不锈钢焊接变形的预防措施探讨

合集下载

不锈钢焊接变形的控制与矫正

不锈钢焊接变形的控制与矫正

不锈钢焊接变形的控制与矫正
不锈钢焊接过程中会产生热量,导致变形。

因此,控制和矫正不锈钢焊接变形是非常重要的。

1. 控制变形
(1)减少热输入量。

通过调整焊接电流、电压、速度、焊接
层数等参数,尽量减少热输入,从而减少变形。

(2)固定和支撑工件。

在进行焊接时,通过固定工件或在焊
接过程中添加支撑件,可以增强工件的刚性,从而减少变形。

(3)控制焊缝长度。

焊缝长度越长,变形越大。

因此,在焊
接过程中应尽量控制焊缝长度。

2. 矫正变形
(1)机械矫正。

通过机械手段对变形进行调整,如使用千斤
顶对变形部位进行压缩或拉伸等。

(2)热矫正。

通过局部加热变形部位,使其变形到规定位置,并进行冷却定型,从而实现矫正。

(3)化学矫正。

通过对变形部位进行化学处理,如酸洗、电
化学研磨等,来达到矫正的目的。

需要注意的是,焊接变形的控制和矫正应该在焊接完成后尽快
进行,以免影响后续加工和装配。

同时,矫正时应注意不要改变工件的尺寸和形状,以保证其质量和性能。

不锈钢焊接缺陷及措施

不锈钢焊接缺陷及措施
不锈钢焊接管坡口角度不当或钝边及装配间隙不均匀;焊接工艺参数选择不合理;焊工的操作技能水平较低等
选择适当的坡口角度和装配间隙;提高装配质量;选择合适的焊接工艺参数;提高焊工的操作技术水平等
咬边
由于焊接工艺参数选择不正确或操作工艺不正确,在沿着焊趾的母材部位烧熔形成的沟槽或凹陷称为咬边。咬边不仅减弱了焊管焊接接头强度,而且因应力集中容易引发裂纹。
主要是熔池金属中的低熔点共晶物和杂质在结晶过程中,形成严重的晶内和晶间偏析,同时在焊接应力作用下.沿着晶界被拉开,形成热裂纹。热裂纹一般多发生在奥氏体不锈钢、镍合金和铝合金中。低碳钢焊接时一般不易产生热裂纹,但随着钢的含碳量增高,热裂倾向也增大。
严格地控制不锈钢焊接管及焊接材料的硫、磷等有害杂质的含量,降低热裂纹的敏感性;调节焊缝金属的化学成分,改善焊缝组织,细化晶粒,提高塑性,减少或分散偏析程度;采用碱性焊接材料,降低焊缝中杂质的含量,改善偏析程度;选择合适的焊接工艺参数,适当地提高焊缝成形系数,采用多层多道排焊法;断弧时采用与母材相同的引出板,或逐渐灭弧,并填满弧坑,避免在弧坑处产生热裂纹。
焊前将坡口两侧20~30mm范围内的油污、锈、水分清除干净;严格地按焊条说明书规定的温度和时间烘焙;正确地选择焊接工艺参数,正确操作;尽量采用短弧焊接,野外施工要有防风设施;不允许使用失效的焊条,如焊芯锈蚀、药皮开裂、剥落、偏心度过大等
夹杂和夹渣
夹杂是残留在焊缝金属中由冶金反应产生的非金属夹杂和氧化物。夹渣是残留在焊缝中的熔渣。不锈钢焊接管夹渣可分为点状夹渣和条状夹渣两种。夹渣削弱了焊缝的有效断面,从而降低了焊缝的力学性能。夹渣还会引起应力集中,容易使焊接结构在承载时遭受破坏。
焊接电流大,焊接速度慢,使焊接管过度加热;坡口间隙大,钝边过薄;焊工操作技能差等

