物理光学与应用光学习题解第七章
物理光学与应用光学石顺祥课后问题详解

《物理光学与应用光学》习题及选解第一章习题1-1. 一个线偏振光在玻璃中传播时,表示为:i E ))65.0(10cos(10152t cz-⨯⨯=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单色平面光波的频率为z H 1014=ν,在z = 0 平面上相位线性增加的情况如图所示。
求f x , f y , f z 。
1-3. 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹角为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为ϕ。
求证:ϕαcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988μm 波长光的折射率为n = 1.52546,11m 1026.1/--⨯-=μλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下面两种色散规律的群速度(表示式中的v 表示是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满色散介质()(ωεε=,)(ωμμ=)的直波导管中的电磁波,222/a c c v p -=εμωω,其中c 真空中的光速,a 是与波导管截面有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
入射光是自然光,入射角分别为︒0,︒20,︒45,0456'︒,︒90。
1-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?1-9. 电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角︒=501θ,n 1 = 1,n 2 = 1.5,则反射光的光矢量与入射面成多大的角度?若︒=601θ时,该角度又为多1-2题用图大?1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度P t 。
应用光学作业题答案

第二题: (1)光线由水中射向空气,求在界面处发生全反射的临界角。
解: 全反射的临界角Im arcsin(n '/ n)
光线由水中射向空气,n’=1,n=1.333
则 Im arc sin(n '/ n)=arc sin(1/1.333)=48.61
(2)光线由玻璃内部射向空气,求发生全反射的临界角。
1 l2
'
-
1 130
=
1 120
l2'=-62.4mm
A”成象于透镜2左侧62.4mm处。
(2)等效光组成象的方法:
解: H’
A
F1
F2’
F1’
F2
f1’=120mm f2’=-120mm d=70mm △= d-f1’- f2’=70mm
f ' f1 ' f2 ' 120 (120) 205.714mm
n0sini1=nsini1’ sini1=0.6552 i1=40.93° 由三角形内角和可求出太阳和幻
日之间的夹角
α=180 °-2×(i1-i1’) =158.14 °
第七题:
为了从坦克内部观察外界目标,需要在坦克上开一个孔,假 定坦克壁厚250mm,孔宽150mm,在孔内装一块折射率 n=1.52的玻璃,厚度与装甲厚度相同,问能看到外界多大的 角度范围?
O’
A’
解:(1)对于在球心的气泡,以O作为 球面顶点,根据符号规则,
O L’A=-200mm,n’=1,n=1.52
由 n ' n n ' n l' l r
1 -1.52 = 1-1.52 l=-200mm -200 l -200
应用光学习题集答案

