公开课教案---直线的点向式方程

合集下载

11.1(2)直线的方程(点法向式方程)

11.1(2)直线的方程(点法向式方程)

11.1(2)直线的方程(点法向式方程)一、教学内容分析本节的重点是直线的点法向式方程以及一般式方程的推导及应用.在上一堂课的基础上,通过向量垂直的充要条件(对应坐标的关系式)推导出直线的点法向式方程.引导同学发现直线的点方向式方程、点法向式方程都可以整理成关于y x 、的一次方程0=++c by ax (b a 、不全为零)的形式. 本节的难点是通过对直线与二元一次方程关系的分析,初步认识曲线与方程的关系并体会解析几何的基本思想!从而培养学生用坐标法对平面直线(和以后的圆锥曲线)的研究能力.二、教学目标设计在理解直线方程的意义,掌握直线的点方向式方程的基础上,进一步探究点法向式方程以及一般式方程;学会分类讨论、数形结合等数学思想,形成探究能力.三、教学重点与难点直线的点法向式方程以及一般式方程;理解直线点法向式方程以及一般式方程的推导.四、教学过程一、复习上一堂课的教学内容二、讲授新课 点法向式方程1、概念引入从上一堂课的教学中,我们知道,在平面上过一已知点P ,且与某一方向平行的直线l 是惟一确定的.同样在平面上过一已知点P ,且与某一方向垂直的直线l 也是惟一确定的.2、概念形成直线的点法向式方程在平面上过一已知点P ,且与某一方向垂直的直线l 是惟一确定的.建立直角坐标平面,设P 的坐标是00(,)x y ,方向用非零向量(,)n a b =表示.直线的点法向式方程的推导设直线l 上任意一点Q 的坐标为(,)x y ,由直线垂直于非零向量n ,故PQ n ⊥.根据PQ n ⊥的充要条件知0=⋅n PQ ,即:00()()0a x xb y y -+-=①;反之,若11(,)x y 为方程⑤的任意一解,即1010()()0a x x b y y -+-=,记11(,)x y 为坐标的点为1Q ,可知1PQ n ⊥,即1Q 在直线l 上.综上,根据直线方程的定义知,方程⑤是直线l 的方程,直线l 是方程①的直线.我们把方程00()()0a x x b y y -+-=叫做直线l 的点法向式方程,非零向量n 叫做直线l 的法向量.3、概念深化 从上面的推导看,法向量n 是不唯一的,与直线垂直的非零向量都可以作为法向量.若直线的一个方向向量是),(v u ,则它的一个法向量是),(u v -.4、例题解析例1 已知点()()4321,,,B A -,求AB 的垂直平分线l 的点法向式方程. 解 由中点公式,可以得到AB 的中点坐标为()3,1,()2,4=→--AB 是直线l 的法向量,所以,AB 的垂直平分线l 的点法向式方程.()()03214=-+-y x[说明]关键在于找点和法向量!例2已知点)2,1(),6,1(--B A 和点)3,6(C 是三角形的三个顶点,求(1)BC 边所在直线方程;(2)BC 边上的高AD 所在直线方程.解(1)因为BC 边所在直线的一个方向向量BC =(7,5),且该直线经过点)2,1(--B ,所以BC 边所在直线的点方向式方程为5271+=+y x (2)因为BC 边上的高AD 所在的直线的一个法向量为BC =(7,5),且该直线经过点)6,1(A ,所以高AD 所在直线的点法向式方程为0)6(5)1(7=-+-y x例3已知在∆ABC 中,∠BAC 为直角,点B 、C 的坐标分别是 (4,2)、(2,8),且d =(3,2)与AC 边平行。

直线的两点式方程教学设计及教学反思

直线的两点式方程教学设计及教学反思

直线的两点式方程教学设计及教学反思一、教学设计1. 教学目标通过本节课的学习,学生应能够:•理解直线的两点式方程的概念及作用;•掌握如何根据已知的两点求直线的两点式方程;•运用直线的两点式方程解决实际问题。

