反比例函数技巧及练习题含答案

合集下载

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案

完整版)反比例函数经典习题及答案反比例函数练题1.下列函数中,经过点(1.-1)的反比例函数解析式是()A。

y = 1/xB。

y = -1/xC。

y = 2/xD。

y = -2/x2.反比例函数y = -(k/ x)(k为常数,k ≠ 0)的图象位于()A。

第一、二象限B。

第一、三象限C。

第二、四象限D。

第三、四象限3.已知反比例函数y = (k - 2)/x的图象位于第一、第三象限,则k的取值范围是()A。

k。

2B。

k ≥ 2C。

k ≤ 2D。

k < 24.反比例函数y = k/x的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果三角形MON 的面积是2,则k的值为()A。

2B。

-2C。

4D。

-45.对于反比例函数y = 2/x,下列说法不正确的是()A。

点(-2.-1)在它的图象上B。

它的图象在第一、三象限C。

当x。

0时,y随x的增大而增大D。

当x < 0时,y随x的增大而减小6.反比例函数y = (2m - 1)x/(m^2 - 2),当x。

0时,y随x 的增大而增大,则m的值是()A。

±1B。

小于1的实数C。

-1D。

1/27.如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形P1A1O、P2A2O、P3A3O,设它们的面积分别是S1、S2、S3,则()。

A。

S1 < S2 < S3B。

S2 < S1 < S3C。

S3 < S1 < S2D。

S1 = S2 = S38.在同一直角坐标系中,函数y = -2与y = 2x的图象的交点个数为()A。

3B。

2C。

1D。

09.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()10.如图,直线y = mx与双曲线y = k/(x-2)交于A、B两点,过点A作AM⊥x轴,垂足为M,连结BM,若三角形ABM的面积为2,则k的值是()A。

人教版初中数学反比例函数技巧及练习题附答案

人教版初中数学反比例函数技巧及练习题附答案
H,过点 A 作 AN⊥x 轴于点 N,根据 AAS 先证明△DHA≌△CGD、△ANB≌△DGC 可得 AN= DG=1=AH,据此可得关于 m 的方程,求出 m 的值后,进一步即可求得答案. 【详解】
解:设点 D(m, 8 ),过点 D 作 x 轴的垂线交 CE 于点 G,过点 A 过 x 轴的平行线交 DG 于 m
2
2a b
ab
∴ k 2 2 16 ,
解得:k=6 或 k=−2(舍去), 故选:D. 【点睛】 本题考查反比例函数图象上点的坐标特征、三角形的面积计算等,解答本题的关键是明确 题意,利用三角形的面积列方程求解.
7.如图,在平面直角坐标系中,正方形 ABCD 的顶点 A 的坐标为(﹣1,1),点 B 在 x 轴正
∴点 A 的坐标为(a, k ), a
∵BN⊥y 轴,
同理可得:B( k ,b),则点 C(a,b), b
∵S△CMN= 1 NC•MC= 1 ab=1,
2
2
∴ab=2,
∵AC= k −b,BC= k −a,
a
b
∴S△ABC= 1 AC•BC= 1 ( k −b)•( k −a)=4,即 k ab k ab 8 ,
C、y=x+1 是一次函数 k=1>0,y 随 x 的增大而减小,错误; D、 y 1 是反比例函数,图象无语一三象限,在每个象限 y 随 x 的增大而减小,正确;
x 故选 D. 【点睛】 本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的 关键.
4.对于反比例函数 y 2 ,下列说法不正确的是( ) x
C.当体积 V 变为原来的一半时,对应的气压 P 也变为原来的一半
D.当 60 V 100 时,气压 P 随着体积 V 的增大而减小

初中数学反比例函数练习题及答案

初中数学反比例函数练习题及答案

初中数学反比例函数练习题及答案1. 知识回顾反比例函数是指两个变量之间的关系,其中一个变量的值与另一个变量的值成反比。

数学上可以表示为:y = k/x,其中k为常数。

2. 练习题2.1 简答题1.什么是反比例函数?2.如何表示反比例函数?3.反比例函数的图像有什么特点?4.反比例函数中的常数k又叫做什么?2.2 计算题1.若反比例函数y = 3/x,求当x = 2时,y的值。

2.若反比例函数y = k/x,当x = 5时,y = 2。

求k的值。

3.若反比例函数y = 8/x,求当x = 4时,y的值。

4.若反比例函数y = k/x,当x = 6时,y = 3。

求k的值。

2.3 应用题1.若两车以反比例的关系行驶,已知当一辆车行驶80km时,另一辆车行驶120km。

求当一辆车行驶120km 时,另一辆车需要行驶多少公里?2.现有一件工作,16个工人需要7天完成。

如果增加工人的数量,可以缩短工作天数吗?请理论上解释,并举例说明。

3. 答案3.1 简答题1.反比例函数是指两个变量之间的关系,其中一个变量的值与另一个变量的值成反比。

2.反比例函数可以表示为y = k/x,其中k为常数。

3.反比例函数的图像呈现出一条曲线,当x的值增大时,y的值会减小;反之,当x的值减小时,y的值会增大。

4.反比例函数中的常数k又叫做比例系数。

3.2 计算题1.当x = 2时,根据反比例函数y = 3/x,可求得y = 3/2,即y = 1.5。

2.当x = 5时,根据反比例函数y = k/x,代入已知条件y = 2,得2 = k/5,解得k = 10。

3.当x = 4时,根据反比例函数y = 8/x,可求得y = 8/4,即y = 2。

4.当x = 6时,根据反比例函数y = k/x,代入已知条件y = 3,得3 = k/6,解得k = 18。

3.3 应用题1.已知两车行驶的距离成反比例关系,设一辆车行驶x km时,另一辆车行驶y km。

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。

自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。

1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。

2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。

3) 设三角形的底边、对应高、面积分别为a、h、S。

当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。

4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。

3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。

4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。

5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。

二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。

(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。

)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。

自学初中数学资料-反比例函数-(资料附答案)

