0:IfEndIf Z[5I-4]=Z[5I-3] And Z[5I-4] <1X1030Then Prog “SUBQ2-83”:Goto 0:IfEnd√根号(Rep(Z[5I-2])÷Abs(Z[5I-4]-1-Z[5I-3]-1))→A Rep(Z[5I-2])+Ai→Z[5I-2]Prog “SUBQ2-82”Lb1 0:T→Z[5I+1]]Rep(U)→List Y[I+1]:Imp(U)→List Freq[I+1] Next“PEG-END(m)=”:List X[N+1] ◢“a-END(DMS)=”DMS◢“X-END(m)=”:List Y[N+1] ◢“Y-END(m)=”:List Freq[N+1] ◢“[MODE][4]=>Stop!”◢Lb1 J:”STA BACKXY,NEW(0),O LD(≠0)=”?→JJ≠0=>Goto 1“STAn,X(m),<0=>NO=“?→S0→Z[5N+6]:S<0=>Goto 1If Frac(S)=0 And S≤N+1Then List Y[S]+List Freq[S]i→Z[5N+6]Else “STA Y(m)=”?→T:S+Ti→Z[5N+6]:IfEndLb1 B:”BACKn,X(m),OLDa(0),<0=>a=”?→UU=0=>Goto 1If U<0:Then “a-BACK(Deg)=”?→Z[5N+8]:Goto 1:IfEnd If S=U And Frac(U)=0Then”STAn=BACKn,REPEAT!”Goto B:IfEndIf Frac(U)=0 AND U≤N+1Then List Y[U]+List Freq[U]i→Z[5N+7]Else”BACK Y(m)=”?→V:U+Vi→Z[5N+7]:IfEndLb1 S:Arg(Z[5N+7]-Z[5N+6])→JJ<0=>J+360→J:J→Z[5N+8]Lb1 1:”PEG→XY(1),XY→PEG(≠1)=”?→QQ≠1=>Goto 2Do:”+PEG(m),<0=>END=”?→ZZ<List X[1] Or Z>List X[N+1]=>BreakFor 1→I To NZ<List X[I] Or Z>List X[I+1]=>Goto NZ-List X[I]→LIf Z[5I-4]=Z[5I-3] And Z[5I-4]= 1X1030Then 0→S:0→T:L→DProg “SUBQ2-84”: Prog “SUBQ2-85”:Break:IfEnd If Z[5I-4]=Z[5I-3] And Z[5I-4]<1X1030Then Prog”SUBQ2-83”Prog “SUBQ2-85”: Break:IfEndProg “SUBQ2-82”: Prog “SUBQ2-85”:BreakLb1 N:NextLpWhile Z>0:Goto ELb1 2:”XJ(m), <0=>END=”?X:X<0=>Goto E“YJ(m)=”?Y“J in NUM,<0=>AUTO=”?→I:I>0=>Goto3Abs(X+Yi-List Y[1]-List Freq[1]i→CList X[1]+C→ZFor 1→S To NZ>List X[S] And Z<List X[S+1]=>Break:Next 9000→C:S→EFor E→I To N(List Y[I]+ListY[I+1])÷2→U(List Freq[I]+List Freq[I+1])÷2→VAbs(X+Yi-U-Vi)→DIf D<C:Then D→C:I→F:IfEndNext:F≥2=>F-1→ILb1 3:If Z[5I-4]=Z[5I-3] And Z[5I-4]=1X1030 Then tan(Z[5I])→T(X+T2List Y[I]-T(List Freq[I]-Y))÷(T2+1)→UU+(Y-(U+X)÷T)i→U:Z[5I]→TU-List Y[I]-List Freq[I]→FArg(F)→H:H<0=>H+360→H1→J:Abs(T-H)>150=>-1→JList X[I]+JAbs(F)→ZIf Z≥List X[I] And Z≤List X[I+1]:Then Goto Z Else I+1>N=>Goto Z:I+1→I:Goto 3:IfEnd:IfEnd If Z[5I-4]=Z[5I-3] And Z[5I-4]<1X1030Then List Y[I]+List