应⽤光学习题集答案习题第⼀章1、游泳者在⽔中向上仰望,能否感觉整个⽔⾯都是明亮的?(不能,只能感觉到⼀个明亮的圆,圆的⼤⼩与游泳都所在的⽔深有关,设⽔深H ,则明亮圆半径HtgIc R =)2、有时看到窗户玻璃上映射的太阳光特别耀眼,这是否是由于窗玻璃表⾯发⽣了全反射现象?答:是。
3、⼀束在空⽓中波长为nm 3.589=λ的钠黄光从空⽓射⼊⽔中时,它的波长将变为多少?在⽔中观察这束光时其颜⾊会改变吗?答:'λλ=n ,nm 442'=λ不变 4、⼀⾼度为m 7.1的⼈⽴于路灯边(设灯为点光源)m 5.1远处,路灯⾼度为m 5,求⼈的影⼦长度。
答:设影⼦长x ,有:57.15.1=+x x ∴x=0.773m 5、为什么⾦钢⽯⽐磨成相同形状的玻璃仿制品显得更加光彩夺⽬?答:由于⾦钢⽯折射率⼤,所以其临界⾓⼩,⼊射到其中的光线⼤部分都能产⽣全反射。
6、为什么⽇出或⽇落时太阳看起来稍微有些发扁?(300例P1)答:⽇出或⽇落时,太阳位于地平线附近,来⾃太阳顶部、中部和底部的光线射向地球⼤⽓层的⼊射⾓依次增⼤(如图)。
同时,⼤⽓层密度不均匀,折射率⽔接近地⾯⽽逐渐增⼤。
当光线穿过⼤⽓层射向地⾯时,由于n 逐渐增⼤,使其折射⾓逐渐减⼩,光线的传播路径就发⽣了弯曲。
我们沿着光线去看,看到的发光点位置会⽐其实际位置⾼。
另⼀⽅⾯,折射光线的弯曲程度还与⼊射⾓有关。
⼊射⾓越⼤的光线,弯曲越厉害,视觉位置就被抬得越⾼,因为从太阳上部到下部发出的光线,⼊射⾓依次增⼤,下部的视觉位置就依次⽐上部抬⾼的更多。
第⼆章1、如图2-65所⽰,请采⽤作图法求解物体AB的像,设物像位于同⼀种介质空间。
图2-652、如图2-66所⽰,'MM 为⼀薄透镜的光轴,B 为物点,'B 为像点,试采⽤作图法求解薄透镜的主点及焦点的位置。
BM B 'M ′ B M M ′B ' ●●●●(a) (b)图2-663、如图2-67所⽰,已知物、像的⼤⼩及位置,试利⽤图解法求解出焦点的位置,设物、像位于同⼀种介质空间。
应用光学习题解答

习题巩固
巩固练习
习题难度:从易到难,逐步提高解题能力 习题类型:覆盖多种题型,包括选择题、填空题、计算题等 习题内容:涉及多个知识点,帮助学生巩固所学内容 习题答案:提供详细的答案解析,帮助学生理解解题思路
练习答案
答案:光在平面镜上的反射遵守光的反射定律。
答案:在应用光学中,透镜的焦距是指平行于主轴的光线通过透镜后汇聚 的点到透镜中心的距离。
题目:应用光学实验操作
解析:通过实验操作,加深对应用光学理论的理解,掌握实验仪器的使用技巧,提高实验操作能力 和数据分析能力。
练习总结
习题巩固:通过 练习题来巩固所 学知识
解题技巧:掌握 解题技巧,提高 解题效率
错题分析:分析 错题原因,避免 重复犯错
举一反三:通过练 习题学会举一反三, 拓展知识面
学科交叉:与其 他学科的知识点 进行交叉融合, 拓宽学生的知识 面和思维方式。
创新实验:设计 一些创新性的实 验,让学生通过 动手实践来加深 对光学的理解。
拓展总结
解题技巧:掌握常用解题方 法,提高解题效率
习题难度:由易到难,逐步 提高解题能力
知识点拓展:通过习题巩固 和拓展所学知识点
举一反三:学会触类旁通, 能够解决类似问题
应用光学习题解析
01
02
习题拓展
习题巩固
03
04
习题解答
光的折射与反射
光的折射:光从一 种介质斜射入另一 种介质时,传播方 向发生改变的现象。
光的反射:光在两 种介质的交界面上 返回原介质的现象。
折射定律:入射角i 、折射角r和介质的 折射率n之间的关 系。
反射定律:入射角i 、反射角i'和介质 的折射率n之间的 关系。
《物理光学与应用光学》习题及选解(部分)

《物理光学与应用光学》习题及选解(部分)第一章习题1-1. 一个线偏振光在玻璃中传播时,表示为:i E ))65.0(10cos(10152t cz-⨯⨯=π,试求该光的频率、波长,玻璃的折射率。
1-2. 已知单色平面光波的频率为z H 1014=ν,在z = 0 平面上相位线性增加的情况如图所示。
求f x , f y , f z 。