自学初中数学资料-反比例函数-(资料附答案)

自学资料年份题量分值考点题型201514反比例函数与几填空何综合201613反比例函数图象选择2017110反比例函数的简解答单应用2018210反比例函数的基解答本运算及反比例函数图象2019110反比例函数的应解答用一、正比例函数、反比例函数、一次函数、二次函数的概念【知识探索】1.解析式形如(为常数,)的函数叫做反比例函数.其中也叫做比例系数.反比例函数的定义域是不等于零的一切实数.【错题精练】例1.已知函数y=(m+2)x m2−10是反比例函数,且图象在第二、四象限内,则m的值是()A. 3B. -3C. ±3D. -13【解答】解:由函数y=(m+2)x m2−10为反比例函数可知m2-10=-1,解得m=-3,m=3,又∵图象在第二、四象限内,第1页共36页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训第2页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第3页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第4页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴函数图象的两个分支分别位于第二四象限,且在每个象限内,y随x的增大而增大;(3)∵反比例函数的关系式为:y=-2x,∴当x=-3时,y=23;当x=-12时,y=4,∴-3≤y≤4.二、用待定系数法求正比例、反比例、一次、二次函数的解析式【知识探索】1.以求正比例函数的解析式为例:先设解析式为(),其中系数待定;再利用已知条件确定的值,这样的方法称为“待定系数法”.【错题精练】例1.已知变量y与x成反比例,且当x=2时,y=-6.求:(1)y与x之间的函数表达式;(2)当y=2时,x的值.【答案】解:(1)∵变量y与x成反比例,∴可设y=kx,∵x=2时,y=-6,∴k=2×(-6)=-12,∴y与x之间的函数关系式是y=−12x;(2)当y=2时,y=−12x=2,解得:x=-6.例2.如图,点A,B在反比例函数y=mx的图象上,点A的坐标为(√3,3),点C在x轴上,且使△AOC是等边三角形,BC∥OA.第5页共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第6页 共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训(1)求反比例函数的解析式和OC 的长; (2)求点B 的坐标;(3)求直线BC 的函数解析式.【答案】解:(1)点A (√3,3)在反比例函数y =mx 的图象上,∴3=m√3,m =3√3,∴y =3√3x,OC =OA =√(√3)2+32=2√3.(2)过点B 作BE ⊥x 轴于点E ,设CE=a ,则OE =2√3+a ,BE =√3a , ∵点B 在y =3√3x上, ∴√3a =3√32√3+a,即a 2+2√3a −3=0,解得a =−√3±√6, ∵a >0,∴a =√6−√3,OE =2√3+√6−√3=√6+√3,BE =√3(√6−√3)=3√2−3, ∴B 的坐标为(√6+√3,3√2−3);(3)设直线BC 为y=kx+b ,则{2√3k +b =0(√6+√3)k +b =3√2−3,两式相减得,(√6−√3)k =3√2−3,k =3√2−3√6−√3=√3,∴b =−2√3k =−6,∴所求的直线解析式是y =√3x −6.例3.如图,函数y={2x,(0≤x ≤3)−x +9,(x >3)的图象与双曲线y=kx (k≠0,x >0)相交于点A (3,m )和点B .第7页 共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训(1)求双曲线的解析式及点B 的坐标;(2)若点P 在y 轴上,连接PA ,PB ,求当PA+PB 的值最小时点P 的坐标.【答案】解:(1)把A (3,m )代入y=2x ,可得 m=2×3=6, ∴A (3,6),把A (3,6)代入y=kx ,可得k=3×6=18, ∴双曲线的解析式为y=18x ;当x >3时,解方程组{y =−x +9y =18x,可得 {x =6y =3或{x =3y =6(舍去), ∴点B 的坐标为(6,3);(2)如图所示,作点A 关于y 轴的对称点A'(-3,6),连接A'P ,则A'P=AP , ∴PA+PB=A'P+BP≥A'B ,∴当A',P ,B 三点共线时,PA+PB 的最小值等于A'B 的长, 设A'B 的解析式为y=ax+b ,把A'(-3,6),B (6,3)代入,可得{6=−3a+b 3=6a+b,解得{a=−13b=5,∴A'B的解析式为y=-13x+5,令x=0,则y=5,∴点P的坐标为(0,5).【举一反三】1.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8 ).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)求经过点P的反比例函数的解析式.【答案】解:(1)作图如右,点P即为所求作的点;---图形(2分),痕迹(2分)(2)设AB的中垂线交AB于E,交x轴于F,由作图可得,EF⊥AB,EF⊥x轴,且OF=3,∵OP是坐标轴的角平分线,∴P(3,3),经过点P的反比例函数的解析式设为:y=kx,得出:xy=k=3×3=9,即经过点P的反比例函数的解析式为:y=9x.第8页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训2.已知函数y=y1-y2,其中y1与x成正比例,y2与x成反比例,且当x=1时,y=1;x=3时,y=5.求:(1)求y关于x的函数解析式;(2)当x=2时,y的值.【答案】解:(1)设y1=k1x(k1≠0),y2=k2x(k2≠0),∴y=k1x-k2x.∵当x=1时,y=1.当x=3时,y=5,∴{k1−k2=13k1−k23=5,∴{k1=74k2=34,∴y关于x的函数解析式是:y=74x-34x;(2)由(1)知,y=74x-34x.则当x=2时,y=74×2-38=258.3.如图,在平面直角坐标系中,点A是反比例函数y=kx(k≠0)图象上一点,AB⊥x轴于B点,一次函数y=ax+b(a≠0)的图象交y轴于D(0,-2),交x轴于C点,并与反比例函数的图象交于A,E两点,连接OA,若△AOD的面积为4,且点C为OB中点.(1)分别求双曲线及直线AE的解析式;(2)若点Q在双曲线上,且S△QAB=4S△BAC,求点Q的坐标.第9页共36页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵D(0,-2),△AOD的面积为4,∴12•2•OB=4,∴OB=4,∵C为OB的中点,∴OC=BC=2,C(2,0)又∵∠COD=90°∴△OCD为等腰直角三角形,∴∠OCD=∠ACB=45°,又∵AB⊥x轴于B点,∴△ACB为等腰直角三角形,∴AB=BC=2,∴A点坐标为(4,2),把A(4,2)代入y=kx,得k=4×2=8,即反比例函数解析式为y=8x,将C(2,0)和D(0,-2)代入一次函数y=ax+b,可得{0=2a+b −2=b ,解得{a=1b=−2,∴直线AE解析式为:y=x-2;(2)设Q的坐标为(t,8t),∵S△BAC=12×2×2=2,∴S△QAB=4S△BAC=8,即12•2•|t-4|=8,解得t=12或-4,在y=8x 中,当x=12时,y=23;当x=-4时,y=-2,∴Q点的坐标为(12,23)或(-4,-2).