2. 教学内容•直线的两点式方程的定义和作用;•求直线的两点式方程的方法;•运用直线的两点式方程解决实际问题。

3. 教学重点和难点•教学重点:直线的两点式方程的定义和求解方法;•教学难点:运用直线的两点式方程解决实际问题。

4. 教学方法•导入法:引入两点式方程的概念及其作用,激发学生对该知识点的兴趣和求知欲;•示范法:通过具体的例子,演示如何根据已知的两点求直线的两点式方程;•讨论法:引导学生思考和讨论,共同解决实际问题;•练习法:布置练习题,巩固和加深学生对直线的两点式方程的理解和掌握。

5. 教学步骤Step 1:导入介绍直线的两点式方程的概念及作用,如何根据两个已知点求直线的两点式方程。

通过实际问题引入本节课的学习内容,激发学生的学习兴趣。

Step 2:示范以具体的例子演示如何根据已知的两点求直线的两点式方程。

给出两个已知点的坐标,逐步引导学生进行计算,展示求解的过程,并解释其中的原理和方法。

Step 3:讨论引导学生进行讨论,共同解决实际问题。

给出一个实际问题,如根据两个已知位置的建筑物求解两点之间的距离,要求学生先通过计算求出两点的距离,再根据已知点的坐标求解直线的两点式方程。

Step 4:练习布置练习题,让学生用所学知识解决各种直线的两点式方程问题,巩固和加深对该知识点的理解和掌握。

Step 5:总结对本节课进行总结,回顾直线的两点式方程的定义和求解方法,强调其应用价值,并鼓励学生继续探索更复杂的直线方程。

二、教学反思本节课主要通过示范和讨论的方式,引导学生掌握直线的两点式方程的求解方法,并运用该知识解决实际问题。

通过这种方式,能够激发学生的学习兴趣,提高他们的积极参与度。

然而,在教学过程中,我发现一些问题需要改进。

直线方程两点式教案

直线方程两点式教案

直线方程两点式教案教案标题:直线方程两点式教案教学目标:1. 理解直线方程的两点式表示法;2. 能够根据给定的两点,确定直线的方程;3. 能够利用直线方程两点式解决与直线相关的问题。

教学准备:1. 教师准备:教师需要准备黑板、粉笔或白板、马克笔等教学工具;2. 学生准备:学生需要准备纸和笔。

教学过程:一、导入(5分钟)1. 引入直线方程的概念,简要介绍直线方程的两点式表示法,并与一般式和斜截式进行对比。

二、讲解直线方程的两点式表示法(15分钟)1. 通过示例,详细讲解直线方程的两点式表示法的定义和推导过程;2. 强调两点式表示法的优点,即可以直接通过给定的两点确定直线方程,无需进行其他转换。

三、练习与讨论(20分钟)1. 教师提供一些简单的两点式直线方程问题,让学生尝试解答,并进行讨论;2. 学生根据给定的两点,确定直线方程,并求解与直线相关的问题。

四、拓展与应用(15分钟)1. 提供一些较为复杂的两点式直线方程问题,让学生进行拓展与应用;2. 学生根据实际问题,确定直线方程,并解决与直线相关的实际问题。

五、总结与评价(5分钟)1. 总结直线方程的两点式表示法的要点和应用;2. 对学生在课堂上的表现进行评价。

教学延伸:1. 学生可以通过使用计算机软件或在线工具,进一步练习和巩固直线方程的两点式表示法;2. 学生可以尝试寻找更多与直线方程相关的实际问题,并进行解答。

教学反思:本节课通过讲解直线方程的两点式表示法,引导学生理解和掌握该表示法的定义、推导过程和应用方法。

通过练习和讨论,学生能够熟练运用两点式表示法确定直线方程,并解决与直线相关的问题。

在教学过程中,可以适当增加一些拓展与应用的内容,提高学生的思维能力和问题解决能力。

同时,教师要及时给予学生反馈和指导,帮助他们克服困难,提高学习效果。

直线的两点式方程教学设计和反思

直线的两点式方程教学设计和反思

直线的两点式方程教学设计和反思一、教学设计1. 教学目标•理解直线的两点式方程的概念和原理;•掌握如何根据给定的两点求直线的两点式方程;•能够利用直线的两点式方程解决与直线有关的数学问题。