不锈钢薄板焊接变形的控制方法及防治措施

不锈钢薄板焊接变形的控制方法及防治措施

不锈钢薄板焊接变形的控制方法及防治措施摘要:在现代工业生产、机械制造等领域高速发展的背景下,各项加工制造技术水平全面提高,为产品质量提供了充分的保障。

不锈钢薄板是一项常见的材料,在制造过程中一般需要采用焊接工艺,但是受到材料特点等因素的影响,在焊接过程中容易出现变形问题,为了确保焊接质量,需要加强对变形的控制。

因此,本文将对不锈钢薄板焊接变形的控制方法及防治进行深入探究,并结合实践经验总结一些措施,希望可以对相关人员有所帮助。

关键词:不锈钢薄板;焊接变形;原因分析;控制方法;防治措施在工业生产过程中,不锈钢薄板焊接是一项常用工艺,比如在制作不锈钢罐、不锈钢槽等产品时,需要将不锈钢薄板进行焊接,在焊接过程中,如果没有采用相应的控制措施,不锈钢薄板很容易出现变形问题,引起鼓包等现象,不仅影响美观性,还会对质量产生影响,所以需要明确不锈钢薄板焊接变形容易产生的原因,并采用相应的措施对其进行控制,最为重要的是需要做好预防,确保不锈钢薄板焊接质量达到要求,从而能够提升产品质量,需要全面落实焊接工艺控制工作。

1不锈钢薄板焊接产生变形的主要因素分析不锈钢薄板焊接是一种常见的加工方式,然而在实际操作过程中会出现变形的问题,不仅会影响加工精度,还会降低焊接质量,变形问题所产生的主要因素包括如下几项:(1)焊接过程中的热影响。

在焊接过程中,焊接部位的温度会不断升高,导致材料产生热膨胀,在冷却后材料就会收缩,从而导致焊接变形。

因此,控制焊接过程中的温度和焊接时间是降低变形的重要手段。

(2)焊接布局和工艺参数。

例如,如果焊接接头的长度过长,会导致焊接变形增加;如果焊接速度过快,则会导致焊接变形增大,所以在不锈钢薄板焊接中,合理的布局和工艺参数是减少变形的关键[1]。

(3)材料选择。

不锈钢材料的热膨胀系数较大,且导热系数较低,容易产生变形,所以在选择材料时需要尽量选用热膨胀系数较小的材料,并且控制热输入,避免产生过多的热量。

不锈钢焊接工艺及变形控制

不锈钢焊接工艺及变形控制

管理及其他M anagement and other不锈钢焊接工艺及变形控制高艳华摘要:在当前工业生产过程中,不锈钢焊接工艺最常被采用,其焊接技术水平对于不锈钢产品的质量影响是直接的。

所以本文中首先讨论了不锈钢焊接工艺基本操作方法与相关焊接变形控制要点。

并结合某D工业生产企业分析了企业工厂内部的不锈钢焊接工艺技术要点,分析导致D工业生产企业中不锈钢焊接变形的重要原因,最后对企业不锈钢焊接技术及其变形控制的重要措施进行了全面剖析。