三、正比例、反比例、一次、二次函数图像上的点及图像与坐标轴的第10页共36页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训交点【知识探索】1.反比例函数(是常数,)的图像的两支都无限接近于轴和轴,但不会与轴和轴相交.【错题精练】例1.如图,正方形ABCD的顶点A,B在x轴的正半轴上,对角线AC,BD交于点P,反比例函数y=2x的图象经过P,D两点,则AB的长是______.【解答】解:设D(m,2m ),则P(2m,1m),作PH⊥AB于H.∵四边形ABCD是正方形,∴PA=PB,∵PH⊥AB,∴AH=HB=m,∴AB=AD=2m,∴2m=2m,∴m=1或-1(舍弃),∴AB=2m=2,故答案为2.【答案】2例2.如图,已知点A在反比例函数y=2x在第一象限上运动,过点O作OB⊥OA,当tanA=√2时,点B恰好落在反比例函数y=kx在第二象限的图象上,则k的值为______.【解答】解:过A作AN⊥x轴于N,过B作BM⊥x轴于M.∵第一象限内的点A在反比例函数y的图象上,∴设A(x,2x)(x>0),ON•AN=2.∵tan∠A=√2,∴OBOA=√2,∵OA⊥OB,∴∠BMO=∠ANO=∠AOB=90°,∴∠MBO+∠BOM=90°,∠MOB+∠AON=90°,∴∠MBO=∠AON,∴△MBO∽△NOA,∴BMON =OMAN=OBOA=√2,∴BM=√2ON,OM=√2AN.又∵第二象限的点B在反比例函数y=kx上,∴k=-OM•BM=-√2ON×√2AN=-4.故答案为-4.【答案】-4例3.已知如图,矩形OCBD如图所示,OD=2,OC=3,反比例函数的图象经过点B,点A为第一象限双曲线上的动点(点A的横坐标大于2),过点A作AF⊥BD于点F,AE⊥x轴于点E,连接OB,AD,若△OBD∽△DAE,则点A的坐标是______.【解答】解:AF与BC为对应边,设AE=3y,则AF=DE=2y,∵OD=2,OC=3,∴反比例函数的解析式为:y=6x,由题意得,2+2y=63y,整理得,y2+y-1=0,解得,y1=−1−√52(舍去),y2=−1+√52,∴点A的坐标是(√5+1,3√5−32),故答案为:(√5+1,3√5−32).【答案】(√5+1,3√5−32)例4.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=kx(k≠0)的图象恰好经过A′,B,则k的值为______.【解答】解:∵四边形ABCO是矩形,AB=2,∴设B(m,2),∴OA=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=12m,A′E=√32m,∴A′(12m,√32m),∵反比例函数y=kx(k≠0)的图象恰好经过A′,B,∴12m•√32m=2m=k,∴m=8√33,∴k=16√33.故答案为:16√33.【答案】16√33例5.在反比例函数y=-2019x图象上有三个点A(x1,y1)B(x2,y2)C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A. y1<y3<y2B. y2<y3<y1C. y3<y1<y2D. y3<y2<y1【解答】解:k=-2019,故图象在二、四象限,x>0,y随x增大而增大,y2<y3,且均为负值,x<0时,y>0,故选:B.【答案】B例6.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=k的图象上,OA=1,OC=6,x试求出正方形ADEF的边长.【答案】解:∵OA=1,OC=6,四边形OABC是矩形,∴点B的坐标为(1,6),∵反比例函数y=k的图象过点B,x∴k=1×6=6.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a),∵反比例函数y=k的图象过点E,x∴a(1+a)=6,解得:a=2或a=-3(舍去),∴正方形ADEF的边长为2.例7.如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),反比例函数y=k(kx >0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求反比例函数的表达式及点E的坐标;(2)点F是OC边上一点,若△FBC∽△DEB,求点F的坐标.【答案】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=kx(x>0)得:k=1×3=3;∴反比例函数的表达式y=3x,∵BA∥y轴,∴点E的横坐标与点B的横坐标相等为2,∵点E在双曲线上,∴y=32,∴点E的坐标为(2,32);(2)∵点E的坐标为(2,32),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=32,BC=2,∵△FBC∽△DEB,∴CFDB =BC EB,即:CF1=232,∴FC=43,∴点F的坐标为(0,53).例8.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、A n-1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、……、A n-1A n都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点P n(x n,y n)在反比例函数y=kx(x>0)的图象上,已知B1(-1,1).(1)反比例函数解析式为______;(2)求点P3和点P2的坐标;(3)点P n的坐标为(______)(用含n的式子表示),△P n B n O的面积为______.【解答】解:(1)在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(-1,1),∴P1(1,1),则k=1×1=1,即反比例函数解析式为y=1;x;故答案为:y=1x,(2)设P2(a,a+2),代入y=1x∴a(a+2)=1,∴a=-1±√2,∵a>0,∴a=√2-1,∴P2(√2-1,√2+1),设P3(b,b+2√2),代入y=1,x∴b(b+2√2)=1,∴b=-√2±√3,∵b>0,∴b=√3-√2∴P3(√3-√2,√3+√2),(3)连接B1P1交y轴于C,B2P2交y轴于E,B3P3交y轴于F,连接OB2、OP2,由P1(1,1)、P2(√2-1,√2+1),P3(√3-√2,√3+√2),知点P n的坐标为(√n−√n−1,√n+√n−1),∵S△P1B1O =2S△P1CO=2×12=1,S△P2B2O=2S△P2EO=2×12=1,…∴△P n B n O的面积为1,故答案为:(√n-√n−1,√n+√n−1),1.