1-3. 试确定下列各组光波表示式所代表的偏振态: (1))sin(0kz t E E x -=ω,)cos(0kz t E E y -=ω; (2) )cos(0kz t E E x -=ω,)4cos(0πω+-=kz t E E y ;(3) )sin(0kz t E E x -=ω,)sin(0kz t E E y --=ω。
1-4. 在椭圆偏振光中,设椭圆的长轴与x 轴的夹角为α,椭圆的长、短轴各为2a 1、2a 2,E x 、E y 的相位差为ϕ。
求证:ϕαcos 22tan 220000y x y x E E E E -=。
1-5.已知冕牌玻璃对0.3988μm 波长光的折射率为n = 1.52546,11m 1026.1/--⨯-=μλd dn ,求光在该玻璃中的相速和群速。
1-6. 试计算下面两种色散规律的群速度(表示式中的v 表示是相速度):(1)电离层中的电磁波,222λb c v +=,其中c 是真空中的光速,λ是介质中的电磁波波长,b 是常数。
(2)充满色散介质()(ωεε=,)(ωμμ=)的直波导管中的电磁波,222/a c c v p -=εμωω,其中c 真空中的光速,a 是与波导管截面有关的常数。
1-7. 求从折射率n = 1.52的玻璃平板反射和折射的光的偏振度。
入射光是自然光,入射角分别为︒0,︒20,︒45,0456'︒,︒90。
1-8. 若入射光是线偏振的,在全反射的情况下,入射角应为多大方能使在入射面内振动和垂直入射面振动的两反射光间的相位差为极大?这个极大值等于多少?1-9. 电矢量振动方向与入射面成45°的线偏振光,入射到两种透明介质的分界面上,若入射角︒=501θ,n 1 = 1,n 2 = 1.5,则反射光的光矢量与入射面成多大的角度?若︒=601θ时,该角度又为多1-2题用图大?1-10. 若要使光经红宝石(n = 1.76)表面反射后成为完全偏振光,入射角应等于多少?求在此入射角的情况下,折射光的偏振度P t 。
物理光学与应用光学第二版课件及课后习题答案

由式(1-12)
2 所以有: ( E ) ) E
由式(1-16)得:
2
即 E 0
E 2 E 2 t
(1-17)
同理对式(1-15)两边 取旋度,得
2 2 D B E H ( D) 2 2 t t t t
即:
E E 2 t
2
(1-16)
利用矢量微分恒等式
2 ( A) ( A) A
有:
2 ( E ) ( E ) E
D 0
可知 E 0
同理,利用矢量微分恒等式,可得:
2 有以上两式得: H H 2 t
2
2 ( H ) H
(1-18)
v 令
1
可将式(1-17)式(1-18)变为:
2 1 2E 2 E 2 2 0 (1-19) 2 H 1 H 0 v t v 2 t 2
4.波动方程
麦克斯韦方程组描述了电磁现象的变化规律, 指出随时间变化的电场将在周围空间产生变化的磁 场,随时间变化的磁场将在周围空间产生变化的电 场,变化的电场和磁场之间相互联系,相互激发, 并且以一定速度向周围空间传播。因此,时变电磁 场就是在空间以一定速度由近及远传播的电磁波。
一、 电磁场波动方程:
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z
物理光学与应用光学习题解第七章

第七章●习题7-1. 有一玻璃球,折射率为3,今有一光线射到球面上,入射角为60°,求反射光线和折射光线的夹角。
7-2. 水槽有水20cm深,槽底有一个点光源,水的折射率为1.33,水面上浮一不透明的纸片,使人从水面上任意角度观察不到光,则这一纸片的最小面积是多少?7-3. 空气中的玻璃棒,n’=1.5163,左端为一半球形,r=-20mm。
轴上有一点光源,L =-60mm。
求U=-2°的像点的位置。
7-4. 简化眼把人眼的成像归结为只有一个曲率半径为5.7mm,介质折射率为1.333的单球面折射,求这种简化眼的焦点的位置和光焦度。
