对高中数学核心素养——数学抽象的解读

合集下载

高中数学核心素养之数学抽象能力的培养实践研究

高中数学核心素养之数学抽象能力的培养实践研究

高中数学核心素养之数学抽象能力的培养实践研究一、数学抽象能力的内涵和培养要求数学抽象能力是指学生在认识和处理数学问题时,能够运用数学概念、理论、方法和原理进行归纳、概括、推理和演绎的能力。

具体而言,数学抽象能力主要包括以下几个方面:1. 抽象思维能力:即学生将具体事物的共性特征进行提炼和概括,形成抽象概念的能力。

在学习集合论时,学生应该能够将各种集合概念进行提炼和总结,形成集合的概念,并能够灵活运用这一概念解决实际问题。

2. 归纳与演绎能力:即学生能够从具体的事例中提炼出规律,进而推导出一般性结论的能力。

在学习函数时,学生能够通过对具体函数进行分析和推导,得出函数的一般性性质和特点。

3. 抽象记忆和联想能力:即学生能够将各种抽象的数学概念进行联系和归纳,形成全面的数学知识网络的能力。

在学习代数方程时,学生要能够将代数方程的解法和结论进行联系和联想,形成完整的代数方程解决能力。

数学抽象能力的培养主要包括抽象思维、归纳演绎和抽象记忆与联想等方面。

在高中数学教育中,要培养学生的数学抽象能力,需营造良好的学习环境,设计科学的教学内容和方法,特别是要注重数学问题解决的启发性和实践性,使学生在解决实际问题中不断提升数学抽象能力。

1. 营造良好的数学学习氛围数学抽象能力的培养需要一个积极向上的学习环境。

学校应该注重数学学科的特色和魅力,鼓励学生积极参与数学学科竞赛、数学科技创新等活动,培养学生对数学学科的浓厚兴趣和独立思考的能力。

2. 设计具有启发性的数学问题在教学过程中,教师应该设计一些具有启发性的数学问题,促使学生主动去探索、发现数学问题的规律和本质,从而激发学生的数学抽象能力。

在学习平面几何的过程中,教师可以设计一些具有启发性的证明题目,让学生从不同的角度去思考,培养学生的抽象思维和逻辑推理能力。

3. 提倡独立思考和合作学习数学学科的学习离不开独立思考和合作学习。

教师应该指导学生培养独立思考的意识,鼓励学生在课外进行自主学习和探索。

高中数学六大核心素养

高中数学六大核心素养

高中数学六大核心素养教育部《普通高中数学课程标准》修订组组长、博士生导师王尚志教授提出,中国学生在数学学习中应培养好数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析六大核心素养。

(1)数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。

主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。

数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。

数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。

在数学抽象核心素养的形成过程中,积累从具体到抽象的活动经验。

学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题。

(2)逻辑推理逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程。

主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;另一类是从一般到特殊的推理,推理形式主要有演绎。

逻辑推理是得到数学结论、构建数学体系的重要方式,是数学严谨性的基本保证,是人们在数学活动中进行交流的基本思维品质。

在逻辑推理核心素养的形成过程中,学生能够发现问题和提出命题;能掌握推理的基本形式,表述论证的过程;能理解数学知识之间的联系,建构知识框架;形成有论据、有条理、合乎逻辑的思维品质,增强数学交流能力。

(3)数学建模数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。

主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。

数学模型构建了数学与外部世界的桥梁,是数学应用的重要形式。

数学核心素养之数学抽象理解

数学核心素养之数学抽象理解

数学核心素养之数学抽象理解高中课程标准修订组,按照内涵、价值和表现的框架,给出的高中数学核心素养是:数学抽象、逻辑推理、数学建模、运算能力、直观想象、数据分析。

数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。

主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。

数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学的产生、发展、应用的过程中。

数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。

……反思1:只舍去“物理属性”,不舍去“社会属性”“形式属性”?应该是“具体属性”.反思2:“表征”应改为“表示”,如此更通俗易懂,也更准确。

表征是教育心理学的术语,是认知者在脑中重新表示反映——再表示的意思。

反思3:数量与数量关系、图形与图形关系已经属于纯数学世界的内容,由两者抽象出数学概念及关系就是所说的垂直数学化,即数学世界内部由低级向高级的发展。

“从事物的具体背景中抽象出一般规律和结构”指的是从真实世界得出数学原理结构,是由真实世界到数学世界的水平数学化之一,但却少了另一种更基础的水平数学化:由真实世界抽象出数量、图形、概念等数学模式。

