《结构力学》课后习题答案

合集下载

结构力学课后习题答案(2)

结构力学课后习题答案(2)

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1〜2-14 试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,指出多余则应联系的数目。

题2-2图题2-3图题2-5图题2-6图题2-8图题2-9图题2-10图题2-11图题4-1图4-2 作图示刚架的M 图。

3-1 试作图示多跨静定梁的M 及Q 图。

习题(a)1.5m 1 2m I2.5m | 1.5m l 4.5m题3-1(b)3-2 试不计算反力而绘出梁的M 图。

4m40kN(a) 5kN/mM(b )4-1 作图示刚架的M 、Q 、N 图。

2kN /m2kN • m (a)2kN 题3-2习题4(b ) (c )4-3 4-4 4-54m(a)(d)作图示三铰刚架的M图。

M=4Pa2a(b)4kN4m 4m(c)珂10kN/m4m(e)题4-2图CE0.5m ]m2J 0.5m7mB7m(a)题4-3作图示刚架的M图。

(a)I 盒lUlUUW已知结构的M图,试绘出荷载。

10kN/m1.5m题4-4图urm*~ G3mC7.35m 7.35m(b)m6Nn m220kN40kN/m4m(b)C_PaPaPaa4-6 检查下列刚架的M图,并予以改正。

5-15-2 题4-5图(b)P(d)(e) (f)(c)题4-6图习题5图示抛物线三铰拱轴线方程4 f1kN/mx)x,(h)试求D截面的内力。

20kN10m题5-1图K15m j 5ml=30m带拉杆拱,拱轴线方程 y ,求截面的弯矩。

题5-3图习题66-1 判定图示桁架中的零杆。

6-2 6-3 6-4 6-5 用结点法计算图示桁架中各杆内力。

(b) (c)m题6-2用截面法计算图示桁架中指定各杆的内力。

3m [ 3m3m I 3m题6-3试求图示组合结构中各链杆的轴力并作受弯杆件的用适宜方法求桁架中指定杆内力。

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。

(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。

(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。

(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。

P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。

(b)(a)题4-3图4-4 作图示刚架的M 图。

(a)题4-4图4-5 已知结构的M 图,试绘出荷载。

(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。

(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。

题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。

C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。

习题66-1 判定图示桁架中的零杆。

(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。

(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。

(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。

(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。

(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。

结构力学习题课后答案(高等教育版)

结构力学习题课后答案(高等教育版)

习 题8-1 试说出单元刚度矩阵的物理意义及其性质与特点。

8-2 试说出空间桁架和刚架单元刚度矩阵的阶数。

8-3 试分别采用后处理法和先处理法列出图示梁的结构刚度矩阵。

(a)解:(a )用后处理法计算 (1)结构标识(2)建立结点位移向量,结点力向量[]T44332211 θνθνθνθν=∆[]Ty M F M F M F M F F 4y43y32y211 =θ(3)计算单元刚度矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=2222322211211462661261226466126122EI 21 l l -l l l -l -l l -l l l l - l k k k k k ①①①①①⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222233332232223 33 6 3632336 362EI 21 l l - l l l - l -l l -l l l -l l k k k k k ②②②②②lll⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=222234443343323 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ③③③③③(4)总刚度矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=222222222234443343333322322222112112 3300003 6 3 6 000 03403003601236000 0 3632600 363186120000 26460 0 0 06126122EI 0 0 00 0 0 4 3 2 1 4 3 2 1 l l -l l l - l - - l l -l l l l - l - - l l -l l -l l l l - -l -- l l -l l l l - l k k k k k k k k k k k k k ③③③③②②②②①①①①θ (5)建立结构刚度矩阵支座位移边界条件[][]00004311 θ θ θν=将总刚度矩阵中对应上述边界位移行列删除,得刚度结构矩阵。

结构力学课后习题答案 (3)

结构力学课后习题答案 (3)

结构力学课后习题答案问题1:悬臂梁的挠曲分析问题描述一个长度为L的悬臂梁,截面形状为矩形,宽度为b,高度为h。

悬臂梁上受到一个分布载荷q(x)。

求悬臂梁在某一点x处的弯矩和挠度。

解答根据结构力学的基本原理,可以使用弯曲方程和挠度方程来求解该问题。

首先,我们通过积分来求得悬臂梁上任意一点x处的弯矩M(x):M(x) = \\int_{0}^{x} q(x')dx'其中,q(x’)表示分布载荷。

这个积分可以通过数值方法或者解析方法来求解。

然后,根据挠度方程,我们可以得到悬臂梁上任意一点x 处的挠度v(x)的微分方程:\\frac{d^2v(x)}{dx^2} = \\frac{M(x)}{EI}其中,E表示悬臂梁的弹性模量,I表示悬臂梁的惯性矩。