2. 教学内容•直线的两点式方程的定义和特点;•如何根据给定的两点求直线的两点式方程;•解决与直线有关的数学问题。

3. 教学步骤和方法引入 - 使用一个简单的问题引入直线的两点式方程的概念:小明去度假,在一片空地上,他发现两个房屋,分别标有坐标为(1,3)和(5,7),小明想知道这两个房屋之间的直线方程是什么?探究 - 学生分组进行讨论,探讨如何根据两点求直线的两点式方程; - 每个小组选择一组坐标进行计算,并给出计算步骤; - 学生进行报告,分享自己的计算过程,并以此为基础讨论出根据两点求直线方程的一般步骤。

总结 - 教师对探究结果进行总结,概括求直线的两点式方程的一般步骤,并列示出公式和示例; - 引导学生归纳总结直线的两点式方程的特点。

实践 - 学生继续分组进行练习,根据给定的两点求直线的两点式方程; - 学生互相交流,互相检查答案,帮助解决困难。

拓展- 学生自主拓展,找到与直线的两点式方程相关的实际问题,并进行解答。

4. 教学评价•在探究环节,评价学生对根据两点求直线方程的理解和运用能力;•在实践环节,评价学生对直线两点式方程的运用能力;•考察学生在拓展环节中的思维发散和解决问题的能力。

二、教学反思在本次教学中,我主要采用了探究和实践相结合的教学方法。

通过引入问题,引发学生的兴趣,激发他们的思考和研究的欲望。

在探究环节,学生通过小组讨论和报告,互相学习和分享,掌握了根据给定两点求直线方程的一般步骤。

这种互动和合作的学习模式激发了学生的积极性,提高了他们的学习效果。

在实践环节,学生进一步巩固了所学的知识,并通过互相检查和交流,相互帮助解决问题。

这种合作学习的方式不仅促进了学生之间的互动,还提高了他们的合作能力和解决问题的能力。

直线的两点式方程教案详案

直线的两点式方程教案详案

直线的两点式方程教案详案一、教学目标1.理解直线的两点式方程的含义和基本形式;2.掌握利用直线上两点确定直线方程的方法;3.能够灵活运用两点式方程解决与直线相关的问题。

二、教学准备1.教师准备:–教学课件或板书工具;–直线模型或实物示范。

2.学生准备:–笔、纸、尺等基础学习工具。

三、教学过程1. 导入与引入通过示范直线模型或实物,并提问引导学生思考:•直线是什么?你见过哪些直线?•直线有什么特点?进一步引出直线的两点式方程的概念和作用。

2. 直线的两点式方程的定义解释直线的两点式方程的定义:•直线的两点式方程是用直线上的两个点的坐标表示直线的方程。

•一个直线的两点式方程唯一确定这条直线。

3. 直线的两点式方程的基本形式介绍直线的两点式方程的基本形式:$y - y_1 = \\frac{{y_2 - y_1}}{{x_2 - x_1}}(x - x_1)$解释各项符号的含义,如P1(x1,y1)和P2(x2,y2)分别为直线上的两个已知点。

4. 求直线的两点式方程的步骤•步骤1:已知直线上两个点的坐标,记为P1(x1,y1)和P2(x2,y2);•步骤2:根据基本形式,代入已知点的坐标,得到直线的两点式方程;•步骤3:化简方程得到最简形式。

示范解题过程,让学生理解如何利用已知点求直线的两点式方程。

5. 实例练习提供若干道例题,让学生独立或小组合作完成,并进行讲解。

例题1:已知直线上两个点P1(2,3)和P2(−1,4),求该直线的两点式方程。

例题2:已知直线上两个点P1(−3,1)和P2(5,−2),求该直线的两点式方程。

例题3:已知直线上两个点P1(0,2)和P2(2,0),求该直线的两点式方程。

6. 拓展应用让学生利用直线的两点式方程解决与直线相关的问题,如求直线与坐标轴的交点、直线在平面直角坐标系中的图像等。

7. 总结与评价回顾直线的两点式方程的概念和求解步骤,让学生自己总结和梳理。

评价学生的学习情况,鼓励解答问题,纠正错误。

直线的两点式方程 说课稿 教案 教学设计

直线的两点式方程  说课稿  教案  教学设计

直线的两点式方程 教学目标1.知识与技能:(1)通过推导,会表示直线的两点式方程;(2)理解直线的两点式方程的限制条件;(3)会用直线的两点式方程解决实际问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)本节的核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想重点难点1.教学重点:会用直线的两点式方程解决实际问题2.教学难点:理解直线的两点式方程的限制条件.教学过程:(一)创设情景,引入新课思考:利用直线的点斜式方程解答下列问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程。