【答案】y=1x√n−√n−1,√n+√n−11【举一反三】1.如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数y=kx(k≠0)的图象经过B,C和边EF的中点M,若S四边形ABCD=8,则正方形DEFG的面积是()A. 239B. 1289C. 16D. 154【解答】解:作BH⊥y轴于B,连结EG交x轴于P,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,3.如图,矩形ABCD的顶点A在y轴上,反比例函数y=kx(x>0)的图象恰好过点B和点C,AD与x 轴交于点E,且AE:DE=1:3,若E点坐标为(2,0),且AD=2AB,则k的值是()A. 6B. 8C. 10D. 12【解答】解:如图,作DM⊥x轴于M,作BN⊥y轴于N,设OA=a,则△AOE∽△DME,∴OADM =OEEM=AEED,∵AE:DE=1:3,E点坐标为(2,0),∴EM=6,DM=3a,∴点D的坐标为(8,-3a),∵AD=2AB,∴AB=2AE,∵∠EAO=90°-∠NAB=∠ABN,∠AOE=∠BNA=90°,∴△EAO∽△ABN,∴OEAN =OABN=AEAB,∴AN=4,BN=2a,∴点B的坐标为(2a,a+4),由平移可得,点C的坐标为(2a+8,-3a+4),∵反比例函数y=kx(x>0)的图象恰好过点B和点C,∴2a(a+4)=(2a+8)(-3a+4)=k,解得a=1或a=-4(舍去),∴k=10.故选:C.【答案】C4.如图,已知点A,C在反比例函数y=ax (a>0)的图象上,点B,D在反比例函数y=bx(b<0)的图象上,AB∥CD∥y轴,AB,CD在y轴的同侧,AB=3,CD=2,AB与CD的距离为1,则a-b的值是______.【解答】解:设点A、B的横坐标为m(m>0),则点C、D的横坐标为m+1,∴A(m,am ),B(m,bm),C(m+1,am+1),D(m+1,bm+1),∵AB=3,CD=2,∴{a−bm=3a−bm+1=2,解得:{a−b=6m=2.故答案为:6.【答案】65.如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,顶点D恰好落在双曲线y=kx.若将正方形沿x轴向左平移b个单位长度后,点C恰好落在该双曲线上,则b的值为______.【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=-3x+3中,令x=0,解得:y=3,即B的坐标是(0,3).令y=0,解得:x=1,即A的坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO 中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA ,在△OAB 和△FDA 中,{∠DAF =∠OBA∠BOA =∠AFD AD =AD,∴△OAB ≌△FDA (AAS ),同理,△OAB ≌△FDA ≌△BEC ,∴AF=OB=EC=3,DF=OA=BE=1,故D 的坐标是(4,1),C 的坐标是(3,4).代入y=k x 得:k=4,则函数的解析式是:y=4x . ∴OE=4,则C 的纵坐标是4,把y=4代入y=4x 得:x=1.即G 的坐标是(1,4),∴CG=2,∴b=2.故答案为:2.【答案】26.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx 在第一象限的图象经过点B .①若OC=3,BD=2,则k=______;②若OA 2-AB 2=18.则k=______.【解答】解:①∵△OAC 和△BAD 都是等腰直角三角形,∴OC=AC=3,BD=AD=2,∴OC+BD=5,CD=3-2=1,即B (5,1),∵反比例函数y=k x 在第一象限的图象经过点B ,∴k=5×1=5.②设点B (a ,b ),∵△OAC和△BAD都是等腰直角三角形,∴OA=√2AC,AB=√2AD,OC=AC,AD=BD,∵OA2-AB2=18,∴2AC2-2AD2=18即AC2-AD2=9∴(AC+AD)(AC-AD)=9,∴(OC+BD)•CD=9,∴ab=9,∴k=9,故答案为:5,9.【答案】597.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在(k>0,x>0)的图象上,点D的坐标为(√5,2).反比例函数y=kx(1)求k的值;(k>0,x>0)的图象上(2)若将菱形ABCD沿x轴正方向平移,当菱形的一个顶点恰好落在函数y=kx时,求菱形ABCD平移的距离.【答案】解:(1)作DE⊥BO,DF⊥x轴于点F,∵点D的坐标为(√5,2),∴DO=AD=3,∴A点坐标为:(√5,5),∴k=5√5;(x>0)的图象上D′,(2)∵将菱形ABCD向右平移,使点D落在反比例函数y=kx∴DF=D′F′=2,∴D′点的纵坐标为2,设点D′(x,2)∴2=5√5x ,解得x=5√52, ∴FF′=OF′-OF=5√52-√5=3√52, ∴菱形ABCD 平移的距离为3√52,同理,将菱形ABCD 向右平移,使点B 落在反比例函数y=k x (x >0)的图象上,菱形ABCD 平移的距离为53√5,综上,当菱形ABCD 平移的距离为3√52或5√53时,菱形的一个顶点恰好落在函数图象上.8.如图,菱形OABC 的边OC 在x 轴正半轴上,点B 的坐标为(8,4).(1)请求出菱形的边长;(2)若反比例函数y=kx 经过菱形对角线的交点D ,且与边BC 交于点E ,请求出点E 的坐标.【答案】解:(1)如图,BM ⊥x 轴于点M ,∵点B 的坐标为(8,4),OC=BC ,∴CM=8-BC ,在Rt △BCM 中,BC 2=CM 2+BM 2,即BC 2=(8-BC )2+42,解得,BC=5,即菱形的边长为5;(2)∵D 是OB 的中点,∴点D 的坐标为:(4,2),∵点D 在反比例函数y=kx 上, ∴k=xy=4×2=8,y=8x ,又∵OC=5,∴C (5,0),(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?【答案】解:(1)设反比例函数解析式为y=k x (k≠0),将(25,6)代入解析式得k=25×6=150,则函数解析式为y=150x(x≥15), 将y=10代入解析式得,10=150x , x=15,故A (15,10),设正比例函数解析式为y=nx ,将A (15,10)代入上式即可求出n 的值,n=1015=23,则正比例函数解析式为y=23x (0<x <15).(2)当y=2时,150x=2, 2=23x 1(0<x <15).解得x=75.答:师生至少在75分钟内不能进入教室.例3.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x 、y(2)若△ABC为等边三角形,则有y=√32x,∵y=12√3x∴12√3x =√32x,∴x=√24=2√6∵2<2√6<8∴能【答案】(1)y=12√3x;(2)【举一反三】1.