例如:实际问题→茎叶图;力→向量;力的分解合成→向量的分解合成。

反思4:抽象是数学的特点之一,但不是数学所特有的。

逻辑学、哲学、文学、艺术中的“抽象”俯拾皆是。

浙江大学120周年校庆通告你读懂了多少?“庠序”“缉熙”“黾勉”不抽象吗?毕加索的画不抽象吗?概括性才是数学更本质的特点。

抽象是过程手段,是概括的基础,而概括才是最终的目的.理解数学概念、原理的本质不是理解抽象性,而是理解数学概念、原理的概括性或者说“通杀性”!反思5:“数学抽象”是一种提炼抽取数学对象的手段,把它作为一种数学思想恰当吗?请问国际上有哪一本专著、论文把数学抽象作为数学思想之一?从定义所阐述的内容看,“数学抽象”实际上就是数学家、数学教育家早已提出的“数学化”的部分内容。

1、核心素养之数学抽象.docx

1、核心素养之数学抽象.docx

核心素养之数学抽象数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养.主要包括:从数量与数量关系、图形与图形关系中抽彖岀数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征.【抽象素养标准解读】1、抽象的概念界定从思维的角度看,抽象是指从众多事物中抽取出共同的、本质的属性而舍弃个别的、非本质的属性.在特定的语境中,抽象有时是指“抽象的产物(结果)”,有时是指“抽象的过程”或“抽象的方法”.从数学的角度看,抽象是数学的特性之一.抽彖对于数学学科的建立与发展来说,都是不可或缺的.可以毫不夸张地说,没有抽象就没有数学的研究对象.同样,数学的推理、数学的应用,也都离不开抽象.2、抽象内涵分解数学抽象的内涵有符号意识、数感、几何直观和空间想象.(1)符号意识符号意识主要是指能够理解并且运符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性,是实现具象与抽象的和谐统一.建立符号意识有助于学生理解符号的使用,是数学表达和进行数学思考的重要形式.符号意识内涵可分解为四点:1、从具体情境中抽彖出数量关系和变化规律,并用符号来表示;2、理解符号所代表的数量关系和变化规律;3、会进行符号间的转换;4、能选择适当的程序和方法解决用符号所表示的问题.纵观教材我们对以找到实例进行内涵剖析:1、使学生理解符号所代表的数量关系和变化规律;在现实情境中学生能够理解符号表示的意义并能解释代数式的意义.数学符号的表达是多样化的,比如,关系式、表格、图像等都是表达数量关系和变化规律的符号工具,即使是同一数学对象也可釆用多种符号予以表达.用符号表示具体情境小的数量关系,也像变通语言一样,首先要引进基本字母.在数学语言中,像数字以及表示数字的字母,表示点的字母,运算符号,关系符号等,都是用数学语言刻画各种现实问题的基础.学生不仅要会“用”符号表征,述要“懂”符号表征,深入理解符号所表征对象的内涵与外延.这就需要在符号表征的基础上适当进行符号间的转换把数量关系进行表格、关系式、图像、语言等表征方法之间的转换,加深学生的符号理解.如“a—b=c"可以读作:(1)a比b大c, (2) b比a小c, (3) a减去b等c, (4) G与b的差是c ,反Z亦然.用符号语言更能体现出数学语言的简练、明确等特点,能更地满足数学思想的需要.2、引导学生认识从具体到抽象,联系生活实际,尽可能在情境中帮助学生理解符号以及表达式、关系式的意义,在解决实际问题中渗透符号意识.例如,教学《乘法交换律》概念后,出示()X 0 = () x (),你看这题可以怎样填?可以表不:2 X 5 = 5 X 2也可以表示:3 X 4= 4X3追问:如杲按这样想下去,这样的算式能填完吗?答案是不能的,有无数个.那么更好的方法吗,如:aXb=bXa,其中d、b表示任意数.当然,还可以写为:△Xo = oX/k, △、。

关于高中数学核心素养的认识

关于高中数学核心素养的认识

关于高中数学核心素养的认识1. 引言1.1 高中数学核心素养的重要性高中数学核心素养是指学生在学习数学过程中所应具备的基本素养和能力,是培养学生科学思维和解决问题能力的重要途径。