[)1(232-=-x y ] (2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程。

(二)讲授新课1、直线的两点式方程:问题解答:因为21x x ≠,所以1212x x y y k --=,由直线的点斜式方程,得: )(112121x x x x y y y y ---=-,因为21y y ≠,所以),(2121121121y y x x x x x x y y y y ≠≠--=--为直线的两点式方程。

说明:(1)这个方程由直线上两点确定;(2)当直线没有斜率或斜率为0时,不能用两点式求出它们的方程。

(此时方程如何得到?) 思考:若点),(),,(222211y x P x x P 中有21x x =,或21y y =,此时这两点的直线方程是什么?(1)当21x x =时,直线与x 轴垂直,所以直线方程为:1x x =;(2)当21y y =时,直线与y 轴垂直,直线方程为:1y y =。

沪教版高中数学高二下册 -11.1 直线的方程 -直线的点方向式方程 教案


点方向式方程 P(xO,yO), 方向向量 d = (u, v) (uv≠0)
x − xO = y − yO
u
v
(uv≠0)
d = (u,v) ( 0 )
点法向式方程 P(xO,yO), 法向量 n = (a, b)
a(x − x0 ) + b( y − y0 ) = 0 n = (a,b) ( 0 )
合 PQ1 ⊥ n ,即 Q1 在直线 l 上. 根据直线方程的定义知,方程①是直线 l 的方程,直线 l 是方程①的直线.
1/3
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
定义:与直线 l 垂直的非零向量 n 叫做直线 l 的法向量. 方程 a(x − x0 ) + b( y − y0 ) = 0 叫做直线 l 的点法向式方程,
②能否根据已知法向量找出直线的一个方向向量?
一般的,若 n = (a,b) ,则 d = (b,−a) ③请写出以上直线的点方向式方程 小结:(1)求点方向式与点法向式方程必须满足两个条件:已知点与方向
(2)方向(法)向量不唯一,则直线的方程不唯一 (3)适用范围
已知条件
直线 l 的方 程
方向(法)向 量
四、概念运用和深化 例 2:已知点 A(1,6)、B(-1,-2)和点 C(6,3)是三角形的三个顶点,求: (1) BC 边所在直线的方程 (2) BC 边上的高 AD 所在直线的方程 (3) BC 边的垂直平分线的点法向式方程 小结:灵活使用方程的不同形式
练习:已知在△ABC 中,∠BAC=90°,点 B、C 的坐标为(4.2), (2,8),d = (3,2)
3/3
向量 n = (a,b) 是直线 l 的一个法向量 三、概念辨析

直线的两点式方程教案

直线的两点式方程教案教案标题:直线的两点式方程教案教案目标:1. 学生能够理解直线的两点式方程的概念和含义。

2. 学生能够根据已知的两点坐标,确定直线的两点式方程。

3. 学生能够应用直线的两点式方程解决实际问题。

教案步骤:引入(5分钟):1. 创造一个实际情境,例如:假设学生是一名城市规划师,需要在地图上连接两个重要地点。

请学生思考如何用直线来表示这两个地点之间的路径。

概念解释(10分钟):1. 介绍直线的两点式方程的定义:直线的两点式方程是通过已知两点坐标来表示直线的方程。

2. 解释两点式方程的一般形式:y - y1 = (y2 - y1) / (x2 - x1) * (x - x1),其中(x1, y1)和(x2, y2)是已知的两点坐标。