如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120∘,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为.【答案】3.2.为预防“非典”,某学校对教室采取药熏的方式进行消毒,已知药物燃烧时室内每立方米空气中含药量y(mg)与时间x(min)成正比例,药物燃烧后y与x成反比例,已知药物8min燃烧完,此时室内空气中每立方米的含药量为6mg.(1)研究表明:当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需几分钟后,学生才能回教室?(2)研究表明:当空气中每立方米的含药量不低于3mg,且持续时间不低于10min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】解:(1)①由题意xy=12,∴y=12x (x≥65).②y≥4时,65≤x≤3.(2)当2x+12x =9.5时,整理得:4x 2-19x+24=0,△<0,方程无解.当2x+12x =10.5时,整理得:4x 2-21x+24=0,△=57>0,符合题意;∴小凯的说法错误,洋洋的说法正确.1.下列函数中,反比例函数是( )A. y=-2xB. y =1x+1C. y=x-3D. y =13x【解答】解:根据反比例函数定义,y =13x 是反比例函数.故选:D .【答案】D2.如果函数y=kx k-2是反比例函数,那么k=______,此函数的解析式是______.【解答】解:根据题意,k-2=-1,解得k=1,且k≠0,∴函数的解析式为:y=1x .故答案为:1,y=1x .【答案】1y=1x3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()A. y=400x B. y=14xC. y=100x D. y=1400x【解答】解:设y=kx,400度近视眼镜镜片的焦距为0.25m,∴k=0.25×400=100,∴y=100x.故选:C.【答案】C4.如图,在平面直角坐标系中,反比例函数y=kx经过▱ABCD的顶点B,D,点D的坐标为(2,1),点A在y轴上,且AD∥x轴,S▱ABCD=6.(1)填空:点A的坐标为______,k=______;(2)求AB所在直线的解析式.【解答】解:(1)∵点D 的坐标为(2,1),点A 在y 轴上,且AD ∥x 轴,∴点A 的坐标(0,1),∵y =kx 的图象经过点D (2,1),∴k=2×1=2,故答案为:(0,1),2;(2)∵D (2,1),AD ∥x 轴,∴AD=2,AO=1,∵S 平行四边形ABCD =6,∴AE=3,∴OE=2,∴B 点纵坐标为-2,把y=-2代入y =2x 得,-2=2x ,解得x=-1,∴B (-1,-2),设直线AB 的解析式为y=ax+b ,代入A (0,1),B (-1,-2)得: {b =1−a +b =−2, 解得:{a =3b =1, ∴AB 所在直线的解析式为y=3x+1.【答案】(0,1)25.如图,一次函数y=-x+4的图象与反比例函数y=kx (k 为常数,且k≠0)的图象交于A (1,a ),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积.【答案】解:(1)把点A (1,a )代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A 的坐标为(1,3).把点A (1,3)代入反比例函数y=kx ,得:3=k ,∴反比例函数的表达式y=3x ,联立两个函数关系式成方程组得:{y =−x +4y =3x , 解得:{x =1y =3,或{x =3y =1, ∴点B 的坐标为(3,1).(2)作点B 作关于x 轴的对称点D ,交x 轴于点C ,连接AD ,交x 轴于点P ,此时PA+PB 的值最小,连接PB ,如图所示.∵点B 、D 关于x 轴对称,点B 的坐标为(3,1),∴点D 的坐标为(3,-1).设直线AD 的解析式为y=mx+n ,把A ,D 两点代入得:{m +n =33m +n =−1, 解得:{m =−2n =5, ∴直线AD 的解析式为y=-2x+5.令y=-2x+5中y=0,则-2x+5=0,解得:x=52,∴点P 的坐标为(52,0). S △PAB =S △ABD -S △PBD =12BD•(x B -x A )-12BD•(x B -x P )=12×[1-(-1)]×(3-1)-12×[1-(-1)]×(3-52)=32.6.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,……均是等腰直角三角形,其直角顶点P 1(4,4),P 2,P 3……P n 均在反比例函数y=kx (k >0)的图象上(1)求k的值;(2)分别求出P2、P3的坐标;(3)试用含n的式子表示P n的坐标(直接写出).(k>0)的图象上,【答案】解:(1)∵点P1(4,4)在反比例函数y=kx∴k=4×4=16;(2)作P1A⊥OA1于A,P2B⊥A1A2于B,P3⊥A2A3于C,如图所示:∵P1(4,4),∴OA=P1A,△OAP1时等腰直角三角形,∴∠OP1A=45°,∴∠A1P1A=45°,∵P1A⊥OA1,∴△AA1P1是等腰直角三角形,∴AA1=OA=4,△P1OA1,△P2A1A2,△P3A2A3,……均是等腰直角三角形,∴OA1=8,设P2(8+b,b),则b(8+b)=16,解得:b1=-4-4√2(舍去),b2=-4+4√2,∴OB=8-4+4√2=4+4√2,∴P2(4+4√2,-4+4√2),A2A1=2b=-8+8√2,∴OA2=8-8+8√2=8√2,设P3(8√2+c,c),则c(8√2+c)=16,解得:c1=-4√2-4√3(舍去),c2=-4√2+4√3,∴OC=8√2-4√2+4√3=4√2+4√3,∴P3(4√2+4√3,-4√2+4√3);(3)由(2)得:P n的坐标为(4√n+4√n−1,4√n-4√n−1).7.已知反比例函数y=6的图象上有两个点(x1,y1),(x2,y2),其中x1<0<x2,则y1,y2的大小关x系是______.【解答】解:∵k=6>0,∴图象过一三象限,∵x1<0<x2,∴y1<y2,故答案为y1<y2.【答案】y1<y2的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一8.如图,已知反比例函数y=kx动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.得k=2×1=2,【答案】解:(1)把A(2,1)代入y=kx;所以反比例函数解析式为y=2x(2)∵∠OAM=90°,∴∠MAD+∠CAO=90°,而∠CAO+∠AOC=90°,∴∠AOC=∠MAD,∴Rt△AMD∽Rt△OAC,∴AD:OC=MD:AC,即(n-1):2=(2-m):1,∴n-1=4-2m,∵点M(m,n)在y=2的图象上,x,∴n=2m-1=4-2m,∴2m整理得2m2-5m+2=0,解得m1=1,m2=2(舍去),2∴n=4,∴点M的坐标为(1,4).2。

