《两角差的余弦公式》三角函数PPT

合集下载

两角和与差的余弦课件

两角和与差的余弦课件

公式意义
两角和的余弦等于两个角 的余弦之积减去两个角的 正弦之积
公式证明
根据三角函数的和差化积 公式和三角函数的积化和 差公式可以证明
两角差的余弦公式
公式定义
$\cos(α-β)=\cos α\cos β+\sin α\sin β$
公式意义
两角差的余弦等于两个角 的余弦之积加上两个角的 正弦之积
公式证明
解决物理问题等。随着科学技术的不断发展,该公式将在更多的领域得
到应用和发展。
THANKS
感谢观看
在信号处理中的应用
信号的合成与分解
使用两角和与差的余弦公式,可以将一 个信号分解为多个信号的叠加,也可以 将多个信号合成为一个信号。
VS
信号的调制与解调
在信号调制过程中,使用两角和的余弦公 式可以将一个低频信号加载到高频载波上 ;在信号解调过程中,使用两角差的余弦 公式可以从高频信号中提取出低频信号。
重要性质
该公式具有一些重要的性质,例如,当两个角度的和或差 为90度时,余弦值为0;当两个角度的和或差为180度时 ,余弦值为-1等。
应用范围
该公式在解决三角形问题、极坐标系问题以及在信号处理 等领域都有广泛的应用。
对两角和与差的余弦公式的展望
01
进一步研究
尽管我们已经得到了两角和与差的余弦公式,但是对该公式的进一步研
05
CATALOGUE
两角和与差的余弦公式的变式与扩展
两角和的余弦公式的变式
公式变形
$\cos(A+B) = \cos A \cos B \sin A \sin B$
证明
利用和差角公式和三角函数的和 角公式进行变形。
应用
用于计算两角和的余弦值,或者 利用已知的两角和的正弦、余弦

人教A版高中数学必修四3.两角差的余弦公式精品PPT课件

人教A版高中数学必修四3.两角差的余弦公式精品PPT课件
若θ∈[π,2π),则2π -θ∈[0,π ],且
OAOBcos(2π–θ)=cosθ=cos(α-β)
5
人教A版高 中数学 必修四 3.两角 差的余 弦公式 课件- 精品课 件ppt( 实用版)
结 论 归 纳
人教A版高 中数学 必修四 3.两角 差的余 弦公式 课件- 精品课 件ppt( 实用版)
对于任意角 α ,β
c o s ( α - β ) c o s α c o s β + s in α s in β
差角的余弦公式
C α - β
注意:1.公式的结构特点;
2.对于α,β,只要知道其正弦或余弦,就可 以求出cos(α-β)
6
人教A版高 中数学 必修四 3.两角 差的余 弦公式 课件- 精品课 件ppt( 实用版)
人教A版高 中数学 必修四 3.两角 差的余 弦公式 课件- 精品课 件ppt( 实用版)
1、


cos=

5, 13
,3 2


c
o
s

6



_
_
_
_

2 、c o s 2 1 5 - s i n 2 1 5 _ _ _ _ _ _ _ ;
3、 在 A B C 中 , 若 sinA sinB = cosA cosB ,
分析:c o c so s
cα o β s co s s α i α β n sinα
5 4 12 3 135135
人教A版高 中数学 必修四 3.两角 差的余 弦公式 课件- 精品课 件ppt( 实用版)
16
65
11
人教A版高 中数学 必修四 3.两角 差的余 弦公式 课件- 精品课 件ppt( 实用版)

两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)

两角和与差的正弦、余弦、正切公式:课件十三(230张PPT)
tan tan tan( ) 1 tan tan tan tan tan( ) 1 tan tan
( C(-) ) ( C(+) ) ( S(+) ) ( S(-) ) ( T(+) )
( T(-) )
小结
三角函数求值及证明问题中, 变角是一种常用的技巧,如 ( ) ; ( ) (( ) ( ) 等, ( 4 4 2 这样可充分利用已知条件中的三角函数值,通过三角运算 来求值、化简和证明.