高中数学核心素养的提升不仅可以帮助学生更好地掌握数学知识,还可以培养学生的逻辑思维能力、创新精神和解决实际问题的能力。

高中数学核心素养在学生的学习和发展中具有重要的意义。

高中数学核心素养可以帮助学生建立坚实的数学基础,为他们未来的学习和职业发展打下良好的基础。

通过培养高中数学核心素养,学生可以更好地理解数学概念和原理,提高数学运算能力,增强逻辑推理能力,从而更好地应对日常的学习和工作中的数学问题。

高中数学核心素养的重要性体现在提高学生的学习能力和解决问题能力的也为他们未来的发展打下坚实的基础。

高中数学核心素养的培养不仅对学生自身的发展具有重要意义,也是教育工作中不可忽视的重要任务。

【2000字】2. 正文2.1 高中数学核心素养的内涵1. 数学基础知识:高中数学核心素养要求学生掌握扎实的数学基础知识,包括数学概念、定理、公式等,能够运用这些知识解决实际问题。

2. 数学思维能力:高中数学核心素养还要求学生具备良好的数学思维能力,包括逻辑推理能力、独立思考能力、问题解决能力等,能够灵活运用数学方法解决复杂的问题。

3. 数学模型建立能力:高中数学核心素养要求学生能够灵活运用数学工具建立数学模型,能够对实际问题进行数学建模,并通过数学方法进行分析和求解。

4. 数学表达能力:高中数学核心素养还要求学生能够准确清晰地用数学语言描述问题、分析问题、解决问题,能够准确表达数学思想和数学推理过程。

高中数学核心素养不仅包括对数学知识和方法的掌握,还包括对数学思维和创新能力的培养,是学生综合素质的重要组成部分。

通过培养和提升高中数学核心素养,可以帮助学生更好地应对未来的学习和工作挑战,提高综合竞争力。

2.2 高中数学核心素养的培养途径高中数学核心素养的培养途径包括多方面的方法和策略。

数学核心素养的理解与思考

数学核心素养的理解与思考

数学核心素养的理解与思考作者:翟天明来源:《学校教育研究》2021年第03期核心素养是育人价值的集中体现,是通过学习而逐步形成的关键能力、必备品格与价值观念。

数学核心素养是数学课程目标的集中体现,是在数学学习的过程中逐步形成和发展的,是适应个人终身发展和社会发展需要的具有数学基本特征的思维品质与关键能力以及情感、态度与价值观的综合体现,是在数学学习和应用的过程中逐步形成和发展的。

数学核心素养是落实课程目标的重要途径。

数学核心素养包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学核心素养既相对独立、又相互交融,是一个有机的整体。

一、对数学核心素养的理解1.数学抽象数学抽象是指舍去事物的一切物理属性,得到数学研究对象的素养。

数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系。

通过高中数学课程的学习,学生能在情境中抽象出数学概念、命题、方法和体系,积累从具体到抽象的活动经验;养成在日常生活和实践中一般性思考问题的习惯,把握事物的本质,以简驭繁;运用数学抽象的思维方式思考并解决问题。

2.逻辑推理逻辑推理是指从一些事实和命题出发,依据规则推出其他命题的素养。

逻辑推理主要表现为:掌握推理基本形式和规则,发现问题和提出命题,探索和表述论证过程,理解命题体系,有逻辑地表达与交流。

通过高中数学课程的学习,学生能提出和论证数学命题,掌握逻辑推理的基本形式,学会有逻辑地思考问题;发现和提出数学命题;探索和表述论证过程;能够在比较复杂的情境中把握事物之间的关联,把握事物发展的脉络,把握知识结构,形成重论据、有条理、合乎逻辑的思维品质和理性精神,增强交流能力。

3.数学建模数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。

数学建模主要表现为:发现和提出问题,建立和求解模型,检验和完善模型,分析和解决问题。

通过高中数学课程的学习,学生能有意识地用数学语言表达现实世界,发现和提出问题,感悟数学与现实之间的关联;学会用数学模型解决实际问题,积累数学实践的经验;认识数学模型在科学、社会、工程技术诸多领域的作用,提升应用能力实践能力,增强创新意识和科学精神。

数学抽象素养及其培养

数学抽象素养及其培养

中学数学核心素养是指学生能够用数学的眼光来观察世界,发现、分析和解决问题的内在素养,它由数学知识与技能、数学思想与方法、数学能力与观念等组成。

2017版修订的《普通高中数学课程标准》明确提出了六大数学核心素养,即数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析.其中,数学抽象是数学核心素养的第一要素,是数学学习和数学思维能力发展的基础。

1.培养数学抽象的意义数学抽象【1】是指舍去事物的一切物理属性,得到数学研究对象的思维过程。

数学抽象主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征。

数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。

数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系。

数学抽象能力的提高,能促使学生更好地理解数学概念、命题、方法和体系,有利于进一步去认识、理解、把握事物的数学本质。

学生抽象概括能力越高,在学习中的迁移能力就越强,对新的知识的理解和掌握也就越快,他们的逻辑思维水平才能真正提高。

2.课堂教学如何培养学生的数学抽象概括能力2.1.概念教学要从实例出发,培养观察、发现与归纳能力概念是思维的基本单位,具有高度的抽象性,是事物的本质属性在人脑中的反映,它是在抽象的基础上形成的思维形式。