Freq[I]i→SZ[5I]+90Z[5I-1]→AZ[5I-4]→R:S+R<A→VX+Yi→U:Arg(U-V)→F:Abs(U-V)→DV+R<F→UAbs(U-S)→C:sin-1(C÷2÷R)→EZ[5I]+2Z[5I-1]E→TList X[I]+∏ER÷90→ZIf Z≥List X[I] And Z≤List X[I+1]:Then Goto ZElse I+1>N=>Goto Z:I+1→I:Goto 3:IfEnd:IfEnd List Y[I+]+List Freq[I]i→UList Y[I+1]+List Freq[I+1]→V(U+V)÷2→FV-U→C:Abs(C)→S:Arg(C)→JJ<0=>J+360→J:J+90Z[5I-1]→GIf Z[5I-4]>Z[5I-3]:Then 2Z[5I-3]→RElse 2Z[5I-4]→R:IfEnd√(R2-S2÷4)→TF+T<G→OSin-1(S÷R÷2)→V:∏VR÷90→J(Rep(Z[5I-2])-J)÷J→PX+Yi-O→V:Arg(V)→JO+R<J→C:Abs(C-U)→SSin-1(S÷R÷2)→V:∏VR÷90→JList X[I]+J(1-P)→ZProg “SUBQ2-82”DoX+Yi-U→C:Abs(C)→SArg(C)→J:J<0=>J+360→JJ-T→J:J<0=>J+360→JIf J>220:Then J-270→J:-1→FElse 90-J→J:1→F:IfEndIf Z[5I-4]>Z[5I-3]Then πJ÷180÷(FZ[5I-1]L÷A2+S-1)→EElse πJ÷180÷(-FZ[5I-1]L÷A2+S-1)→E:IfEndZ+E→ZIf Z>List X[I+1]:Then I+1→I:Goto 3:IfEndProg “SUBQ2-82”Tan(T)(ImP(U)-Y)+ReP(U)-X→CLpWhile Abs(C)>0.001Fix 4:”f(Lp)=”:C◢Fix 3:Lb1 Z:Prog “SUBQ2-85”:Goto 2Lb1 E:”QH2-8=>END”程序2:SUBQ2-81If L<1X10-5:Then 0→U:0→J:Return:IfEndL-L∧(5)÷40÷A∧(4)+L∧(9)÷3456÷A∧(8)-L∧(13)÷599040÷A∧(12)+L∧(17)÷175472640÷A∧(16)→OL∧(3)÷6÷A2-L∧(7)÷336÷A∧(6)+L∧(11)÷42240÷A∧(10)-L∧(15)÷9676800÷A∧(14)+L∧(19)÷3530096640÷A∧(18)→UO+Ui→U:(L2÷(2A2))r→JReturn程序3:SUBQ2-82ImP(Z[5I-2])→AA2÷Z[5I-4]→LProg “SUBQ2-81”:U→V:J→EIf Z[5I-4]>Z[5I-3]:Then Z-List X[I]+L→L Prog “SUBQ2-81”:U-V→OElse A2÷Z[5I-3]→LList X[I+1]-Z+L→LProg “SUBQ2-81”:V-U→O:IfEdnAbs(O)→D:Arg(O)→TAbs(T-E)→S:Abs(J-E)→TProg “SUBQ2-84”Return程序4:SUBQ2-83Z[5I-4]→R:Z-List X[I]→L(L÷2÷R)r→S:2Rsin(s)→D2S→T:Prog”SUBQ2-84”Return程序5:SUBQ2-84Z[5I]+Z[5I-1]S→S:Z[5I]+Z[5I-1]T→TT<0=>T+360→T:T>360=>T-360→TList Y[I]+List Freq[I]i+D<S→UReturn程序6:SUBQ2-85T<0=>T+360→T:T>360=>T-360→TIf Q=1:Then “ai(DMS)=”:T◢“Xi(m)=”:Rep(U)◢“Yi(m)=”:Imp(U)◢Else Z<List X[I] Or Z>List X[I+1]=>”OUT OF The CURVE!”