7-5. 有一玻璃球,折射率为n=1.5,半径为R,放在空气中。
(1)物在无穷远时,经过球成像在何处?(2) 物在球前2R处时像在何处?像的大小如何?7-6. 一个半径为100mm的玻璃球,折射率为1.53。
球内有两个气泡,看来一个恰好在球心,另一个在球的表面和球心之间,求两个气泡的实际位置。
7-7. 一个玻璃球直径为60mm,折射率为1.5,一束平行光入射在玻璃球上,其会聚点应该在什么位置?7-8. 一球面反射镜,r=-100mm,求β=0,-0.1,-1,5,10情况下的物距和像距。
7-9. 一球面镜对其前面200mm处的物体成一缩小一倍的虚像,求该球面镜的曲率半径。
7-10. 垂直下望池塘水底的物时,若其视见深度为1m,求实际水深,已知水的折射率为4/3。
7-11. 有一等边折射率三棱镜,其折射率为1.65,求光线经该棱镜的两个折射面折射后产生最小偏向角时的入射角和最小偏向角。
●部分习题解答7-2. 解:水中的光源发出的光波在水——空气界面将发生折射,由于光波从光密介质传播到光疏介质,在界面将发生全反射,这时只有光波在界面的入射角小于水——空气界面的全反射的临界角,光线才有可能进入空气,因此界面的透光区域为一个以光源在界面上的垂7-2题用图直投影点为心的圆面,如右图,该圆面的面积即为所求纸片的最小面积。
应用光学总复习与习题解答

总复习第一章 几何光学的基本定律 返回内容提要有关光传播路径的定律是本章的主要问题。
折射定律(光学不变量)及其矢量形式反射定律(是折射定律当时的特殊情况)费马原理(极端光程定律),由费马原理导出折射定律和反射定律(实、虚)物空间、像空间概念 完善成像条件(等光程条件)及特例第二章 球面与球面系统 返回内容提要球面系统仅对细小平面以细光束成完善像基本公式:阿贝不变量放大率及其关系:拉氏不变量反射球面的有关公式由可得。
第三章 平面与平面系统返回内容提要平面镜成镜像夹角为 α 的双平面镜的二次像特征 平行平板引起的轴向位移反射棱镜的展开,结构常数,棱镜转像系统折射棱镜的最小偏角,光楔与双光楔关键问题:坐标系判断,奇次反射成像像,偶次反射成一致像,并考虑屋脊的作用。
第四章 理想光学系统返回内容提要主点、主平面,焦点、焦平面,节点、节平面的概念高斯公式与牛顿公式:当时化为,并有三种放大率,,拉氏不变量,,厚透镜:看成两光组组合。
++组合:间隔小时为正光焦度,增大后可变成望远镜,间隔更大时为负光焦度。
--组合:总是负光焦度 +-组合:可得到长焦距短工作距离、短焦距长工作距离系统,其中负弯月形透镜可在间隔增大时变 成望远镜,间隔更大时为正光焦度。
第五章 光学系统中的光束限制 返回内容提要本部分应与典型光学系统部分相结合进行复习。
孔阑,入瞳,出瞳;视阑,入窗,出窗;孔径角、视场角及其作用 拦光,渐晕,渐晕光阑 系统可能存在二个渐晕光阑,一个拦下光线,一个拦上光线 对准平面,景像平面,远景平面,近景平面,景深 物方(像方)远心光路——物方(像方)主光线平行于光轴第六章 光能及其计算 返回内容提要本章重点在于光能有关概念、单位和像面照度计算。
辐射能通量,光通量,光谱光视效率,发光效率 发光强度,光照度,光出射度,光亮度的概念、单位及其关系 光束经反射、折射后亮度的变化,经光学系统的光能损失, 通过光学系统的光通量,像面照度总之,第七章 典型光学系统 返回内容提要本章需要熟练掌握各类典型光学系统的成像原理、放大倍率、光束限制、分辨本领以及显微镜与照明 系统、望远镜与转像系统的光瞳匹配关系,光学系统的外形尺寸计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章
●习题
7-1. 有一玻璃球,折射率为3,今有一光线射到球面上,入射角为60°,求反射光线和折射光线的夹角。
7-2. 水槽有水20cm深,槽底有一个点光源,水的折射率为1.33,水面上浮一不透明的纸片,使人从水面上任意角度观察不到光,则这一纸片的最小面积是多少?