这个微分方程可以通过常微分方程的求解方法来求解。

最后,我们可以得到悬臂梁在某一点x处的挠度v(x):v(x) = \\int_{0}^{x} \\int_{0}^{x'} \\frac{M(x '')}{EI} dx''dx'问题2:钢梁的热膨胀应力分析问题描述一个长度为L的钢梁固定在一端,另一端自由伸张。

当温度升高时,钢梁会因为热膨胀而产生应力。

假设钢梁的热膨胀系数为α,温度升高ΔT。

求钢梁上某一点x处的应力。

解答根据热膨胀原理,钢梁上某一点x处的应力可以通过以下公式计算:\\sigma(x) = E \\cdot \\alpha \\cdot \\Delta T \\cdot x其中,E表示钢梁的弹性模量。

这个公式说明了应力与距离x成正比。

需要注意的是,这里假设钢梁在温度变化时没有发生塑性变形,即没有超过材料的屈服强度。

问题3:钢筋混凝土梁的抗弯分析问题描述一个长度为L的钢筋混凝土梁,截面形状为矩形,宽度为b,高度为h。

在梁的底部布置了一定数量的钢筋,用于增加梁的抗弯强度。

求梁在某一点x处的最大弯矩和最大应力。

结构力学课后习题答案

结构力学课后习题答案

结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。

2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。

2-3 ⼏何不变,有1个多余约束。

2-4 ⼏何不变,⽆多余约束。

2-5 ⼏何可变。

2-6 ⼏何瞬变。

2-7 ⼏何可变。

2-8 ⼏何不变,⽆多余约束。

2-9⼏何瞬变。

2-10⼏何不变,⽆多余约束。

2-11⼏何不变,有2个多余约束。

2-12⼏何不变,⽆多余约束。

2-13⼏何不变,⽆多余约束。

2-14⼏何不变,⽆多余约束。

5-15⼏何不变,⽆多余约束。

2-16⼏何不变,⽆多余约束。

2-17⼏何不变,有1个多余约束。

2-18⼏何不变,⽆多余约束。

2-19⼏何瞬变。

2-20⼏何不变,⽆多余约束。

2-21⼏何不变,⽆多余约束。

2-22⼏何不变,有2个多余约束。

2-23⼏何不变,有12个多余约束。

2-24⼏何不变,有2个多余约束。

2-25⼏何不变,⽆多余约束。

2-26⼏何瞬变。

3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。

3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。

3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。

结构力学课后习题答案[1]

结构力学课后习题答案[1]

)e( 移位线个 1�移位角个 3 移位角个 1
)d(
)c(
。构结本基出绘并�目数量知未本基法移位的构结示图定确试 1-7
)b(
) a(


33 -7
下如图矩弯各�量知未移位角个 1 m4 m4
量知未本基定确�1� �解 C IE
m4
D Nk01
IE
B
IE2 m/Nk5.2
A )b(
图M
42 lq 2 5
图矩弯终最画�4� 得解�入代
61.53
IE
3
0 � p 2 R , 0 3 � p 1R 6 � 2 2r IE � 1 2r � 2 1r , I E 2 � 1 1r
程方解并数系定确�3�
p2
11
1
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
N K 0 3 � � p 2 R , N K 0 3 � p 1R 4 � � 2 2r 0 � 1 2r � 2 1r , i1 1 � 1 1r
p2
得解�入代
i3
程方解并数系定确�3�
0�
R � 2 Z 2 2r � 1 Z 1 2r R � 2 Z 2 1r � 1 Z 11r
程方型典法移位�2�
程方型典法移位�2�
0�
p1
图p M
03 � p 1R � 0 � p 1R
03
04 -7
m2
m2 数常=IE F
B E
m2
m2
D
A
m2
Nk03
C )c(
90.92 55.43
图M
81.8 19.02 54.57 02

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

同济大学 结构力学课后习题及答案解析(完整版)

同济大学 结构力学课后习题及答案解析(完整版)