反比例函数练习题(解析版)

反比例函数练习题(解析版)
第二节反比例函数的图像和性质
基础过关
第149页第1题
难度:基础题
考点:反比例函数的图像和性质
解题思路:本题考查反比例函数的图象和性质,由 即可解得答案.
解析:解:∵ 的图象位于第一、第三象限,∴ ,即 .
答案:A
点拨:本题考查了反比例函数的图象和性质:①、当 时,图象分别位于第一、三象限;当 时,图象分别位于第二、四象限.
∴反比例函数的解析式为 ,一次函数的解析式为 .
答案:反比例函数的解析式为 ,一次函数的解析式为
点拨:已知函数图象过某个点,则这个点的坐标应适合这个函数解析式.
第141页第9题
难度:基础题
考点:反比例函数的意义
解题思路:根据题意设出反比例函数与正比例函数的解析式,代入 ,再把当 代入关于 的关系式,求出未知数的值,即可求出 与 之间的函数关系式.
第140页第2题
难度:基础题
考点:反比例函数的意义
解题思路:根据每一个选项的题意,列出方程,然后由反比例函数的定义进行一一验证即可.
解析:解:A、根据题意,得 ,所以 与 不是反比例关系,错误;
B、根据题意,得 ,所以 与 不是反比例关系,错误;
C、根据题意,得 ,所以 不是反比例关系,错误;
D。、根据题意,得 ,∴当 一定时, 之间的关系是反比例关系.
答案: ; 是 的反比例函数;人均报酬随人数的增加而减少
点拨:本题考查了反比例函数的应用.解题的关键是根据总报酬=人均报酬×人数列出函数关系式.
第141页第8题
难度:基础题考点:反比来自函数解析式的求法;一次函数解析式的求法
解题思路:把A(1,1)代入两个函数解析式即可求解.
解析:解:将点A(1,1)代入 ,得 ,解得

