高考数理化生公式用表
数理化公式

数理化公式
以下是一些常见的数理化公式:
数学公式:
1. 直线的斜率公式:y = mx + c, 其中m是斜率,c是常数。
2. 平方根:√x
3. 三角函数:sin(x), cos(x), tan(x)
4. e的指数函数:exp(x)
5. 对数函数:log(x)
6. 微积分:导数和积分的公式(如牛顿-莱布尼茨公式)物理公式:
1. 牛顿第二定律:F = ma,其中F是力,m是物体的质量,a是加速度。
2. 万有引力定律:F = G * (m1 * m2) / r^2,其中F是引力,m1和m2是两个物体的质量,r是它们之间的距离,
G是万有引力常数。
3. 动能公式:K = 1/2 * m * v^2,其中K是动能,m是物体的质量,v是物体的速度。
4. 速度公式:v = s/t,其中v是速度,s是位移,t是时间。
化学公式:
1. 摩尔质量:M = m/n,其中M是摩尔质量,m是物质
的质量,n是物质的摩尔数。
2. 摩尔浓度:M = n/V,其中M是摩尔浓度,n是溶质的摩尔数,V是溶液的体积。
3. 阿伏伽德罗常数:N = 6.02 * 10^23 mol^-1,表示1
摩尔物质中的粒子数。
4. 化学反应速率:rate = k[A]^\\alpha[B]^\\beta,其中rate是反应速率,k是速率常数,[A]和[B]是反应物的浓度,\\alpha和\\beta是反应物的反应级数。
这只是一小部分数理化公式,还有很多其他的公式,具体
取决于你关注的领域和具体的问题。
高中数理化生公式概念大全高中物理公式--高中物理

高中数理化生公式、规律概念大全二、高中物理公式一、质点的运动(1)------直线运动1)匀变速直线运动1.平均速度V平=s/t(定义式)2.有用推论Vt2-V o2=2as3.中间时刻速度Vt/2=V平=(Vt+V o)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(V o2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-V o)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s="3.6km/h。
"注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a="(Vt-Vo)/t只是量度式,不是决定式;"(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t 图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动1.初速度Vo=02.末速度Vt=gt3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动1.位移s=Vot-gt2/22.末速度Vt=Vo-gt (g="9.8m/s2≈10m/s2)"3.有用推论Vt2-Vo2=-2gs4.上升最大高度Hm=Vo2/2g(抛出点算起)5.往返时间t=2Vo/g (从抛出落回原位置的时间)注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;(3)上升与下落过程具有对称性,如在同点速度等值反向等。
高中数理化生公式定理大全(绝对精品)2010.11.38

高中数理化生公式定理大全(绝对精品)2010.11.38高中数理化生公式定理大全数学物理化学生物,门门功课就有底!祝考试顺利!--编者20XX年11.1物理化学数学生物只是个人编排水平有限,他山之石可以攻玉!高中数理化生公式定理大全物理解题大技巧高中物理备考与解题策略一、构建物理模型等效类比解题随着高考改革的深入,新高考更加突出对考生应用能力及创新能力的考查,大量实践应用型、信息给予型、估算型命题频繁出现于卷面,由此,如何于实际情景中构建物理模型借助物理规律解决实际问题则成了一个重要环节。
