阶梯奥数-------分数乘法应用题1(答案版)
(完整word版)分数乘法奥数题

分数乘法奥数题1.一项工程,甲,乙两队合作需6天完成,现在乙队先做了7天,然后甲队做了4天,共完成这项工程的十五分之十三。
如果把其余工程单独交给乙队单独做还要几天才能完成?2。
一项工程,单独做,甲要12天,乙要9天。
若甲先做若干天后乙接着做,共用10天完成,问:甲做了几天?3 新华书店运来一批图书,第一天卖出总数的81多16本,第二天卖出总数的21少8本,还余下67本.这批图书一共多少本?4小明看一本小说,第一天看了全书的81还多21页,第二天看了全书的61少4页,还剩下102页.这本小说一共有多少页?5 某工厂第一车间原有工人120名,现在调出81给第二车间后,这是第一 车间的人数比第二车间现有人数的76还多3名。
求第二车间原来有多少人?6某小学五年级有三个班,一班和二班的人数相等,三班的人数占五年级的207,并且比二班多3人,问五年级共有多少学生?7学校图书室内有一架故事书,借出总数的43之后,又放上60本,这时架上的书是原来总数的31。
求现在书架上放着多少本书?8有一堆砖,搬走41后又运来306块,这时这堆砖比原来还多了51,问原来这堆砖有多少块?9 一块西红柿地,今年获得丰收.第一天收下全部的83,装了3筐还余12千克,第二天把剩下的全部收完,正好装了6筐。
这块地共收了多少千克?10菜地里黄瓜获得丰收,收下全部的83时,装满了4筐还多36千克,收完其余的部分时,又刚好装满8筐,求共收黄瓜多少千克?11 库房有一批货物,第一天运走20吨,第二天运走得吨数比第一天多176,还剩下这批货物的179,这批货物有多少吨?12车间共有工人152名,选派男工的111和5名女工参加培训班后,剩下的男女工的人数正好一样多。
问车间的男、女工各有多少人?13一本书,已看了130页,剩下的准备8天看完,如果每天看的页数相等,3天看的页数恰好为全书的225,这本书共有多少页?14 有一块菜地和一块稻田,菜地的一半和稻田的三分之一放在一起是13公顷,稻田的一半和菜地的三分之一合在一起是12公顷.那么这块稻田有多少公顷?15一瓶饮料,一次喝掉一半饮料后,连瓶共重700克;如果喝掉饮料的31后,连瓶共重800克,求瓶子的重量。
【分数乘除法】应用题(含答案)

分数乘除法应用题1(1)一条绳子长100米,剪去它的25,剪去多少米?(2)一条绳子长100米,剪去它的25,还剩多少米?(3)一条绳子,剪去它的25,刚好剪去40米。
这条绳子原来长多少米?(4)一条绳子,剪去它的25,还剩60米。
这条绳子原来长多少米?(5)一条绳子,第一次剪去它的25,第二次剪去7米,第三次剪去它的25,刚刚剪完,这条绳子原来长多少米?(6)一条绳子,第一次剪去它的25,第二次剪去7米,第三次剪去8米,刚刚剪完,这条绳子原来长多少米?(7)一条绳子,第一次剪去7米,第二次剪去8米,两次刚好剪去它的25,这条绳子原来长多少米?(8)一条绳子,第一次剪去25,第二次剪去7米,两次刚好剪去它的一半。
这条绳子原来长多少米?分数乘除法应用题2(1)学校即将举行运动会,如果购进排球60个,购进的篮球个数是排球的23,购进篮球多少个?(2)学校即将举行运动会,如果购进排球60个,是购进篮球的23,购进篮球多少个?(3)学校即将举行运动会,如果购进排球60个,购进的篮球个数比排球多13,购进篮球多少个?(4)学校即将举行运动会,如果购进排球60个,比购进的篮球多13,购进篮球多少个?(5)学校即将举行运动会,如果购进排球60个,购进的篮球个数比排球多13,购进篮球比排球多多少个?(6)学校即将举行运动会,如果购进排球60个,比购进的篮球多13,购进篮球比排球少多少个?(7)学校即将举行运动会,如果购进的篮球和排球共60个,购进的篮球个数是排球的23,购进篮球、排球多少个?(8)学校即将举行运动会,如果购进的篮球和排球共70个,购进的篮球个数比排球多13,购进篮球、排球多少个?(9)学校即将举行运动会,如果购进的篮球比排球少15个,购进的排球比篮球多13,购进篮球、排球多少个?分数乘除法应用题3(1)一项工程,如果甲队单独做,6天完成,如果乙队单独做,8天完成。