关键词:不锈钢焊接工艺;变形控制;原因;技术要点;误差不锈钢材料本身具有强耐腐蚀性,因此,它被广泛用于制造应用,例如家庭和工业应用。

不锈钢的焊接技术非常复杂,它确保不锈钢产品的应用范围进一步被扩大,因此,焊接技术已经非常频繁地用于生产过程中。

在焊接过程中,不锈钢部件在相对较短的时间内迅速产生大量热量。

如果散热不好,会造成不锈钢元件严重变形,长此以往不锈钢构件在生产过程中就会出现负面影响。

为此,必须要加强不锈钢的焊接工艺,主要对其变形控制问题进行科学合理分析。

1 不锈钢焊接工艺的具体操作方法根据现有技术,焊接不锈钢的方法有3种:第一种是手工电弧焊(SMAW),主要是利用手工操纵焊条进行焊接,也被称之为“手弧焊”。

手弧焊机方法主要将焊条与焊件作为两端电极,而被焊接金属则被称为焊件或母材。

在焊接过程中由于电弧温度高、吹力作用大、所以能够使得局部焊件被熔化,形成凹坑,这一凹坑被称之为“熔池”。

换言之,这就是在焊件表面到熔池底部的距离,熔池的深度被称为“熔透深度”。

手工电弧焊操作方法简单,它在特定的生产和应用过程中最为常见。

它主要在焊接操作中使用直流电,电极为非合金或合金金属电极和芯线。

一般电极是可以作为焊缝MIG展开焊接操作的,即第二种不锈钢焊接操作方法——熔化极气体保护焊MAG/MIG焊接,这种焊接方法是一种自动气体保护电弧焊方法。

具体工作过程还应采用平板式焊接电源,电压应调至弧长4~6mm左右。

不锈钢焊接问题分析及措施

不锈钢焊接问题分析及措施

不锈钢焊接问题分析及措施奥⽒体不锈钢在焊接特点:焊接过程中的弹、塑性应⼒和应变量很⼤,却极少出现冷裂纹。

焊接接头不存在淬⽕硬化区及晶粒粗⼤化,故焊缝抗拉强度较⾼。

奥⽒体不锈钢焊接主要问题:焊接变形较⼤;因其晶界特性和对某些微量杂质(S、P)敏感,易产⽣热裂纹。

奥⽒体不锈钢的5⼤焊接问题及处理措施1.碳化铬的形成,降低了焊接接头抗晶间腐蚀能⼒。

晶间腐蚀:根据贫铬理论,焊缝和热影响区在加热到450-850℃敏化温度区时在晶界上析出碳化铬,造成贫铬的晶界,不⾜以抵抗腐蚀的程度。

(1)针对焊缝晶间腐蚀和⽬材上敏化温度区腐蚀,可采⽤下列措施加以限制:a.减少母材及焊缝的含碳量,母材中添加稳定化元素Ti、Nb等元素使之优先形成MC,以避免Cr23C6形成。

b.使焊缝形成奥⽒体加少量铁素体的双相组织。

焊缝中存在⼀定数量的铁素体时,可细化晶粒,增加晶粒⾯积,使晶界单位⾯积上的碳化铬析出量减少。

铬在铁素体中溶解度较⼤,Cr23C6优先在铁素体中形成,⽽不致使奥⽒体晶界贫铬;散步在奥⽒体之间的铁素体,可防⽌腐蚀沿晶界向内部扩散。

c.控制在敏化温度区间的停留时间。

调整焊接热循环,尽可能缩短600~1000℃的停留时间,可选择能量密度⾼的焊接⽅法(如等离⼦氩弧焊),选⽤较⼩的焊接线能量,焊缝背⾯通氩⽓或采⽤铜垫增加焊接接头的冷却速度,减少起弧、收弧次数以避免重复加热,多层焊时与腐蚀介质的接触⾯尽可能最后施焊等。