概念的形成过程就是对概念进行数学抽象、概括的过程。

正确理解和掌握数学概念是形成抽象思维能力的基础。

数学概念是培养学生抽象概括能力的极好材料。

数学概念都来源于生活,在概念教学时,教师要重视联系实际,让数学概念的有充分的现实意义。

教师应提供给学生丰富的、典型的、恰当的实例,引导学生用自己的头脑亲自对这些实例进行分析、综合、比较、抽象和概括等一系列的思维活动,去揭示概念的内涵及概念间的相互关系,鼓励学生去感受、发现、猜想、探索、概括事物的本质属性或规律,抓住它们的实质和共同特征,并尽可能让学生自己来归纳总结,提炼和完善概念。

数学核心素养“数学抽象”的认识及思考

数学核心素养“数学抽象”的认识及思考
三、形成数学方法、思想、模型 例如,中点坐标公式(简单、以简驭繁、大概 念、统摄性)
1、函数图像的对称性(核心是中点的坐标公式):
①若函数 y f (x) 满足 f (x) f (2 x) ,则函数 y f (x) 图像关于 x0 1对称;
②若函数 y f (x) 满足 f (x) f (2 x),则函数 y f (x) 图像关于(1,0) 对称;
2
积 S 1 lr (其中 l 是弧长, r 是半径),其中,三角形的底 a 和
2
高 h 是垂直关系,扇形的弧 l 和半径 r 也具有“垂直”关系。 若将扇形的弧 l 和半径 r 类比地看成三角形的“底”和“高”, 则两者结论是一致的。也就是说,数学对象变化而关系相似,
则结论具有统一性。进而,我们可以利用数学知识的这种联
数学抽象(内涵、价值、表现、水平)
数学抽象是指通过对数量关系与空间形式的抽 象,得到数学研究对象的素养。主要包括:从数量 与数量关系、图形与图形关系中抽象出数学概念及 概念之间的关系,从事物的具体背景中抽象出一般 规律和结构,并用数学语言予以表征。
数学抽象是数学的基本思想,是形成理性思维 的重要基础,反映了数学的本质特征,贯穿在数学 产生、发展、应用的过程中。数学抽象使得数学成 为高度概括、表达准确、结论一般、有序多级的系 统。
对数学核心素养“数学抽 象”的认识及思考
本次课标修订(2017年版)是对2014 年版的继承和发展,在2014年版课标基础 上,凝练提出了本学科的6个核心素养,即 数学抽象、逻辑推理、数学建模、直观想 象、数学运算和数据分析。如何理解和认 识这6个核心素养,结合昨天鲍教授和章建 跃主编提出的要有具体样例支撑、要注意 数学学科核心素养与具体教学内容的关联 的思想(显性化),以核心素养“数学抽 象”为例,谈一点我个人的粗浅认识。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对高中数学核心素养——数学抽象的解读
发表时间:2019-06-24T11:19:18.953Z 来源:《成功》2019年第2期作者:王秀玲
[导读] 随着新课改的大力推进,人们的教育观念从只注重成绩逐步转向关注学生核心素养的养成,国民核心素养的培育毫无疑问是至高无上的课题,对高中生而言,数学核心素养是绕不开的话题,而数学抽象是排在所有数学核心素养之首,是其他数学核心素养的基础,正如史宁中教授所说:数学在本质上研究的是抽象的东西,数学的发展所依赖的最重要的基本思想也是抽象的。

那么我们如何理解数学抽象呢?
黄梅理工学校湖北黄冈 435500
随着新课改的大力推进,人们的教育观念从只注重成绩逐步转向关注学生核心素养的养成,国民核心素养的培育毫无疑问是至高无上的课题,对高中生而言,数学核心素养是绕不开的话题,而数学抽象是排在所有数学核心素养之首,是其他数学核心素养的基础,正如史宁中教授所说:数学在本质上研究的是抽象的东西,数学的发展所依赖的最重要的基本思想也是抽象的。

那么我们如何理解数学抽象呢?
一、数学抽象的定义
数学抽象是指通过对数量关系与空间形式的抽象,舍去事物的一切物理属性,得到数学研究对象的素养。

从数学抽象的内涵看,数学抽象主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学符号或者数学术语予以表征。