示例演练(15分钟):1. 给出一个具体的例子,例如:已知点A(2, 3)和点B(5, 7),请学生根据这两个点的坐标确定直线的两点式方程。

2. 引导学生按照两点式方程的一般形式计算,解释过程并给予指导。

练习与巩固(15分钟):1. 分发练习题,要求学生根据给定的两点坐标,确定直线的两点式方程。

2. 鼓励学生独立完成练习,并在需要时提供帮助和解释。

3. 随堂检查学生的练习成果,解答学生的问题。

应用拓展(10分钟):1. 提供一个实际问题,例如:已知一辆汽车从点A(1, 2)出发,经过点B(4, 6),最终到达点C(7, 10)。

请学生利用直线的两点式方程计算汽车的行驶路线。

2. 引导学生将问题转化为数学模型,解释计算过程并给予指导。

总结与反思(5分钟):1. 总结直线的两点式方程的概念和应用。

2. 鼓励学生分享他们在解决实际问题时的思考和方法。

3. 提供反思时间,让学生思考他们在学习过程中遇到的困难和问题。

教案评估:1. 观察学生在课堂上的参与度和理解程度。

2. 检查学生在练习和应用拓展中的表现。

3. 收集学生的作业和练习题,评估他们对直线的两点式方程的掌握程度。

2.2.2直线的两点式方程教案

2.2.2 直线的两点式方程教案教学目标•理解直线的两点式方程的概念。

•掌握求解直线的两点式方程的方法。

•能够应用直线的两点式方程解决实际问题。

教学内容1.直线的两点式方程的定义和特点。

2.求解直线的两点式方程的步骤和方法。

3.直线的两点式方程在实际问题中的应用。

教学步骤步骤一:引入1.进行导入:引导学生回顾直线的一般式方程,指出其限制和不足之处。

2.引入直线的两点式方程的概念:告诉学生直线的两点式方程可以更便捷地表示直线的方程,使得解直线方程的计算更加简单。

步骤二:讲解概念和特点1.定义直线的两点式方程:是用直线上的两个点(x₁, y₁) 和(x₂, y₂) 来表示直线方程的一种方式。

2.解释直线两点式方程的特点:通过给出直线上的两个点,可以唯一确定直线的方程。

步骤三:求解直线的两点式方程1.介绍求解直线两点式方程的步骤:a.确定直线上的两个点坐标。

b.根据两点的坐标,计算直线的斜率。

c.根据斜率和其中一个点的坐标,使用斜截式方程得到直线的方程。

d.化简直线的方程,得到最终的两点式方程。

步骤四:应用实际问题1.通过实际问题的例子,展示直线的两点式方程的应用:a.解决给定两点的直线问题,如求直线的方程、距离等。

b.引导学生应用直线的两点式方程解决其他几何问题。

步骤五:总结与扩展1.总结直线的两点式方程的概念和求解方法。

2.引导学生思考直线两点式方程的优缺点,与其他直线方程的比较。

3.拓展其他相关概念,如点斜式方程、截距式方程等。

教学资源•教材《数学课程标准实验教科书》•讲义:直线的两点式方程教学评估1.布置课后作业,让学生练习求解直线的两点式方程。

2.参与课堂讨论,回答教师提出的问题,并解决相关问题。

3.课堂小结,检查学生对直线的两点式方程的理解程度及掌握情况。

拓展练习1.给定两点A(1,2)和B(4,5),求过这两点的直线方程。

2.已知直线的两点式方程为:2x + 3y - 6 = 0,求直线的斜率和截距。

直线的两点式方程的教学设计

直线的两点式方程的教学设计引言在数学学科中,直线是一个基础概念,理解直线方程的各种形式以及如何确定直线上的点是数学学习的重要内容。

直线的两点式方程是一种常见的表示直线的方法,其形式为Ax+By+C=0。

本文设计了一节课的教学环节,旨在帮助学生理解直线的两点式方程及其应用。