甲工效:乙工效:甲队干4天,完成了这项工程的几分之几?乙队干3天,完成了这项工程的几分之几?如果两队合作3天,完成这项工程的几分之几?甲乙两队合作3天后,还剩这项工程的几分之几?(2)一段公路长360千米,甲队单独修12天完成,乙队单独修20天完成。
奥数分数乘法应用题附答案

奥数分数乘法应用题附答案1.某村修公路,已修1020米,还要修多少米?正好修这条路的?要修的总长度为4500米,已经修了1020米,所以还要修的长度为4500-1020=3480米。
正好修这条路的长度是4500×2/3-1020=1380米。
2.一条水渠长千米,第一次修了全长的5/8,第二次修了千米的3/5,两次共修了多少千米?第一次修的长度为1000×5/8=625米,第二次修的长度为1000×3/5=600米。
两次共修的长度为625×3/5+600×1/8=375+75=450米。
3.一本书共120页,天天第一天看了总页数的1/5,第二天看了总页数的1/3,第三天从哪一页看起?第一天看了的页数为120×1/5=24页,第二天看了的页数为120×1/3=40页,两天共看了64页。
剩下的页数为120-64=56页,所以第三天从第65页开始看。
4.甲乙两列火车从相距500千米的两地同时相对开出,甲车每小时行80千米,2小时后两车还相距全程的,乙车每小时行多少千米?甲车在两小时内行驶的距离为80×2=160千米,所以两车相遇时的距离为500-160=340千米。
乙车每小时行驶的距离为340÷3=70千米。
5.学校食堂有800千克大米,已经吃了300千克,还要吃多少千克才正好是总数的4/5?还要吃的大米重量为800×4/5-300=340千克。
6.XXX看一本124页的书,已经看了全书的1/4,再看多少页就正好看了这本书的一半?已经看了的页数为124×1/4=31页,还需要看的页数为124×1/2-31×1=62页。
7.幼儿园有3吨煤,第一次运走了一半,第二次又运走了1/4,这时还剩下多少吨?第一次运走的煤的重量为3×1/2=1.5吨,剩下1.5吨。
第二次运走的煤的重量为1.5×1/4=0.375吨,所以还剩下1.5-0.375=1.125吨。
五年级下册奥数试题-分数乘法应用题

分数乘法应用题【知识陈述】1、分数中分母表示把单位一分成的份数,分子是部分量所代表的份数2、分数乘整数(第二个因数为整数时):分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数和得简便运算。
3、一个数(小数、分数、整数)乘分数(第二因数为真分数时):一个数乘分数的意义表示这个数的几分之几是多少。
4、一个数(小数、分数、整数)乘分数(第二因数为大于1的分数时):一个数乘分数的意义是表示这个数的几倍是多少。
5、分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
【例题精讲】例1、六年级男生人数是全班人数的94,女生人数是全班人数的几分之几?练习、停车场里只有有小汽车和大汽车,小汽车的辆数是全部汽车的85,大汽车的辆数是全部汽车的几分之几?例2、某村要挖一条长2700米的水渠,已经挖了1050米,再挖多少米正好挖了这条水渠的32?练习、工程队要修一条长8千米的路,已经修了3千米,再修多少千米正好修了这条路的43?例3、学校食堂存有89吨大米,第一周吃掉全部的31,第二周吃掉21吨,两周一共吃掉大米多少吨?练习、一段电线长85米,第一次用去全长的53,第二次用去41米,两次共用去多少米?例4、一台播种机每小时播种13公顷,14小时播种多少公顷?56小时播种多少公顷?练习、一辆汽车每小时行54千米,43小时行多少千米?54小时行多少千米?例5、一本书一共100页,小明第一天看了总数的51,第二天看了总页数的41,剩下的第三天看完。
第三天看了多少页?练习、 仓库有化肥3400吨,第一次取出41,第二次取出103,还剩下多少吨化肥?例6、某车间今年二月份生产了200箱货物,三月份生产的货物是二月份的 ,四月份生产的货物是三月份的,四月份生产货物多少箱?练习、一堆煤180吨,第一个月烧了它的,第二个月烧的是第一个月的.第二个月烧了多少吨?例7、甲是乙的97,那么甲比乙少几分之几?乙比甲多几分之几?乙要给甲几分之几它们才能一样?练习、甲是乙的179,那么甲比乙少几分之几?乙比甲多几分之几?乙要给甲几分之几它们才能一样?甲是甲乙之和的几分之几?乙是甲乙之差的几分之几?【选讲】乐天影院正在放映一部最新电影,原来电影票20元一张,现在降价,观众增加了一倍,收入增加了51现在电影票多少钱一张?练习、一场足球比赛的门票预计售价是每张60元,为了吸引更多球迷入场观看,现在门票降价出售。