反比例函数习题及答案

反比例函数习题及答案

反比例函数习题及答案反比例函数习题及答案反比例函数是数学中的一种重要函数形式,常见于实际问题中。

它的特点是当自变量增大时,函数值会减小;当自变量减小时,函数值会增大。

本文将介绍一些常见的反比例函数习题,并提供相应的答案。

一、基础习题1. 已知函数y与x的关系为y=k/x,其中k为常数。

当x=2时,求y的值。

解析:将x=2代入函数y=k/x中,得到y=k/2。

答案:y=k/22. 已知函数y与x的关系为y=k/x,其中k为常数。

当y=3时,求x的值。

解析:将y=3代入函数y=k/x中,得到3=k/x,进一步得到x=k/3。

答案:x=k/33. 已知函数y与x的关系为y=k/x,其中k为常数。

当x=4时,求y的值。

解析:将x=4代入函数y=k/x中,得到y=k/4。

答案:y=k/4二、应用习题1. 一辆汽车以恒定的速度行驶,行驶时间与行驶距离成反比例关系。

已知汽车行驶100公里需要2小时,求汽车行驶200公里需要多少小时。

解析:根据反比例函数的性质可知,行驶时间与行驶距离的乘积为常数。

设行驶时间为t,行驶距离为d,则有t×d=k。

已知行驶100公里需要2小时,代入得到2×100=k,解得k=200。

所以,当行驶距离为200公里时,行驶时间t=200/100=2小时。

答案:2小时2. 一根管道的水流量与管道的截面积成反比例关系。

已知管道截面积为4平方米时,水流量为10立方米/小时,求当管道截面积为2平方米时,水流量为多少立方米/小时。

解析:根据反比例函数的性质可知,水流量与管道截面积的乘积为常数。

设水流量为q,管道截面积为a,则有q×a=k。

已知管道截面积为4平方米时,水流量为10立方米/小时,代入得到10×4=k,解得k=40。

所以,当管道截面积为2平方米时,水流量q=40/2=20立方米/小时。

答案:20立方米/小时三、综合习题1. 一台机器在工作时,每小时能生产100个产品。

(完整版)反比例函数练习题及答案

(完整版)反比例函数练习题及答案

反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接 OP.若 Rt△POM 的面积为 2,则 k 的值为( )
A.4 【答案】C 【解析】
B.2
C.4
D.2
【分析】
根据反比例函数的比例系数 k 的几何意义得到 S△POD= 1 |k|=2,然后去绝对值确定满足条件 2
的 k 的值. 【详解】
解:根据题意得 S△POD= 1 |k|, 2
所以 1 |k||=2, 2
∵S 四边形 AODB=S△AOB+S△BOD=S△AOC+S 梯形 ABDC, ∴S△AOB=S 梯形 ABDC,
∵S 梯形 ABDC= 1 (BD+AC)•CD= 1 ×(1+2)×2=3,
2
2
∴S△AOB=3,
故选 B.
【点睛】本题考查了反比例函数 y k k 0 中 k 的几何意义,反比例函数图象上点的坐
x
2
∵S△CDE=1,
∴ 1 |n|•|m- m |=1,即 1 n× m =1,
2
2
22
∴mn=4.
∴k=4.
故选:A.
【点睛】
本题考查了待定系数法求函数的解析式,利用 mn 表示出三角形的面积是关键.
9.如图,点 P 是反比例函数 y k (x0)图象上一点,过 P 向 x 轴作垂线,垂足为 M,连 x
图象过第一、三象
试题分析:分别根据题意确定 k 的值,然后相加即可.∵关于 x 的分式方程 =2 的解为
非负数,∴x= ≥0,解得:k≥-1,∵反比例函数 y= 图象过第一、三象限,∴3﹣k> 0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0 或 1,∴和为-1+2=1,故选,B. 考点:反比例函数的性质.
∴BA=BC,AC⊥BD,
∵∠ABC=60°,
∴△ABC 是等边三角形,
∵点 A(1,1),
∴OA= ,
∴BO=

∵直线 AC 的解析式为 y=x, ∴直线 BD 的解析式为 y=-x, ∵OB= , ∴点 B 的坐标为(− , ),
∵点 B 在反比例函数 y= 的图象上,
D.﹣2


解得,k=-3, 故选 C. 点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题 意,利用反比例函数的性质解答.
5.如图,菱形 ABCD 的两个顶点 B、D 在反比例函数 y= 的图象上,对角线 AC 与 BD 的交 点恰好是坐标原点 O,已知点 A(1,1),∠ABC=60°,则 k 的值是( )
A.﹣5
B.﹣4
C.﹣3
【答案】C
【解析】
分析:根据题意可以求得点 B 的坐标,从而可以求得 k 的值.
详解:∵四边形 ABCD 是菱形,
而 k<0,
所以 k=-4. 故选:C. 【点睛】
本题考查了反比例函数的比例系数 k 的几何意义:在反比例函数 y= k 图象中任取一点,过 x
这一个点向 x 轴和 y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
10.如图,点 A,B 在反比例函数 y 1 (x 0) 的图象上,点 C,D 在反比例函数 x
式表示出 S△OAC,S△ABD 的面积,再根据△OAC 与△ABD 的面积之和为 3 ,列出方程,求解得出 2
答案. 【详解】
把 x=1 代入 y 1 得:y=1, x
∴A(1,1),把 x=2 代入 y 1 得:y= 1 ,
x
2
∴B(2, 1 ), 2
∵AC//BD// y 轴,
∴C(1,K),D(2, k ) 2
反比例函数技巧及练习题含答案
一、选择题
1.如图,若直线 y 2x n 与 y 轴交于点 B ,与双曲线 y 2 x 0 交于点
x
Am,1 ,则 AOB 的面积为( )
A.6
B.5
C.3
D.1.5
【答案】C
【解析】
【分析】
先根据题意求出 A 点坐标,再求出一次函数解析式,从而求出 B 点坐标,则问题可解.
a
b
可代入比例式求得 a2b2
2 ,即 a2
2 b2
,根据勾股定ຫໍສະໝຸດ 可得:OB=OE2 EB2
a2
1 a2
,OA=
OF 2 AF 2
b2
4 b2