◢Arg(X+Yi-U)→H:H<0=>H+360→HAbs(X+Yi-U)→DIf H>180:Then “J in Left,NUM=”:I◢Else “J in Right,NUM=”:I◢IfEnd“p PEG(m)=”:z◢“ap(DMS)=”◢“Xp(m)=”:Rep(U)◢“YP(m)=”:Imp(U) ◢“J→p DIST(m)=”:D◢IfEndIf Abs(Z[5N+6])>0:Then U→Z[5N+7]:Prog “SUBQ2-87”:IfEndZ≠0=>Porg “SUBQ2-86”Return程序7:SUBQ2-86“ANGLE(0)=>NO,-L+R(Deg)=”?KK=0=>ReturnIf K<0:Then K+180→P:Else K→P:K-180→K:IfEnd “WL(m),0=>NO=”?MIf M>0:Then U+M<(T+K)→V“XL(m)=”:Rep(V) ◢“YL(m)=”:Imp(U) ◢If Abs(Z[5N+6])>0:Then V→Z[5N+7]:Prog “SUBQ2-87”:IfEnd:IfEdn“WR(m),0=>NO=”?WIf W>0:Then U+W<(T+P)→V“XR(m)=”:Rep(V) ◢“YR(m)=”:Imp(V) ◢If Abs(Z[5N+6])>0:Then V→Z[5N+7]:Prog “SUBQ2-87”:IfEndIfEdn:Return程序8:SUBQ2-87Z[5N+7]-Z[5N+6]→O:Arg(O)→JJ<0=>J+360→JJ-Arg(Z[5N+8])→J:J<0=>J+360→J(J+1X10-8)≥360=>J-360→J“HR(DMS)=”◢“HD(m)=”:Abs(O) ◢Return红色“O”表示为字母,仅对单个字母另作标记。
计算器中的测量软件----道路之星操作手册 (1)

柃路园柃路园9860计算器与道路之星销售靠的是诚信与服务来经营店铺,店铺诚信服务、服务第一。
在本店铺购买后包教会道路之星安装与使用,并解决购买者任何测量问题,同时赠送各种常用软件及测量文件案例,并对新手及老手测量人员提供测量服务。
柃路园—(服务淘宝第一、价格淘宝最低)购买者请看准测量服务:网店网址:按住Ctrl并点击鼠标“柃路园—(淘宝网址)”以跟踪连接教程网址:按住Ctrl并点击鼠标“(道路之星软件视频讲解_道路之星软件使用教程 - )”以跟踪连接QQ测量服务群:128528455 电话138****4860基于Casio计算器的中文测量计算系统道路之星V1.22操作手册目录第一章概述- 1 - 第二章系统安装- 3 - 第一节电脑端程序- 3 - 第二节计算器与电脑交换数据- 5 - 第三节计算器程序- 7 - 第四节计算器程序基本操作- 11 - 第五节简易操作指南- 14 - 第三章常规计算- 16 - 第四章水准网记录及平差- 20 - 第五章控制测量记录与平差- 26 - 第六章道路测设- 30 - 第一节项目管理- 30 - 第二节道路正反算- 36 - 第三节路基路面控制- 44 - 第四节边坡计算- 49 - 第五节结构物及桥梁计算及检测- 53 - 第六节隧道超欠挖计算- 60 - 第七章计算器数据输入- 68 -道路之星用户手册第一章概述第一章概述一、功能和特点道路之星适用于公路、铁路、城市道路主线、立交匝道、隧道的勘测设计与施工放样工作。
软件分为两个部分:a.电脑端数据处理负责设计输入输出、设计成果的复核、现场采集数据的分析计算以及与计算器进行文件传输;b.计算器端施工现场计算基于Casio fx9750、fx9860、fxCG20计算器设计,负责现场的施工指导和相关数据的采集。
(一)、道路全线测设系统:将道路全线或一个标段所有数据一次性输入,主线、匝道可以存入一个文件,用路线名进行标识,一个项目文件可以包含任意多条路线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任意里程中边桩坐标正反算(CASIO
fx-4800P计算器)程序
时间:2007-12-18 13:13:15 来源:工测员网作者:未知
1. 加编数据库作为主程序 , 计算中不必逐项输入 " 线元要素 ", 提高运算速度,避免现场忙中出错
2. 将原来的主程序并入数据库
3. 计算直观 , 人性化
4. 正算直接输入里程和边距 , 反算输入近似里程便可
5. 增加了“ 计算点与测站点” 的距离和方位角计算语句,方便直接放样
6. 愿收获与大家共享
7. 核心计算程序摘自“yshf”
1. 正算子程序 (SUB1)
A=0.1739274226 : B=0.3260725774 : K=0.0694318442 : L=0.3300094782 :F=1-L :
M=1-K :
X=U+W(Acos(G+57.2958QKW(1/P+KWD))+Bcos(G+57.2958QLW(1/P+LWD))+Bcos(G+ 57.2958QFW
(1/P+FWD))+Acos(G+57.2958QMW(1/P+MWD))) :
Y=V+W(Asin(G+57.2958QKW(1/P+KWD))+Bsin(G+