分数奥数应用题及答案

分数奥数应用题及答案分数奥数应用题及答案学好数学,挑战奥数,我们要各个击破,下面是分数奥数应用题及答案,欢迎练习。
例一:王叔叔买了一辆价值16000元的摩托车。
按规定,买摩托车要缴纳10%的车辆购置税。
王叔叔买这辆摩托车一共要花多少钱?分析与解答:王叔叔买这辆摩托车所需的钱应包含购买价和10%的车辆购置税两部分,而车辆购置税是占摩托车购买价的10%,可先算出要缴纳的车辆购置税。
也可以这样想:车辆购置税占购买价的10%,把购买价看作单位“1”,王叔叔买这辆摩托车所需的钱相当于购买价的(1 + 10%),即求16000元的110%是多少,也用乘法计算。
方法1:16000 ×10% + 16000 = 1600 + 16000 = 17600(元)方法2:16000 ×(1 + 10%)= 16000 ×1.1 = 17600(元)答:王叔叔买这辆摩托车一共要花17600元钱。
例二:益民五金公司去年的营业总额为400万元。
如果按营业额的3%缴纳营业税,去年应缴纳营业税多少万元?分析与解:如果按营业额的3%缴纳营业税,是把营业额看作单位“1”。
缴纳营业税占营业额的3%,即400万元的3%。
求一个数的百分之几是多少,也用乘法计算。
计算时可将百分数化成分数或小数来计算。
400×3% = 12(万元)或400×3%= 400×0.03 = 12(万元)答:去年应缴纳营业税12万元。
点评:在现实社会中,各种税率是不一样的。
应纳税额的计算从根本上讲是求一个数的百分之几是多少。
例三:扬州某风景区2017年“十一”黄金周接待游客9万人次,门票收入达270万元。
按门票的5%缴纳营业税计算,“十一”黄金周期间应缴纳营业税0.45万元。
分析与解:营业税是按门票的5%缴纳,是占门票收入的5%,而不是占游客人数的5%答:“十一”黄金周期间应缴纳营业税13.5万元。
分数与百分数的应用基本概念与性质:分数:把单位“1”平均分成几份,表示这样的一份或几份的数。
小学-六年级-数学奥数-分数运算-练习题-带答案

小学-六年级-数学(shùxué)奥数-分数运算-练习题-带答案1.凑整法与整数(zhěngshù)运算中的“凑整法”相同,在分数(fēnshù)运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数……从而(cóng ér)使运算得到简化.2.约分法3.裂项法数之和时,若能将每个分数都分解成两个分数之差,并且使中间(zhōngjiān)的分数相互抵消,则能大大简化运算.例7 在自然数1~100中找出10个不同(bù tónɡ)的数,使这10个数的倒数的和等于1.分析(fēnxī)与解;这道题看上去比较复杂,要求(yāoqiú)10个分子为1,而分母不来做,就非常简单了.题中所求,添上括号.此题要求(yāoqiú)的是10个数的倒数和为1,于是做成;所求的10个数是2,6,12,20,30,42,56,72,90,10.替换答案(dáàn)中的10和30,仍是符合题意的解.4.代数(dàishù)法分析(fēnxī)与解;通分计算(jì suàn)太麻烦,不可取.注意到每个括号中都有例2 计算(jì suàn);分析与解题中的每一项的分子都是1,分母不是连续相邻两个自然数之积,而是连续三个自然数的乘积,下面我们试着从前几项开始拆分,探讨解这类问题的一般方法,因为这里n是任意(rènyì)一个自然数,利用这一等式,采用(cǎiyòng)裂项法便能较快地求出例2的结果,例3 计算(jì suàn);分析(fēnxī)与解仿上面(shàng