1.案例探究例1:如图1所示,在光滑的水平面上静止着两小车A和B,在A车上固定着强磁铁,总质量为5 kg,B车上固定着一个闭合的螺线管.B车的总质量为10 kg.现给B车一个水平向左的100 Ns瞬间冲量,若两车在运动过程中不发生直接碰撞,则相互作用过程中产生的热能是多少?图1命题意图:以动量守恒定律、能的转化守恒定律、楞次定律等知识点为依托,考查分析、推理能力,等效类比模型转换的知识迁移能力.错解分析:通过类比等效的思维方法将该碰撞等效为子弹击木块(未穿出)的物理模型,是切入的关键,也是考生思路受阻的障碍点.解题方法与技巧:由于感应电流产生的磁场总是阻碍导体和磁场间相对运动,A、B两车之间就产生排斥力,以A、B两车为研究对象,它们所受合外力为零.动量守恒,当A、B车速度相等时,两车相互作用结束,据以上分析可得:I=mBvB=(mA+mB)v,vB=I100= m/s=10 m/s, mB10 v=100=6.7 m/s (mA mB)从B车运动到两车相对静止过程,系统减少的机械能转化成电能,电能通过电阻发热,转化为焦耳热.根据能量转化与守恒:高中数理化生公式定理大全11mBv2- (mA+mB)v2 22***** =×10×102-×15×()J=166.7 J 2215Q=2.解题策略与思路理想化模型就是为便于对实际物理问题进行研究而建立的高度抽象的理想客体.高考命题以能力立意,而能力立意又常以问题立意为切入点,千变万化的物理命题都是根据一定的物理模型,结合某些物理关系,给出一定的条件,提出需要求的物理量的.而我们解题的过程,就是将题目隐含的物理模型还原,求结果的过程.运用物理模型解题的基本程序:(1)通过审题,摄取题目信息.如:物理现象、物理事实、物理情景、物理状态、物理过程等.(2)弄清题给信息的诸因素中什么是起主要因素.(3)在寻找与已有信息(某种知识、方法、模型)的相似、相近或联系,通过类比联想或抽象概括,或逻辑推理,或原型启发,建立起新的物理模型,将新情景问题“难题”转化为常规命题.(4)选择相关的物理规律求解.二、实际应用型命题求解策略实际应用型命题,常以日常生活与现代科技应用为背景,要求学生对试题所展示的实际情景进行分析,判断,弄清物理情景,抽象出物理模型.然后运用相应的物理知识得出正确的结论.其特点为选材灵活、形态复杂、立意新颖.对考生的理解能力,推理能力,综合分析应用能力,尤其是从背景材料中抽象、概括构建物理模型的能力要求较高,是应考的难点.锦囊妙计1.案例探究例2:侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球的半径为R,地面处的重力加速度为g,地球自转的周期为T.命题意图:考查考生综合分析能力、空间想象能力及实际应用能力.高中数理化生公式定理大全错解分析:考生没能对整个物理情景深入分析,不能从极地卫星绕地球运行与地球自转的关联关系中找出θ=2πT1,从而使解题受阻.T解题方法与技巧:将极地侦察卫星看作质点(模型),其运动看作匀速圆周运动(模型),设其周期为T1,GMm4 2r则有:=m2 ① 2rT1地面处重力加速度为g,有GMm0R2=m0g ②2 由①②得到卫星的周期:T1=Rr3 其中:r=h+R g地球自转周期为T,则卫星绕行一周的过程中,地球自转转过的角度为:θ=2πT1 T卫星每经赤道上空时,摄像机应至少拍摄赤道圆周的弧长为T14 2s=θR=2πR=TT2.高考走势(h R)3 g实际应用型命题不仅能考查考生分析问题和解决实际问题的能力,而且能检验考生的潜能和素质,有较好的区分度,有利于选拔人才.近几年高考题加大了对理论联系实际的考查,突出“学以致用”,充分体现了由知识立意向能力立意转变的高考命题方向.3.解题策略与思路解决实际应用型题目的过程,实质是对复杂的实际问题的本质因素(如运动的实际物体,问题的条件,物体的运动过程等)加以抽象、概括,通过纯化简化,构建相关物理模型,依相应物理规律求解并还原为实际问题终结答案的过程.其解题思路为:首先,摄取背景信息,构建物理模型.实际题目中,错综的信息材料包含着复杂的物理因素,要求考生在获取信息的感性认识基础上,对题目信息加工提炼,通过抽象、概括、类比联想、启发迁移等创造性的思维活动,构建出相关的模型(如对象模型、条件模型和过程高中数理化生公式定理大全模型等).其次,要弄清实际问题所蕴含的物理情景,挖掘实际问题中隐含的物理条件,化解物理过程层次,探明物理过程的中间状态,理顺物理过程中诸因素的相互依存,制约的关系,寻求物理过程所遵循的物理规律,据规律得出条件与结果间的关系方程,进而依常规步骤求解结果.