d.焊后进⾏固溶处理或稳定化退⽕(850~900℃)保温后空冷,以使碳化物充分析出,并使铬加速扩散)。

(2)、焊接接头的⼑状腐蚀,为此,可采取如下预防措施:由于碳的扩散能⼒较强,在冷却过程中将偏聚在晶界形成过饱和状态,⽽Ti、Nb则因扩散能⼒低⽽留于晶体内。

当焊接接头在敏化温度区间再次加热时,过饱和碳将在晶间以Cr23C6形式析出。

a.降低含碳量。

对于含有稳定化元素的不锈钢,含碳量不应超过0.06%。

b.采⽤合理的焊接⼯艺。

不锈钢焊接缺陷以及应对措施

不锈钢焊接缺陷以及应对措施

不锈钢焊接缺陷以及应对措施不锈钢焊接是工业生产中常见的一种加工方法,但是在焊接的过程中,也会出现各种缺陷。

这些缺陷会影响到焊接质量,降低不锈钢焊接件的使用寿命。

本文将介绍不锈钢焊接常见的缺陷及其应对措施。

一、裂纹裂纹是不锈钢焊接中常见的缺陷。

产生裂纹的原因包括焊接时温度不均匀、焊接时应力过大、焊接时焊接材料不匹配等。

裂纹分为热裂纹和冷裂纹两种,热裂纹一般在焊接后立即出现,而冷裂纹则是在焊接后一段时间内出现。

应对措施:首先要控制好焊接时的温度和应力,保证焊接质量。

其次,选择匹配的焊接材料,避免焊接材料不匹配的情况出现。

同时,对于焊接后的零件,需要进行热处理,以消除残余应力,避免裂纹的出现。

二、气孔气孔是不锈钢焊接中常见的缺陷之一。

当焊接时,焊接区域内的空气不能完全排出,就会产生气孔。

气孔会降低不锈钢焊接件的强度,对焊接质量造成影响。

应对措施:在焊接前,需要对焊接区域进行清洁,以避免杂质的存在。

焊接时,需要控制好焊接的电流和气体流量,保证焊接区域内的空气完全排出。

如果出现气孔,需要对焊接区域进行修补,直至完全消除气孔。

三、未焊透未焊透是不锈钢焊接中另一种常见的缺陷。

未焊透是指焊接区域内的焊接材料没有完全熔化,没有形成完整的焊接缝。

未焊透会导致焊接件的强度降低,影响焊接质量。

应对措施:在焊接前,需要对焊接区域进行清洁,以避免杂质的存在。

焊接时,需要控制好焊接的电流和焊接速度,保证焊接材料可以完全熔化。

如果出现未焊透的情况,需要对焊接区域进行修补,直至完全焊接透。

四、焊接变形焊接变形是不锈钢焊接中常见的问题之一。

当焊接时,由于焊接区域内温度的变化,会导致零件发生变形。

焊接变形会影响不锈钢焊接件的尺寸精度和装配质量。

应对措施:首先要选择合适的焊接方法和焊接参数,控制好焊接时的温度和应力。

其次,需要在焊接前进行预热,以减少焊接区域内的应力。

在焊接后,需要对焊接区域进行热处理,以消除残余应力,避免焊接变形的出现。

不锈钢薄板焊接变形影响因素与控制方法

不锈钢薄板焊接变形影响因素与控制方法

不锈钢薄板焊接变形影响因素与控制方法摘要:在工业生产中,不锈钢薄板焊接技术的应用比较常见,在焊接作业中,焊接变形问题的影响因素较多,即使应用先进的焊接工装以及装夹夹具,依然很难避免变形。