练习
求下列各式的值
4cos74 sin 14 sin 74 cos14 ; 3 原式=sin 14 74 sin 60 2 5sin 34 sin 26 cos34 cos26 ; 1 原式= cos 34 cos 26 sin 34 sin 26 cos34 26 2 6sin 20 cos110 cos160 sin 70. 原式=sin 20 cos110 cos 20 sin 110 sin 20 110 1
分析 : ( ) , 则 cos cos[( ) ] cos( ) cos sin( ) sin
练习
1 cos 2
小结 两角和与差的正弦、余弦、正切公式
cos(-)= coscos+sinsin cos(+)= coscos-sinsin sin(+)= sincos+cossin sin(-)= sincos-cossin




《两角差的余弦公式》高一年级下册PPT课件

《两角差的余弦公式》高一年级下册PPT课件
老师:XXX
中和反发生中和反应生成1molH2O(l), 这时的反应热叫做中和热。 2. 单位: KJ/mol
酸碱中和反应 放热
3. 注意 ①必须是稀溶液,如浓硫酸稀释或NaOH固体溶解时放热; ②强酸和强碱反应 ③标准:生成1molH2O(l)放出的热量.
已知三角函数值求角时,忽略角的范围致误
5
10
典例 4 已知 α,β 均为锐角,且 sinα= 5 ,cosβ= 10 ,则 α-β=
____________.
5
25
[错解] ∵α 为锐角,sinα= 5 ,∴cosα= 5 .
10
3 10
又 β 为锐角,cosβ= 10 ,∴sinβ= 10 .
2 5 10 5 3 10 2 ∴cos(α-β)=cosαcosβ+sinαsinβ= 5 × 10 + 5 × 10 = 2 .
[知识点拨]对公式C(α-β)的三点说明
(1)公式的结构特点:
公式的左边是差角的余弦,右边的式子是含有同名函数之积的和式,可用
口诀“余余正正符号相反”记忆公式.
第三章 三角恒等变换
(2)公式的适用条件:
α+β 公式中的 α,β 不仅可以是任意具体的角,也可以是一个“团体”,如 cos( 2
α-β
α+β
23 (3)cos15°=cos(45°-30°)=cos45°· cos30°+sin45°· sin30°= 2 × 2
2 1 6+ 2 + 2 ×2= 4 .
第三章 三角恒等变换
『规律总结』 运用两角差的余弦公式求值的关注点 (1)运用两角差的余弦公式解决问题要深刻理解公式的特征,切忌死记. (2)在逆用公式解题时,还要善于将特殊的值变形为某特殊角的三角函数值.

《两角和与差的正弦、余弦、正切公式》三角函数PPT

《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习




三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习




3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(

两角和与差正弦余弦公式课件

两角和与差正弦余弦公式课件
于信号的合成、滤波等操作。
在数学竞赛中的应用
代数问题
在数学竞赛中,两角和与差的正弦、 余弦公式常与其他数学知识结合,用 于解决代数问题,例如求值、证明等 。
几何问题
在几何学中,两角和与差的正弦、余 弦公式常用于证明几何定理或解决几 何问题,例如角度计算、面积计算等 。
03
两角和与差正弦余弦公式的 扩展
案例三:数学竞赛中的应用
总结词
用于解决数学竞赛中的三角函数问题
详细描述
在数学竞赛中,两角和与差正弦余弦公式是解决三角函数问题的关键工具。通过这些公 式,可以快速求解复杂的三角函数表达式,解决诸如求三角函数的最值、判断三角函数 的单调性等问题。同时,这些公式也是数学竞赛中考察学生数学思维和解题能力的重要
两角和与差正弦余弦公式ppt课件
$number {01}
目录
• 两角和与差正弦余弦公式的基本 概念
• 两角和与差正弦余弦公式的应用 • 两角和与差正弦余弦公式的扩展 • 两角和与差正弦余弦公式的变种 • 两角和与差正弦余弦公式的实际
应用案例
01
两角和与差正弦余弦公式的 基本概念
定义
1 3
定义
两角和与差正弦余弦公式是三角函数中重要的公式之一,用 于计算两个角度的和或差的三角函数值。
利用扩展公式解决一些实 际问题,如测量、物理、 工程等领域的问题。
简化计算
扩展公式可以简化一些复 杂的三角函数计算,提高 计算的效率和准确性。
推广到其他领域
扩展公式可以推广到其他 领域,如复数、矩阵等领 域,促进数学和其他学科 的交叉融合。
扩展公式的证明
证明方法
利用三角函数的性质、三角恒等变换和代数运算等工具,证明扩展公式的正确 性。