三、物理解题中的数学应用数学作为工具学科,其思想、方法和知识始终渗透贯穿于整个物理学习和研究的过程中,为物理概念、定律的表述提供简洁、精确的数学语言,为学生进行抽象思维和逻辑推理提供有效方法.为物理学的数量分析和计算提供有力工具.中学物理教学大纲对学生应用数学工具解决物理问题的能力作出了明确要求.1.案例探究例3:一弹性小球自h0=5m高处自由下落,当它与水平地面每碰撞一次后,速度减小到碰前的7/9,不计每次碰撞时间,计算小球从开始下落到停止运动所经过的路程和时间.命题意图:考查综合分析、归纳推理能力.错解分析:考生不能通过对开始的几个重复的物理过程的分析,归纳出位移和时间变化的通项公式致使无法对数列求和得出答案.解题方法与技巧:(数列法)设小球第一次落地时速度为v0,则:v0=2gh0=10m/s那么第二,第三,,第n+1次落地速度分别为:v1=7727v0,v2=()v0,,vn=()nv0999小球开始下落到第一次与地相碰经过的路程为h0=5m,小球第一次与地相碰到第二次与地相碰经过的路程是:7()2vv02=10×(7)2L1=2×1=2×92g2g2小球第二次与地相碰到第三次与地相碰经过的路程为L2,v74L2=2×2=10×()92g2高中数理化生公式定理大全由数学归纳法可知,小球第n次到第n+1次与地相碰经过的路程为Ln:Ln=10×(72n)9故整个过程总路程s为:s=h+(L1+L2++Ln)=5+10[(727472)+()++()n]999可以看出括号内的和为无穷等比数列的和.由等比无穷递减数列公式Sn=a1得:1 q7()2s=5+10×9 m=20.3 m 721 ()9小球从开始下落到第一次与地面相碰经过时间:t0=2h0=1sg0小球第一次与地相碰到第二次与地相碰经过的时间为:t1=2×v17=2×s9g7n)s9同理可得:tn=2×(t=t0+t1+t2++tn=1+2×[(7727)+()++()n]s9997=[1+2×9]s=(1+7)s=8s.71 92.解题策略与思路(1).高考命题特点高考物理试题的解答离不开数学知识和方法的应用,借助物理知识渗透考查数学能力是高考命题的永恒主题.可以说任何物理试题的求解过程实质上是一个将物理问题转化为数学问题经过求解再次还原为物理结论的过程.(2).数学知识与方法物理解题运用的数学方法通常包括方程(组)法、比例法、数列法、函数法、几何(图形辅高中数理化生公式定理大全助)法、图象法、微元法等.1.方程法物理习题中,方程组是由描述物理情景中的物理概念,物理基本规律,各种物理量间数值关系,时间关系,空间关系的各种数学关系方程组成的.列方程组解题的步骤①弄清研究对象,理清物理过程和状态,建立物理模型.②按照物理情境中物理现象发生的先后顺序,建立物理概念方程,形成方程组骨架.③据具体题目的要求以及各种条件,分析各物理概念方程之间、物理量之间的关系,建立条件方程,使方程组成完整的整体.④对方程求解,并据物理意义对结果作出表述或检验.2.比例法比例计算法可以避开与解题无关的量,直接列出已知和未知的比例式进行计算,使解题过程大为简化.应用比例法解物理题,要讨论物理公式中变量之间的比例关系,清楚公式的物理意义,每个量在公式中的作用,所要讨论的比例关系是否成立.同时要注意以下几点:①比例条件是否满足:物理过程中的变量往往有多个.讨论某两个量比例关系时要注意只有其他量为常量时才能成比例.②比例是否符合物理意义:不能仅从数学关系来看物理公式中各量的比例关系,要注意每个物理量的意义(例:不能据R=U认定为电阻与电压成正比).I③比例是否存在:讨论某公式中两个量的比例关系时,要注意其他量是否能认为是不U2变量,如果该条件不成立,比例也不能成立.(例在串联电路中,不能认为P=中,RP与R成反比,因为R变化的同时,U随之变化而并非常量)3.数列法凡涉及数列求解的物理问题具有多过程、重复性的共同特点,但每一个重复过程均不是原来的完全重复,是一种变化了的重复,随着物理过程的重复,某些物理量逐步发生着“前后有联系的变化”.该类问题求解的基本思路为:①逐个分析开始的几个物理过程。
高考数理化公式大全

a 2R sin A , b 2R sin B , c 2R sin C (把边转化为角)
sin A a b c , sin B , sin C (把角转化成边) 2R 2R 2R
②余弦定理: cos