对此,本文首先对不锈钢薄板焊接技术进行介绍,然后对不锈钢薄板焊接变形的影响因素以及具体的控制策略进行详细探究。

关键词:不锈钢薄板;焊接;变形控制不锈钢材料的耐腐蚀性能比较强,在工业生产制造方面得到推广应用,在不锈钢产品生产制造中,焊接技术为十分重要的技术类型。

在焊接过程中,不锈钢薄板材料在较短时间内产生大量热量,如果散热效果比较差,就容易导致构件发生变形,进而影响不锈钢产品生产质量。

因此,亟需对不锈钢薄板焊接过程中的变形控制策略进行详细探究。

一、不锈钢焊接操作技术在不锈钢薄板焊接过程中,常用焊接方法包括以下几点:第一,手工电弧焊技术。

手工电弧焊操作方式便捷,在不锈钢薄板焊接中比较常见,一般可应用直流电,电极是由合金金属焊条以及芯丝所组成的,对于电极,可用于焊缝填充,同时还可作为电弧载体。

第二,熔化极气体保护焊接技术。

这一电弧焊接技术具有自动气体保护功能,要求应用平特性焊接电源。

第三,钨极惰性气体保护焊技术。

在该项技术的应用中,工件和钨电极之间能够形成电弧,导致金属熔化,并形成焊缝。

与上述两种焊接方法相比,在钨极惰性气体保护焊技术的应用中,变形量比较小。

在不锈钢薄板焊接过程中,所有焊接方法的应用流程大致相同,首先需做好焊前准备工作,如果不锈钢构件的厚度小于4mm,则可直接焊接;如果不锈钢构件厚度在4mm~6mm之间,则要求在焊缝对准位置进行双面焊接;如果不锈钢构件厚度在6mm以上,则需开X形坡口或者V型坡口,同时,对于焊接部位,还需填充焊丝,并做好去氧化皮处理以及除油处理,避免对焊接质量造成不良影响[1]。

二、不锈钢薄板焊接变形影响因素(一)焊件装配对焊接变形的影响。

在焊件装配过程中,要求对焊接装配顺序进行优化调整,避免产生装配应力。

不锈钢薄板焊接变形的控制方法及防治措施

不锈钢薄板焊接变形的控制方法及防治措施
关键词 :不锈钢 薄板 ;控制方法 ;防治措施
1 不锈 钢 薄 板在 焊 接 过 程 中发 生 变 形 的 原 因
1.4焊接装配程序对不锈钢 薄板 焊接 的影 响。在不 锈钢薄板焊
不锈 钢板按照使用 的用 途不 同,不锈钢板 的厚度也 不 同,按照 接过程 中 ,装配过程过 多会使不锈钢薄 板产生应力 ,使焊 接件产 生
成薄板弯 曲的主要原因 。
术 的积累外 ,还要合理 的选择 焊接工艺 ,这样对焊 接质量 的提高有
1.2薄板在切割时使 焊接件 产生变形。不锈钢薄板焊接发生变 着深远 的意义 。
形 与不锈钢切 割有 很大 的关 系 ,在实 际生产 中 ,对 不锈钢薄板 切割 2.1合理 的选择对不锈钢薄板 的切 割方法 。对不锈 钢薄板 的切
主要有 以下几种方法 :a.电焊切割 。使用不锈钢焊条 ,将焊机 的电流 割质量是有效 的减 少焊件变形 的前 提条 件 ,因此 在实 际加 工过程
加 到 120A左右 ,将不锈 钢切 开。电焊切割的方法 比较粗放 ,不规范 , 中,尽量不采用手工电焊机条切 割薄板的方式 ,在一般 的情况 下 ,采
钢薄板切割方法 。但这种切 割方法 主要使用 与非标 加工件的加工 , 易焊接 ,如果焊接件 的技术要求高可 以采用激光切割技 术 ,对焊接
特点是切 割后 的薄板变形 比较小 ,切割速度 比较快 ,薄板 边缘 比较 质量更为有利 。同时对切割后 的不锈钢薄板要 进行 打磨 清理 ,符合
整齐 ,适合于一般 的非标加工件的加工。c.采用激光切割技术对不锈 要求后再进行 正常焊接 。
科 技 论坛
·15 ·
不锈钢 薄板焊接变形 的控制 方法及 防治措施
于 杰 (中船重工龙江广瀚燃气轮机 有限公 司,黑龙 江 哈 尔滨 150076)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不锈钢焊接变形的预防措施探讨
发表时间:2019-11-26T10:55:47.200Z 来源:《中国西部科技》2019年第24期作者:黄营
[导读] 科技的进步,促进工业建设得到快速发展。

当前我国经济在发展的过程中,工业经济仍然是推动经济发展的重要动力,我国也正处于工业化的阶段,社会主义工业化建设仍然是我国发展的重要目标。

在我国的工业行业中,制造业是其中的重要行业,制造业的发展对我国的经济社会发展至关重要,在我国工业生产的过程中,焊接工艺的应用十分普遍,尤其是不锈钢焊接最为常见。

但是在不锈钢的焊接的过程中,任何一个焊接工艺要素的变化都会引发焊接
引言
现在中国焊接作业,不管是技术方面还是装置方面均比不上国外,构件的变形问题是比较多的,不但会对于构件外向带来作用,而且会对性能方面造成影响。