两角和与差的正弦、余弦和正切公式 (共38张PPT)

两角和与差的正弦、余弦和正切公式 (共38张PPT)
tan(

4
) 2求
1 2 sin cos cos 2 的值。
(二)小题查验
1.判断正误
(1)两角和与差的正弦、余弦公式中的角 α,β 是任意的 ( √ )
(2)存在实数 α,β,使等式 sin(α+β)=sin α+sin β 成立 ( √ )
(3)在锐角△ABC 中,sin Asin B 和 cos Acos B 大小不确定( × ) tan α+tan β (4) 公式 tan(α + β) = 可以变形为 tan α + tan β = 1-tan αtan β
为锐角,由
所以 原式
tan

5 4
1 2 得 cos , 2 5
(二)小题查验
1.判断正误
θ 2θ (1)cos θ=2cos -1=1-2sin 2 2
2
( √ )
(2)二倍角的正弦、余弦、正切公式的适用范围是任意角 ( × )
(3)存在角 α,使得 sin 2α=2sin α 成立 ( √ )
2.二倍角的正弦、余弦、正切公式 sin 2α=2sin αcos α; cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α; 2tan α tan 2α= 2 . 1-tan α
[题组练透]
π 3 1.已知 sin α= ,α∈2 ,π,则 5
cos 2α
7 3 25 2. (人教 A 版教材习题改编)已知 sin(α-π)= , 则 cos 2α=________.
5
2- 3 tan 7.5° 2 3.计算: =________. 2
1-tan 7.5°
考点一
三角函数公式的基本应用 (基础送分型考点——自主练透)

《两角差的余弦公式》课件

《两角差的余弦公式》课件

1 2 3
利用三角函数诱导公式推导
通过三角函数的周期性和对称性,利用诱导公式 将角度转换到易于计算的角度范围,然后利用两 角和与差公式进行推导。
利用单位圆性质推导
利用单位圆的性质,将两角差的余弦表示为向量 夹角的余弦值,然后利用向量的数量积和模长进 行推导。
推导过程的证明
证明两角差的余弦公式需要利用三角函数的周期 性和对称性、单位圆的性质以及代数运算和三角 恒等变换进行证明。
学习目标
掌握公式的推导过程,理解公式 的几何意义,能够熟练应用公式 进行计算
THANKS
感谢观看
进阶习题3
已知cos(π/3 + α) = 1/3,求 cos(2π/3 - 2α)的值。
习题解析
解析1
利用两角差的余弦公式,将已知的cos(π/3 - α)转化为 关于cos(2π/3 - 2α)的表达式,然后进行计算。
解析2
利用两角差的余弦公式,将已知的cos(π/4 - α)转化为关 于sin(3π/4 - 2α)的表达式,然后进行计算。
适用于任意角度α、β的三角函数计算
公式应用注意事项
角度范围
在使用两角差的余弦公式时,需 要注意角度α、β的范围,以避免
出现负数平方根的情况
精度问题
在计算过程中,需要注意精度问 题,以避免误差的积累
特殊角的处理
对于一些特殊角,如90°、180° 等,需要特别注意公式的应用方

下章预告
学习内容
学习两角和与差的正弦、余弦、 正切公式
解析6
利用两角差的余弦公式,将已知的cos(π/3 + α)转化为 关于cos(2π/3 - 2α)的表达式,然后进行计算。
05
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档