miɑn)例1、例2的解题思路,我们也先通过几个简单的特例试图找出其规律,再用裂项法求解,这几个分数的分子都是2,分母是两个(liǎnɡɡè)自然数的积,其中较小的那个自然数正好等于分母中自然数的个数,另一个自然数比这个自然数大3,把这个想法推广(tuīguǎng)到一般就得到下面的等式;连续使用(shǐyòng)上面两个等式,便可求出结果来,因为第一个小括号内所有分数的分子都是1,分母(fēnmǔ)依次为2,3,4,...,199,所以共有(ɡònɡ yǒu)198个分数,第二个小括号内所有(suǒyǒu)分数的分子也都是1,分母依次为5,6,7, (202)所以也一共(yīgòng)有198个分数,这样分母(fēnmǔ)分别为5,6,7,…,199的分数正好抵消,例4 求下列所有分数的和;分析与解这是分数求和题,如按异分母分数加法法则算,必须先求1,2,3,…,1991这1991个数的最小公倍数,单是这一点就已十分麻烦,为此我们只好另找其他的方法,先计算分母分别为1,2,3,4的所有分数和各等于多少,这四个结果说明,分母分别(fēnbié)为1,2,3,4的上述所有分数和分别为1,2,3,4,如果这一结论具有一般性,上面(shàng miɑn)所有分数的求和问题便能很快解决,下面我们来讨论(tǎolùn)一般的情况,假定(jiǎdìng)分数的分母是某一自然数k,那么分母为k的按题目要求的所有分这说明,此题中分母为k的所有分数的和为k,利用这一结论,便可得到(dé dào)下面的解答,例5 自然数m至n之间所有(suǒyǒu)分母为P的最简分数和是多少〔这里(zhèlǐ)m<n,P是奇质数〕?分析(fēnxī)与解先写出这些(zhèxiē)分数来,因为P是奇质数,所以与P互质且比P小的数有1,2,3,…,P-1,共〔P-1〕个,换句话说,每相邻的两个(liǎnɡɡè)自然数之间,以P为分母的最简分数都有〔P-1〕个,故下面来求这些分数的和;因为m至〔n-1〕之间自然数的个数为;〔n-1〕-m+1=n-m,所以上面结果故上面结果又可改写为;由以上例题可知,认真观察(guānchá),发现题目中的规律,然后利用规律去解题,是我们解题的一大法宝,内容总结(1)小学-六年级-数学奥数-分数运算-练习题-带答案1.凑整法与整数运算中的“凑整法”相同,在分数运算中,充分利用四则运算法则和运算律(如交换律、结合律、分配律),使部分的和、差、积、商成为整数、整十数(2)因为m至〔n-1〕之间自然数的个数为(3)〔n-1〕-m+1=n-m,所以上面结果故上面结果又可改写为。
分数乘除法应用题及答案

分数乘除法应用题及答案1. 应用题:小明有3/4个苹果,他吃了1/2个,还剩下多少个苹果?答案:小明吃了3/4 * 1/2 = 3/8个苹果,所以还剩下3/4 - 3/8 = 3/8个苹果。
2. 应用题:小华有5/6个蛋糕,他分给了3个朋友,每个朋友分到的蛋糕是原来的几分之几?答案:每个朋友分到的蛋糕是5/6 ÷ 3 = 5/18个蛋糕。
3. 应用题:小刚有1/3瓶牛奶,他喝掉了1/4瓶,剩下的牛奶是原来的几分之几?答案:剩下的牛奶是1/3 - 1/3 * 1/4 = 1/3 * (1 - 1/4) = 1/3 * 3/4 = 1/4瓶。
4. 应用题:小红有2/5个西瓜,她将西瓜切成了8等份,每份是整个西瓜的几分之几?答案:每份是整个西瓜的2/5 ÷ 8 = 2/5 * 1/8 = 1/20。
5. 应用题:小李有3/5千克的面粉,他用去了2/3,问剩下的面粉是多少千克?答案:剩下的面粉是3/5 * (1 - 2/3) = 3/5 * 1/3 = 1/5千克。
6. 应用题:小王有1/2小时的时间,他用去了1/4小时,还剩下多少小时?答案:还剩下的时间是1/2 - 1/2 * 1/4 = 1/2 * (1 - 1/4) = 1/2 * 3/4 = 3/8小时。
7. 应用题:小张有4/7块巧克力,他与朋友交换了1/3块,问交换后他有多少块巧克力?答案:交换后他有4/7 + 1/3 = 4/7 + 7/21 = 12/21 + 7/21 = 19/21块巧克力。
8. 应用题:小赵有5/6升的果汁,他倒出了1/2升,问倒出后还剩多少升?答案:倒出后还剩5/6 - 1/2 = 5/6 - 3/6 = 2/6 = 1/3升。
9. 应用题:小刘有3/4米的布,他用去了1/3米,问剩下的布有多少米?答案:剩下的布有3/4 - 1/3 = 9/12 - 4/12 = 5/12米。