夹边 2 夹边 2 - 对边 2 2夹边 夹边
1 1 1 ab sin C bc sin A ac sin B 2 2 2
a
7.函数的零点:① y f ( x) 的零点指 f ( x) 0
1
② y f ( x) 在 (a, b) 内有零点;则 f (a) f (b) 0
三、三角函数 ①计算: sin
2
cos 2 1 ;
sin tan cos
②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式: sin( ) sin cos cos sin
Ax0 By0 C A2 B 2
两点间距离公式 d
( x1 x2 ) 2 ( y1 y2 ) 2
两条平行直线间的距离 d
C1 C2 A2 B 2
( 5 )直线恒过定点:(记题型) ( 6 )直线与坐标围成三角形面积 S ( 7 )求两条直线的交点:联立方程组 ( 8 )点关于直线对称:图形
tan(2 )
⑤特殊角
2 tan ; 1 tan 2
00
sin
0
1
300 1 2
450
600
900
1 0 不 存在
120 0
135 0
cos
tan
0
3 2 3 3
2 2 2 2
1
3 2 1 2
3
高中数理化公式大全

高中数理化公式大全数学公式:1.二项式定理:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+...+C(n,n)a^0b^n2. 三角函数的关系式:sin(a + b) = sin(a)cos(b) +cos(a)sin(b), cos(a + b) = cos(a)cos(b) - sin(a)sin(b), tan(a +b) = (tan(a) + tan(b))/(1 - tan(a)tan(b))3. 对数函数的性质:log(ab) = log(a) + log(b), log(a^n) = nlog(a), log(1/a) = -log(a)4.圆的周长和面积:C=2πr,A=πr^25. 三角形的边长和面积:a^2 = b^2 + c^2 - 2bccosA, A =(1/2)bh6.角度和弧度的转换:1弧度=180/π度,1度=π/180弧度7.等差数列通项公式:an = a1 + (n-1)d8.等比数列通项公式:an = a1 * r^(n-1)物理公式:1.牛顿第一定律:物体仅在外力作用下才会改变其运动状态2. 牛顿第二定律:F = ma,力的大小等于质量乘以加速度3.牛顿第三定律:作用力与反作用力大小相等、方向相反、作用在不同的物体上4.动能定理:W=ΔK,功等于动能的增量5.万有引力定律:F=G(m1m2/r^2),两个物体间的引力等于G乘以两物体质量的乘积除以距离的平方6.电流定律:I=Q/t,电流等于电量除以时间7.电阻定律:U=IR,电压等于电流乘以电阻8.热传导定律:Q=kAtΔT/L,导热量等于热导率乘以传热面积乘以传热时间乘以温度差除以传热长度化学公式:1.摩尔质量公式:M=m/n,摩尔质量等于质量除以物质的摩尔数2.平衡常数公式:K=[C]^c[D]^d/[A]^a[B]^b,平衡常数等于反应物浓度的乘积除以生成物浓度的乘积3.摩尔浓度公式:C=n/V4.离子平衡公式:Kw=[H+][OH-],离子平衡常数等于氢离子浓度乘以氢氧根离子浓度5. 溶解度积公式:Ksp = [A+][B-],溶解度积常数等于阳离子浓度乘以阴离子浓度6.核反应速率公式:r=k[N]^a,核反应速率等于速率常数乘以核素浓度的幂次这些公式只是数理化领域的一部分,数学、物理、化学的公式非常庞大,但以上公式可以帮助高中学生加深对数理化知识的理解。
高中数理化生知识重要公式汇总!

高中数理化生知识重要公式汇总!
好多同学最近给学长留言,说自己的数理化成绩不是太好,每次考试都拖后腿,经常不及格。
还有一些还女生说,理科班都是男生比较多,女生读理科是不是没什么天赋啊!今天学长师给大家分析分析原因,希望对各位同学能点帮助!
在最后冲刺阶段,不要妄想掌握个什么习惯,或者什么方法就能突破理科,理科突破的要点就是多做题,背公式!公式写上就给分的学长这里专门整理高中数理化生的公式及知识点,对同学的学习肯定有所帮助!
资料真的是太长,这里只是部分,同学家长可以私信学长领取,完全免费,可以放心,学长也是高考过来人,想帮助学弟学妹走出学习的迷局!