为避免这类问题出现,需要将变形原因找出来,然后才可以采取最为合理的措施。

1焊接变形概述
在焊接过程中,高温环境影响焊接材料,使其发生热膨胀,当温度出现降低后,焊接材料立即收缩,在冷热循环下,焊接材料将出现变形。

通常,对焊接材料同一侧实施持续焊接所形成的焊接变形相对于对焊接材料两侧实施交叉焊接形成的焊接变形要大。

究其原因,在长时间内,焊接形成的冷热循环对焊接材料同一侧发生作用,即会增大其变形量。

焊接热量以及热膨胀出现增加,均会导致焊接区域实际温度加快上升,并降低焊接区域相应的热导率以及柔韧性等性能。

2焊接技术对于不锈钢的焊接变形产生作用
2.1焊接参数
不锈钢焊接进程当中不同焊接参数会对不锈钢焊接变形程度造成一定影响,比如电压、电流等。

在电流比较大的时候,空气会加热至比较高温度状态,此时会使得焊接缝位置温度较高,进而就会对于焊接进程实施加速,所以对于相关的技术工作人员水平是一个极大挑战。

在电流比较小的时候,空气当中的温度也将会出现相应较低现象,此时就使得焊接位置温度变得较低,还会对于不锈钢在焊接的进程当中产生不同程度地变形。

现实应用当中,在焊接件是比较大的时候,需要比较大电流来产出比较高温度来免于电流比较小且温度较低带来的变形问题;不过在焊接件比较小的时候,仅仅需要比较小电流,方便对于操作进程进行控制来使得构件的质量得到提升。

焊接参数一般包括电弧电压、焊接电流等。

焊接进程当中,这些参数将会直接对于不锈钢的焊接变形产生作用。

在实施不锈钢的焊接操作时,焊接的顺序以及焊接的措施依据不同状况可以随时变化,是能够依照现实状况实施调节的,而且,焊接的参数是能够进行调节的。

在焊接的时候,现实电流与焊接的温度有着一定联系,通常焊缝中心温度可达到2000℃,而中间弧柱温度达到了5000℃,阴极区温度在1300℃~2500℃之间。

焊接操作标准值将对不锈钢的焊接具体操作造成限制,所规定的标准值关键目的是免于焊接进程之中的不锈钢发生焊接变形、电流过大等问题。

为实现不锈钢的构件在焊接时是受热均匀的,必须得对焊接的电流进行严格把控,假如焊接电流较小,则焊接质量会直接受到影响。

2.2焊接顺序
在不锈钢焊接的过程中,焊接的顺序也会对焊接质量产生直接影响,任何不锈钢焊接工作都对其焊接顺序有着严格的要求,如果不按照顺序进行焊接操作,就会引发不锈钢焊接变形问题。

不锈钢构件在焊接的过程中,正确的焊接顺序能够有效解决不锈钢构件内部应力变化的问题,对其应力进行适当引导,从而保证焊接的质量;但是一旦焊接顺序被打乱,那么在某一焊接操作被执行之后,不锈钢构件的应力已经发生了变化,但是后续的操作却无法对其进行有效处理,这样就会大大增加不锈钢焊接变形的发生概率。