∴tan∠OAB= OB OA
a2
1 a2
b2
4 b2
2 b2
b2 2
=
b2
4 b2
1 2
(
4 b2
b2)
=
2
b2
4 b2
2
∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.
【详解】∵A,B 是反比例函数 y= 4 在第一象限内的图象上的两点, x
且 A,B 两点的横坐标分别是 2 和 4,
∴当 x=2 时,y=2,即 A(2,2),
当 x=4 时,y=1,即 B(4,1),
如图,过 A,B 两点分别作 AC⊥x 轴于 C,BD⊥x 轴于 D,
则 S△AOC=S△BOD= 1 ×4=2, 2
x
x
A.逐渐变小 【答案】D 【解析】 【分析】
B.逐渐变大
C.时大时小
D.保持不变
如图,作辅助线;首先证明△BEO∽△OFA,,得到 BE OE ;设 B 为(a, 1 ),A 为
OF AF
a
(b, 2 ),得到 OE=-a,EB= 1 ,OF=b,AF= 2 ,进而得到 a2b2 2 ,此为解决问题的关
标轴、向坐标轴作垂线所围成的直角三角形面积 S 的关系即 S= 1 |k|,是经常考查的一个 2
知识点;这里体现了数形结合的思想.
12.当 x 0 时,反比例函数 y 2 的图象( ) x
A.在第一象限, y 随 x 的增大而减小
B.在第二象限, y 随 x 的增大而增大
C.在第三象限, y 随 x 的增大而减小
【详解】
解:由已知直线 y 2x n 与 y 轴交于点 B ,与双曲线 y 2 x 0 交于点 Am,1
x ∴1 2 则 m=-2
m 把 A(-2,1)代入到 y 2x n ,得
1 22 n
∴n=-3
∴ y 2x 3
则点 B(0,-3)
∴ AOB 的面积为 1 3 2=3 2
A.4
B.3
C. 2 5
D.2
【答案】A
【解析】
【分析】
设 E 的坐标是(m,n),k=mn,则 C 的坐标是(m,2n),求得 D 的坐标,然后根据三
角形的面积公式求得 mn 的值,即 k 的值.
【详解】
解:设 E 的坐标是(m,n),k=mn,
则 C 的坐标是(m,2n),
在 y= mn 中,令 y=2n,解得:x= m ,
7.在函数 y 2 , y x 3 , y x2 的图象中,是中心对称图形,且对称中心是原点的 x
图象共有( )
A.0 个
B.1 个
C.2 个
D.3 个
【答案】B
【解析】
【分析】
根据中心对称图形的定义与函数的图象即可求解.
【详解】
y=x+3 的图象是中心对称图形,但对称中心不是原点;y=x2 图象不是中心对称图形;只有函
数 y 2 符合条件. x
故选:B.
【点睛】
本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.
8.如图,矩形 ABCD 的边 AB 在 x 轴上,反比例函数 y k (k 0) 的图象过 D 点和边 x
BC 的中点 E ,连接 DE ,若 CDE 的面积是 1,则 k 的值是( )
y k (k 0) 的图象上,AC//BD//y 轴,已知点 A,B 的横坐标分别为 1,2,△OAC 与 x
△ABD 的面积之和为 3 ,则 k 的值为( ) 2
A.4
【答案】B 【解析】
B.3
C.2
D. 3 2
【分析】
首先根据 A,B 两点的横坐标,求出 A,B 两点的坐标,进而根据 AC//BD// y 轴,及反比例函数 图像上的点的坐标特点得出 C,D 两点的坐标,从而得出 AC,BD 的长,根据三角形的面积公
b
a
b
键性结论;运用三角函数的定义证明知 tan∠OAB= 2 为定值,即可解决问题. 2
【详解】
解:分别过 B 和 A 作 BE⊥x 轴于点 E,AF⊥x 轴于点 F,
则△BEO∽△OFA,
∴ BE OE , OF AF
设点 B 为(a, 1 ),A 为(b, 2 ),
a
b
则 OE=-a,EB= 1 ,OF=b,AF= 2 ,
的几何意义得出 S△AOC=S△BOD= 1 ×4=2.根据 S 四边形 AODB=S△AOB+S△BOD=S△AOC+S 梯形 ABDC,得出 2
S△AOB=S 梯形 ABDC,利用梯形面积公式求出 S 梯形 ABDC= 1 (BD+AC)•CD= 1 ×(1+2)×2=3,从而
2
2
得出 S△AOB=3.
握反比例函数 k 的几何意义是解本题的关键.
11.如图,A、C 是函数 y 1 的图象上任意两点,过点 A 作 y 轴的垂线,垂足为 B,过点 x
C 作 y 轴的垂线,垂足为 D.记 RtAOB 的面积为 S1 , RtCOD 的面积为 S2 ,则 S1 和 S2
的大小关系是( )
A. S1 S2
故选 D
【点睛】 该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问 题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判 定等知识点来分析、判断、推理或解答.
相关文档
最新文档