57.2958QLW(1/P+LWD))+Bsin(G+57.2958QFW(1/P+FWD))+Asin(G+57.2958QMW(1/ P+MWD))) : F=G+57.2958QW(1/P+
WD)+90 : X=X+ZcosF : Y=Y+ZsinF
2. 反算子程序 (SUB2)
T=G-90 : W=Abs((Y-V)cosT-(X-U)sinT) : Z=0 : Lbl 0 : Prog "SUB1" :L=T+57.2958QW(1/P+
WD) : Z=(J-Y)cosL-(I-X)sinL : AbsZ<1E-6=>Goto1 :≠>W=W+Z : Goto 0Δ←┘
Lbl 1 : Z=0 : Prog "SUB1" : Z=(J-Y)÷sinF
3、 . 增设数据库程序(SJK主程序)
Lb1 4 : "1.SZ => XY" : "2.XY => SZ" :{ NS }:S ∠ 下一线元起点里程=>O = 本线元起点里程: U= 本线元起点 X : V= 本线元起点 Y : G= 本线元起算方位角: H= 本线元长度: P= 起点曲率半径: R= 终点曲率半径: Q=0 或 1 、 -1 : Goto0Δ←┘( 第一线元数据要素)
S ∠ 下一线元起点里程=>O = 本线元起点里程: U= 本线元起点 X : V= 本线元起点 Y : G= 本线元起算方位角: H= 本线元长度: P= 起点曲率半径: R= 终点曲率半径: Q=0 或 1 、 -1 : Goto0Δ←┘( 第二线元数据要素)
S ∠ 下一线元起点里程=>O = 本线元起点里程: U= 本线元起点 X : V= 本线元起点 Y : G= 本线元起算方位角: H= 本线元长度: P= 起点曲率半径: R= 终点曲率半径: Q=0 或 1 、 -1 : Goto0Δ←┘( 第三线元数据要素)。
Goto0Δ←┘( 第 N-1 线元数据要素) 。
Goto0Δ←┘( 第 N 线元数据要素)
LB1 0 : D=(P-R)÷(2HPR) : N=1=>Goto 1 :≠>Goto 2Δ←┘
Lbl 1 : {Z} : Z : W=Abs(S-O) : Prog "SUB1" :X"XS"=X ◢ Y"YS"=Y ◢
F"FS"=F-90 ◢
C“XC” :E“YC” : I=0 : J=0 : Pol ( X-C , Y-E ):I“I=” ◢ J ∠ 0 =>J“J=”+360 ◢
≠ >J“J=” ◢
ΔGoto4←┘
Lbl 2 : {XY} : XY : I=X : J=Y : Prog "SUB2" : S"S"=O+W ◢
Z"Z "=Z ◢
Goto4
三、使用说明
1 、规定
(1). 把所有相关的” 线元要素“ 依次输入”SJK“
(2). 运算时直接调用“SJK” 运行,程序提示输入里程“S” ?时,正算直接输入待求点里程,反算输入所求点“ 近似“ 里程
(3). 程序中“XC 、 YC 、” 为测站坐标,“ I=” 、“ J=” 为放样距离和方位角
(4) 以道路中线的前进方向(即里程增大的方向)区分左右;当线元往左偏时,Q=-1 ;当线元往右偏时, Q=1 ;当线元为直线时, Q=0 。
(5) 当所求点位于中线时, Z=0 ;当位于中线左铡时, Z 取负值;当位于中线中线右
侧时, Z 取正值。
(6) 当线元为直线时,其起点、止点的曲率半径为无穷大,以 10 的 45 次代替。
(7) 当线元为圆曲线时,无论其起点、止点与什么线元相接,其曲率半径均等于圆
弧的半径。
(8) 当线元为完整缓和曲线时,起点与直线相接时,曲率半径为无穷大,以 10 的45
次代替;与圆曲线相接时,曲率半径等于圆曲线的半径。
止点与直线相接时,曲率半
径为无穷大,以 10 的 45 次代替;与圆曲线相接时,曲率半径等于圆曲线的半径。
(9) 当线元为非完整缓和曲线时,起点与直线相接时,曲率半径等于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。
止点与直线相接时,曲率半径等
于设计规定的值;与圆曲线相接时,曲率半径等于圆曲线的半径。
2 、输入与显示说明
输入部分:
1. SZ => XY
2. XY = > SZ
N ? 选择计算方式,输入 1 表示进行由里程、边距计算坐标;输入 2 表示由坐标反算
里程和边距。
显示部分:
XS=××× 正算时,计算得出的所求点的 X 坐标
YS=××× 正算时,计算得出的所求点的 Y 坐标
FS=××× 正算时,所求点对应的中线点的切线方位角
S=××× 反算时,计算得出的所求点的里程
Z=××× 反算时,计算得出的所求点的边距。