2.3焊接方法
当前,焊接工艺具有多种焊接方法,常用的包括焊条电弧焊、埋弧焊等。

在不锈钢焊接中,各类焊接方法会对其焊接变形产生各不相同的影响。

有的焊接方法会造成不锈钢构件产生局部过热,等到焊缝冷却,不锈钢构件即产生焊接变形。

例如,通过焊条电弧焊对不锈钢进行焊接,即可能导致横向收缩变形。

要深入考察不锈钢构件的具体结构和各项功能需求,有针对性地选择焊接方法,确保其适用于不锈钢构件,避免引发焊接变形[2]。

同时,对不锈钢构件进行焊接,若其内部发生应力变化,将造成焊接变形。

对此,要针对不锈钢构件合理选择焊接方法,对应力变化进行有效消除。

3不锈钢焊接发生变形的预防手段
3.1采用多元方法强化焊前控制
为强化对不锈钢焊接变形的有效控制,可采用以下三种焊接工艺予以优化:其一是预防变形法,在正式开展焊接作业前应针对不锈钢构件的尺寸规格、具体形状、使用需求等信息做好调研,采用精细化检测手段进行不锈钢构件质量的测量与评估,针对有可能出现的焊接变形结果进行全面预测,以此为依据进行构件焊接方向、焊接工艺合理调整,降低焊后变形的几率。

其二是预拉伸法,在焊接前将不锈钢构件进行充分预热,使其内部包含的残余应力得到有效消除,通常在200-400℃的预热温度下可使构件的残余应力降低50-90%,以此收获显著成效。

其三是刚性固定组装法,选取夹具进行焊件的全方位固定,防止其在焊接过程中产生移动,待焊后冷却后移除夹具,降低焊件的焊接变形程度,在此过程中需要进行组焊夹具的合理选择,防止因夹具过紧使构件受损。

3.2对焊接过程进行严格控制
对焊接过程进行严格控制,要对规范的焊接参数及相关方法进行合理应用,并正确按照焊接的具体顺序,对如下方法进行合理运用:一,随焊碾压。

该法涉及较为复杂的操作设备,在不锈钢焊接中应用较少,但该法能有效改善焊接变形的预防效果。

二,随焊跟踪激冷。

该法能实现对残余应力的有效减小,并实现对焊接变形发生概率的大幅度降低。

三,随焊两侧加热。

该法能均匀分布横向、纵向以及剪切应变,控制应变力变化趋于平缓,并有效减少焊接产生的残余应力。

各类焊接方法相应的线能量存在较大差异,要尽量对具有低线能量的焊接方式进行运用,并对焊接规范各项参数实施合理控制,有效对焊接相应的塑性压缩区实际面积进行减少,有效避免产生焊接变形。

在实际焊接中,要合理对焊接部件以及相关组件进行划分,实施组焊,再进行部分焊接,实现对组件精度的有效提升。

通过上述焊接方法,实现对残余应力的有效降低,进而实现对焊接变形的有效减少。

3.3焊接之后矫正
焊接完成后若是有较为恶劣变形问题发生就一定得实施矫正措施。

假如局部发生热变形问题,就应当对变形地区进行加热,这样做可以使得局部地区有压缩性的塑性变形发生,进而可以使得之前在焊接时变形部分获得抵消。

除此之外,常常采取火焰加热措施,以及简易
加热措施来将变形矫正。

还能够采取整体加热措施,不过这类措施是较为繁杂,一般不适用在较大型焊接物体焊后的矫正工作。

现实操作进程当中需依照不同问题来选取不同矫正措施以使得损失降低。

结语
在我国的不锈钢焊接工作中,焊接工艺是影响焊接质量的重要因素,作业人员选择的焊接方法、焊接顺序、焊接参数以及焊接过程中的操作,不会引发不锈钢焊接变形问题。

所以要求作业人员必须要严格控制好不锈钢焊接的流程,在焊接前焊接的过程中以及焊接结束之后都要采取有效措施进行焊接工艺控制,防止不锈钢焊接变形问题的出现。

参考文献
[1]李银惠.焊接工艺对不锈钢焊接变形的影响分析[J].化工管理,2015(21):179. [2]关旭东.焊接工艺对不锈钢焊接变形的影响分析[J].科技与创新,2018(03):79-80.。

相关文档
最新文档