7-3. 空气中的玻璃棒,n’=1.5163,左端为一半球形,r=-20mm。
轴上有一点光源,L =-60mm。
求U=-2°的像点的位置。
7-4. 简化眼把人眼的成像归结为只有一个曲率半径为5.7mm,介质折射率为1.333的单球面折射,求这种简化眼的焦点的位置和光焦度。
7-5. 有一玻璃球,折射率为n=1.5,半径为R,放在空气中。
(1)物在无穷远时,经过球成像在何处?(2) 物在球前2R处时像在何处?像的大小如何?
7-6. 一个半径为100mm的玻璃球,折射率为1.53。
球内有两个气泡,看来一个恰好在球心,另一个在球的表面和球心之间,求两个气泡的实际位置。
7-7. 一个玻璃球直径为60mm,折射率为1.5,一束平行光入射在玻璃球上,其会聚点应该在什么位置?
7-8. 一球面反射镜,r=-100mm,求β=0,-0.1,-1,5,10情况下的物距和像距。
7-9. 一球面镜对其前面200mm处的物体成一缩小一倍的虚像,求该球面镜的曲率半径。
7-10. 垂直下望池塘水底的物时,若其视见深度为1m,求实际水深,已知水的折射率为4/3。
7-11. 有一等边折射率三棱镜,其折射率为1.65,求光线经该棱镜的两个折射面折射后产生最小偏向角时的入射角和最小偏向角。
●部分习题解答
7-2. 解:水中的光源发出的光波在水——空气界面
将发生折射,由于光波从光密介质传播到光疏介质,在界面将发生全反射,这时只有光波在界面的入射角小于水——空气界面的全反射的临界角,光线才有可能进入空气,因此界面的透光区域为一个以光源在界面上的垂
7-2题用图
直投影点为心的圆面,如右图,该圆面的面积即为所求纸片的最小面积。
由全反射条件可知190sin sin 33.1=︒=c θ,即133.1/1tan 2
-=c θ,又
22)t a n (c h r S θππ==,所以 2223.1634)133.1/(400
cm r S =-==ππ。
7-6. 解:眼睛观察玻璃球中的气泡,看到的实际为玻璃球中的气泡经过玻璃球表面所成的像,因此本题是折射球面的成像问题,并且是已知像的位置求解物体的位置。
显然玻璃球中的气泡的成像光线从玻璃球内经过表面折射成像,所以成像时物空间的折射率为玻璃球的折射率,像空间的折射率为空气的折射率,即n =1.53,n’=1.0;选择右图的结构,则折射球面的半径r =-100mm ,气泡A 和B 的像距分别为l 1’=-100mm 和l 2’=-50mm ,由折射球面近轴区的成像公式r n n l n l n /)'(/'/'-=-可得气泡A 和B 的物距l 1和l 2分别为
mm l 1001-=,mm l 5.602-=
7-8. 解:由反射球面镜的成像公式)100/(2/0.1'/0.1-=+l l ,以及l l /'-=β可
得:
7-10. 解:水池的视见深度实际为水池的实际底面经过水——空气界面成像的像距。
该
题为平面型介质界面的近轴区成像问题,其中n =4/3,n’=1.0,l’=-1m 。
由平面型介质界面的近轴区成像公式0/'/'=-l n l n ,可得l =-4/3m ,所以实际水深4/3米。
像
7-6题用图。