教学目标通过本课程设计,学生将能够:•理解直线的两点式方程的定义和表示方法•掌握求解直线的两点式方程的方法•运用直线的两点式方程解决几何问题教学内容本节课的教学内容主要包括以下几个部分:1.直线方程的回顾–直线方程的一般式Ax+By+C=0–直线方程的斜截式y=mx+b–直线方程的点斜式y−y1=m(x−x1)2.直线的两点式方程的定义和表示方法–直线的两点式方程的形式:Ax+By+C=0–直线通过两个已知点(x1,y1)和(x2,y2),代入方程求解系数3.求解直线的两点式方程的步骤及示例–确定已知点(x1,y1)和(x2,y2)–使用两点式方程的形式求解系数A,B,C–将求得的系数代入方程4.直线的两点式方程的应用–求解直线与坐标轴的交点–判断直线是否与坐标轴相交–判断直线是否平行或垂直于坐标轴–解决与直线相关的几何问题教学过程本节课的教学过程设计如下:1.导入新知识–引入直线的两点式方程的定义和表示方法–与已学的直线方程进行对比,强调两点式方程的特点2.概念讲解–解释直线的两点式方程的含义和表达方式–通过示例演示如何利用两点求解直线方程3.练习与讨论–让学生在小组内互相交流,并求解给定的两点求直线方程的问题–引导学生讨论求解步骤和思路4.总结和归纳–与学生一起总结求解直线的两点式方程的方法和要点–强调学生在实际问题中的应用5.拓展练习–提供更多不同难度的直线方程求解问题,让学生进行个人或小组练习–鼓励学生尝试利用直线的两点式方程解决实际问题6.作业布置–布置课后作业,要求学生练习直线方程的求解和应用题目教学评估在教学过程中,可以采用以下方法对学生进行评估:•监控学生在小组讨论中的参与程度和解题能力•针对学生的答疑情况进行评估•课堂练习和作业的完成情况评估学生对知识的掌握程度结束语通过本节课的教学设计,学生将深入了解直线的两点式方程的定义、求解方法及其应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
消去参数 ,得 ( - )- ( - )=0(3)
在方程(2)中,如果 ≠ቤተ መጻሕፍቲ ባይዱ, ≠0可得到 (4)
方程(3)和(4)都叫做通过 ( , ),方向向量为 =( , )的直线的点向式方程.
特别地,
当 =0(此时 ≠0,否则 为零向量)时,则由(3)式得到方程 = ,
它表示通过 ( , ),且平行于 轴的直线(图9–2(1)).
当 =0(此时 ≠0,)则由(3)式得到方程 = ,
它表示通过 ( , ),且平行 轴的直线(图9–2(2)).
有了直线的点向式方程,只要知道直线 上一点的坐标和一个方向向量,就可以直接根据直线的点向式方程求出直线 的点向式方程.
四、数学应用
例1.分别说出下列直线经过的一个点M0和它的一个方向向量v的坐标:
2.掌握直线的点向式方程.
(1)记住并理解方程中各字母的含义;
(2)注意平行于 轴和平行于 轴的直线方程;
(3)会用它求直线的点向式方程.
六、课外作业
P51 1、2题
三、建构数学
在直角坐标系 中,已知点 ( , )(图9-1),我们来求过点 ,并且与非零向量 共线(或平行)的直线 的方程.其中 叫做直线 的方向向量.
设 ( , )是一动点,点 ∈ 的充分必要条件是 与 共线(或平行),即
= , ∈ ,(1)
将(1)换用坐标表示,得( - , - )=( , ),即 (2)
教学方法:讲授法.
教学过程:
一、复习回顾
在第七章我们学习了向量共线(或平行)的概念,如图9-1. 是一定点, 是过点 与 共线(或平行)的直线, 为 上的任一点,由向量共线(或平行)可知,一定存在一个实数 ,使 = ,
二、问题情境
已知直线过一个一点且和一个非零向量共线(或平行),这条直线是否唯一确定?.(学生动手验证)今天我们来推导已知直线过一个点且和一个非零向量共线(或平行)的直线的方程(教师将导入语叙述到这时板书课题)
(1) (2)
解:(1)点M0(2,1),方向向量v(-1,3)
(2)点M0(0,-1),方向向量v(-2,0)
例2.直线l经过点M0(-1,2),一个方向向量为v(1,-3),写出l的点向式方程
解:直线l的点向式方程是
.
五、课堂小结
通过今天的教学,大家应该:
1.知道除一个点和一个非零向量可以确定一条直线.
公开课教案
课题:直线的点向式方程.
授课人:罗华光(邻水职中)
教学目标:
1.理解直线的点向式方程的推导过程,掌握直线的点向式方程.
2.会运用直线的点向式方程.
3.培养学生数形结合的思想和转化的思想和能力.
4.培养学生分析问题,解决问题的能力.
教学重点:直线的点向式方程.
教学难点:直线的点向式方程的推导.
相关文档
最新文档