R=2m
4m
A O
M ( ) 1 (R sin )2 1 2 R(1 cos ) 2
M ( ) 1
B
1 EI
2 1 [1 (R sin )2 1 2 R(1 cos )]Rd 02
= (8-3 ) -1.42 (逆时针)
EI
EI
(d) A q
R EI=常数
O
B
5-7 试用图乘法计算图示梁和刚架的位移:(a) ΔyC ;(b) ΔyD ;(c) ΔxC ;(d) ΔxE ;(e) D ;(f) ΔyE 。 (a)
5-5 已知桁架各杆的 EA 相同,求 AB、BC 两杆之间的相对转角 ΔB 。 5-6 试用积分法计算图示结构的位移:(a) ΔyB ;(b) ΔyC ;(c) B ;(d) ΔxB 。
(a)
q2 q1
A
EI
B
l
以B点为原点,向左为正方向建立坐标。
q( x)
q2
l
q1
x
q1
M
p(x)
1 2
52.17
M
248.49
104.37 52.14
6-6 试用力法求解图示超静定桁架,并计算 1、2 杆的内力。设各杆的 EA 均相同。
(a)
(b)
1
1
2
FP
FP
a
a
a
2m
题 6-6 图
6-7 试用力法计算图示组合结构,求出链杆轴力并绘出 M 图。
2
30kN 2m
(a)
a 1.5m
l
A
kθ=
12EI l
2 3
2 3
6 1 20 62 8
3 2
1 6180 3 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解得:
(2)求解最终弯矩图
7-11试利用对称性计算图示刚架,并绘出M图。
(a)
解:(1)利用对称性得:
(2)由图可知:
可得:
(3)求最终弯矩图
(b)
解:(1)利用对称性,可得:
(2)由图可知,各系数分别为:
解得:
(3)求最终弯矩图如下
(c)
解:(1)在D下面加一支座,向上作用1个单位位移,由于BD杆会在压力作用下缩短,所以先分析上半部分,如下图。
7-2试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?
7-3试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。
7-4试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?
7-5试用位移法计算图示结构,并绘出其力图。
(a)
解:(1)确定基本未知量
两个角位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)画最终弯矩图
(b)
解:(1)确定基本未知量
两个位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)画最终弯矩图
(c)
解:(1)确定基本未知量
两个位移未知量,各种M图如下
7-12试计算图示结构在支座位移作用下的弯矩,并绘出M图。
(a)
(b)
解:(1)求 图。
(2)由图可知:
代入典型方程,得:
(3)求最终弯矩图
7-13试用位移法求作下列结构由于温度变化产生的M图。已知杆件截面高度h=0.4m,EI=2×104kN·m2,α=1×10-5。
解:(1)画出 图。
(2)求解各系数,得,
D点向上作用1个单位,设B向上移动x个单位,则 ,得 个单位。
(2)同理可求出Mp图。
可得:
(3)求最终弯矩图
(d)
(e)
解:(1)利用对称性,取左半结构
(2)由图可知:
解得:
(3)求得最终弯矩图
(f)
解:由于Ⅱ不产生弯矩,故不予考虑。只需考虑(Ⅰ)所示情况。对(Ⅰ)又可采用半结构来计算。如下图所示。
代入,解得
(4)求最终弯矩图
7-7试分析以下结构力的特点,并说明原因。若考虑杆件的轴向变形,结构力有何变化?
(a) (b) (c)
(d) (e) (f)
7-8试计算图示具有牵连位移关系的结构,并绘出M图。
(a)
解:(1)画出 图
由图可得:
由图可知:
(2)列方程及解方程组
解得:
(3)最终弯矩图
(b)
解:C点绕D点转动,由Cy=1知,
《结构力学》课后习题答案
习题
7-1试确定图示结构的位移法基本未知量数目,并绘出基本结构。
(a) (b) (c)
1个角位移3个角位移,1个线位移4个角位移,3个线位移
(d) (e) (f)
3个角位移,1个线位移2个线位移3个角位移,2个线位移
(g) (h) (i)
一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移
典型方程:
解得:
(3)求最终弯矩图
7-14试用混合法作图示刚架M图。
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)求最终弯矩图
(d)
解:(1)确定基本未知量
两个位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)求最终弯矩图
(e)
解:(1)确定基本未知量
两个角位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
(2)位移法典型方程
(3)确定系数并解方程
(4)画M图
(d)
解:(1)确定基本未知量
一个线位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
(4)画M图
(e)
解:(1)确定基本未知量
两个线位移未知量,各种M图如下
(2)位移法典型方程
(3)确定系数并解方程
代入,解得
(4)画M图
7-6试用位移法计算图示结构,并绘出M图。



(c)
解:(1)作出各M图
(2)列出位移法方程
解得:
(3)最终M图
(d)
解:基本结构选取如图所示。
作出 及 图如下。
由位移法方程得出:
作出最终M图
7-9试不经计算迅速画出图示结构的弯矩图形。
(a)
(b)
题7-9图
7-10试计算图示有剪力静定杆的刚架,并绘出M图。
解:(1)画出 图
由图可知,得到各系数:
(a)
解:(1)确定基本未知量和基本结构
有一个角位移未知量,基本结构见图。
(2)位移法典型方程
(3)确定Байду номын сангаас数并解方程
(4)画M图
(b)
解:(1)确定基本未知量
1个角位移未知量,各弯矩图如下
(2)位移法典型方程
(3)确定系数并解方程
(4)画M图
(c)
解:(1)确定基本未知量
一个线位移未知量,各种M图如下
相关文档
最新文档