注意这里舍去的“物理属性”不是物理科学和物理理论,而是现实的物体的特殊性质。

舍去的是它们的不同点,而得到的是它们的共同点,其中关于数量关系和空间形式的共同点就是数学研究对象——数学抽象。

另外某些共同点是物理或者其他科学的研究对象,就是物理学或其它科学的抽象。

从数学抽象的学科价值看,数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。

它具有把具体问题用简洁的数学语言符号表示、用一般的方法来解决复杂的数学文字、变表面无关的东西为奇妙的数学结构和体系。

“抽象”一词几乎成为了数学的代名词,数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。

从数学抽象的教育价值看,通过数学抽象核心素养的培养,经历从具体到抽象的过程,能够感悟数学概念、命题、方法和体系的形成;能通过抽象、概括去认识、理解、把握事物的数学本质,逐渐养成一般性思考问题的习惯;能够在其他学科的学习中主动运用数学抽象的思维方式解决问题。

二、数学抽象的特点
(一)数学抽象具有抽象性特点
数学是一门研究度量、形式、图形和变化的学科,虽说它的研究对象脱不开现实原型,但可以绕开具体内容,理性地抽象出思维结果;另外我们可以用公理化的方法统一数学研究的各个领域。

(二)数学抽象具有合理性与可操作性
数学抽象的合理性表现为重点抽取对象的数量关系或空间形式,同时还表现为相对的确定性。

以概率为例,我们从实际问题中抽象出各概率特点,根据对象是离散的还是连续的特点,将概率划分为古典概率与几何概率等概率模型,分别推出得出相应的判定与求解策略,而这些结论相互补充正好构成了系统而又完备的知识体系,有利于学生的理解与掌握。

我们运用公理化的思想,借助合理性的数学抽象可以建立起各种数学符号体系,并借这个科学思维的智力工具,通过某些可操作的教学行为,使得学生有效地建立起形式化、统一化且具有联系性、整体性的数学知识和思想方法体系,并在解决问题的过程中不断巩固、完善和发展这一体系。

这样加以规划、设计和培养数学抽象能力,可以使学生的数学学习形成良性循环。

(三)数学抽象具有层次性与可接受性
数学抽象由于抽象的对象(概念、模型、理论体系等)和过程的不同,数学抽象的发展体现出不同的层次性,正如概念的内涵与外延关系一样,越抽象概括性越强、应用性越广泛,反映人们抽象思维水平也就越高,但与之俱来的是学生接受知识的困难大大增加。

三、数学抽象水平的质量标准
依据新课标每个数学核心素养水平都是从情境与问题、知识与技能、思维与表达、交流与反思这四个方面来阐述,并且每一个数学学科核心素养划分为三个水平,数学抽象也划分为三个水平,也是从上述四个方面来说明:
水平一是高中毕业应当达到的要求,也是高中毕业的数学学业水平考试的命题依据;水平二是高考的要求,也是数学高考的命题依据;水平三是基于必修、选择性必修和选修课程的某些内容对数学学科核心素养的达成提出的要求,可以作为大学自主招生的参考。

四、高中阶段数学抽象的基础载体
通过解读数学核心素养可以看出,能力的培育必须要有相应的知识土壤,这就必须明了相应的素养知识与相应的的能力载体,这是提升数学核心素养的前提。

高中阶段数学抽象的基础载体主要体现在以下几个方面:集合;函数的概念与性质;三角函数;立体几何初步;概率;导数及其应用;空间向量与立体几何;平面解析几何。

五、数学抽象与其它数学核心素养的关系
最新的《普通高中数学课程标准(实验)》明确指出:数学核心素养是数学课程目标的集中体现,是在数学学习的过程中逐步形成的,是具有数学基本特征的、适应个人终身发展和社会发展需要的思维品质与关键能力。

高中阶段数学核心素养是六个:数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。

这些数学核心素养各具独立性,又相互补充、相互交融、相互促进,形成一个有机整体,在不同情境中整体发挥作用。

六、数学抽象的具体表现
数学是以数量关系和空间形式为主要研究对象,而数量关系和空间形式正好是从现实世界中抽象出来的,我们教学的终极目标恰恰是培养学生具有初步的抽象思维,而不是让学生的思维水平停留在形象直观阶段,我们每次学习的升华无一不是抽象的过程。

数学抽象的具体表现有以下几个方面:形成数学概念和规则;形成数学命题和模型;形成数学方法与思想;形成数学结构与体系。

总之,通过学习,我们可以培养学生的数学表征、抽象思考和数学理解能力,让学生能在问题中抽象出并理解数学概念、命题、方法
和体系,积累从具体到抽象的活动经验,形成合理的数学观,学会运用数学抽象的思维方式思考并解决问题。

相关文档
最新文档