10. 应用题:小陈有1/2吨的大米,他卖出了1/4吨,问卖出后还剩多少吨?答案:卖出后还剩1/2 - 1/4 = 1/2 - 1/4 = 1/4吨。
分数乘法应用题答案

分数乘法应用题答案1. 问题:小明有3/4个苹果,他把苹果的1/2分给了小红,请问小明分给小红多少个苹果?答案:小明分给小红的苹果数量是3/4 * 1/2 = 3/8个苹果。
2. 问题:一个班级有40名学生,其中3/5是男生,那么这个班级有多少名男生?答案:班级中男生的数量是40 * 3/5 = 24名。
3. 问题:一个工厂生产了150个零件,其中2/5是合格的,那么合格的零件有多少个?答案:合格的零件数量是150 * 2/5 = 60个。
4. 问题:一个蛋糕被切成了8份,小华吃了其中的3/4,那么小华吃了多少份?答案:小华吃了的蛋糕份数是8 * 3/4 = 6份。
5. 问题:一个果园里有120棵苹果树,其中1/3的树结了果,那么结了果的苹果树有多少棵?答案:结了果的苹果树数量是120 * 1/3 = 40棵。
6. 问题:一个长方形的长是20米,宽是长的2/5,那么这个长方形的宽是多少米?答案:长方形的宽是20 * 2/5 = 8米。
7. 问题:一个游泳池的容积是500立方米,如果每小时注水1/10,那么需要多少小时才能注满?答案:注满游泳池需要的小时数是500 / (500 * 1/10) = 10小时。
8. 问题:一个班级有50名学生,其中1/2是女生,那么这个班级有多少名女生?答案:班级中女生的数量是50 * 1/2 = 25名。
9. 问题:一个工厂生产了200个玩具,其中3/4是完好的,那么完好的玩具有多少个?答案:完好的玩具数量是200 * 3/4 = 150个。
10. 问题:一个公园的总面积是1000平方米,其中1/4是草坪,那么草坪的面积是多少平方米?答案:草坪的面积是1000 * 1/4 = 250平方米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数乘法应用题1
1.某果园计划去年上半年栽果树12000棵,结果上半年完成83,下半年完成5
4,问去年超额栽果树多少棵
【解答】)(21001548312000棵=⎪⎭
⎫ ⎝⎛-+⨯
2.小悦看一本270第一天看了全书的31,第二天看了余下的9
4,第三天从第几页看起?
【解答】
)(17094)311(3
1270页=⎥⎦⎤⎢⎣⎡⨯-+⨯ 170+1=171(页)
所以第三天从171页看起。
3.粮店有4又
54吨大米,每天卖12
1,照这样计算,6天后还剩多少吨大米? 【解答】)(5
22)61211(544元=⨯-⨯
【拓展】
1某电器公司生产一种电子产品。
由于改进技术,成本逐渐下降,今年第二季度起成本都比前一季降低10
1,已知第一季度成本是1250元,问第四季度成本是多少元?
【解答】)(25.911)10
11()1011()1011(1250元=-⨯-⨯-⨯
2.将2008减去它的
21,再减去余下的31,再减去余下的41……以此类推,直到减去余下的
2008
1,问最后的结果是多少?
【解答】
12008
20072007200643322120081)2008
11()411()311()211(2008=⨯⨯⋯⋯⨯⨯⨯⨯==-⨯⋯⋯⨯-⨯-⨯-⨯
3.甲、乙、丙三人为灾区捐款,甲捐的钱比乙多51,乙捐的钱比丙多5
1 。
已知丙捐了1200元,问甲比丙多捐多少元? 【解答】)(52815115111200元=⎥⎦
⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯
4.某中学去年 初中新生480人,招收高中新生是初中新生的
65,今年招收的初中新生比去年增加
52,招收的高中新生比去年增加5
1,问今年共招收初、高中新生多少名?
【解答】)(115251165480521480人=⎪⎭⎫ ⎝⎛+⨯⨯+⎪⎭⎫ ⎝⎛+⨯
5.甲、乙、丙、丁四人凑钱合买24000元的游艇,甲支付的钱是其余三人所支付现金总数的41,乙支付的是其余三人所支付现金总数的5
1,丁支付的比其他三人所支付的总数少2
1,问丙支付多少元? 【解答】)(7200121151141124000元=⎪⎭⎫ ⎝⎛+-+-+-⨯。