打开今日头条,查看更多图片。
数学有理化常用公式

数学有理化常用公式1.平方差公式:a^2-b^2=(a+b)(a-b)2.二次平方差公式:a^2 + 2ab + b^2 = (a+b)^23.三次立方和差公式:a^3 + b^3 = (a+b)(a^2 - ab + b^2)a^3 - b^3 = (a-b)(a^2 + ab + b^2)4.方差和平方公式:a^4-b^4=(a^2+b^2)(a^2-b^2)5.前n次方和公式:a^n - b^n = (a-b)(a^(n-1) + a^(n-2)b + a^(n-3)b^2 + ... + ab^(n-2) + b^(n-1))6.一元二次方程求根公式:对于一元二次方程ax^2 + bx + c = 0,其求根公式为:x = (-b±√(b^2-4ac))/(2a)7.四则运算有理化:(a/b) ± (c/d) = (ad±bc)/(bd)(a/b) × (c/d) = (ac)/(bd)(a/b) ÷ (c/d) = (ad)/(bc)8.平方根有理化:√(a/b)=√(a)/√(b)9.欧拉公式:对于一个有向图n-m+f=210.相关系数公式:相关系数r的公式为:r = (Σ((X_i - X_mean)*(Y_i - Y_mean))) / (sqrt(Σ(X_i -X_mean)^2) * sqrt(Σ(Y_i - Y_mean)^2))11.排列组合公式:排列公式为:A(n,m)=n!/(n-m)!组合公式为:C(n,m)=n!/(m!(n-m)!)以上是数学有理化常用的一些公式,它们在解决数学问题时经常被使用。
在实际应用中,根据具体情况选择适当的公式有助于简化计算过程。
高中数理化生公式大全

高中数理化公式大全+总复习目录数学公式:P1-20页物理公式:P21-27页化学公式:P28-35页生物公式:P36-40页数学总复习:P41-54页物理总复习:P61-98页化学总复习:P99-132页生物总复习:133-224页高中的数学公式定理大全三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosα t an(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=co sαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+s inαsinβtanα+tanβtan(α+β)=————————1-tanα ·tanβtanα-tanβtan(α-β)=————————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+ta n2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2sin———·cos———2 2α+β α-βsinα-sinβ=2cos———·sin———2 2α+β α-βcosα+cosβ=2cos———·cos———2 2α+β α-βcosα-cosβ=-2sin———·sin———2 21sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=-[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式集合、函数集合简单逻辑任一x∈A x∈B,记作A BA B,B A A=BA B={x|x∈A,且x∈B}A B={x|x∈A,或x∈B}card(A B)=card(A)+card(B)-card(A B)(1)命题原命题若p则q逆命题若q则p否命题若 p则 q逆否命题若 q,则 p(2)四种命题的关系(3)A B,A是B成立的充分条件B A,A是B成立的必要条件A B,A是B成立的充要条件函数的性质指数和对数(1)定义域、值域、对应法则(2)单调性对于任意x1,x2∈D若x1<x2 f(x1)<f(x2),称f(x)在D上是增函数若x1<x2 f(x1)>f(x2),称f(x)在D上是减函数(3)奇偶性对于函数f(x)的定义域内的任一x,若f(-x)=f(x),称f(x)是偶函数若f(-x)=-f(x),称f(x)是奇函数(4)周期性对于函数f(x)的定义域内的任一x,若存在常数T,使得f(x+T)=f(x),则称f(x)是周期函数(1)分数指数幂正分数指数幂的意义是负分数指数幂的意义是(2)对数的性质和运算法则loga(MN)=logaM+logaNlogaMn=nlogaM(n∈R)指数函数对数函数(1)y=ax(a>0,a≠1)叫指数函数(2)x∈R,y>0图象经过(0,1)a>1时,x>0,y>1;x<0,0<y<10<a<1时,x>0,0<y<1;x<0,y>1a> 1时,y=ax是增函数0<a<1时,y=ax是减函数(1)y=logax(a>0,a≠1)叫对数函数(2)x>0,y∈R图象经过(1,0)a>1时,x>1,y>0;0<x<1,y<00<a<1时,x>1,y<0;0<x<1,y>0a>1时,y=logax是增函数0<a<1时,y=logax是减函数指数方程和对数方程基本型logaf(x)=b f(x)=ab(a>0,a≠1)同底型logaf(x)=logag(x) f(x)=g(x)>0(a>0,a≠1)换元型 f(ax)=0或f (logax)=0数列数列的基本概念等差数列(1)数列的通项公式an=f(n)(2)数列的递推公式(3)数列的通项公式与前n项和的关系an+1-an=dan=a1+(n-1)da,A,b成等差 2A=a+bm+n=k+l am+an=ak+al等比数列常用求和公式an=a1qn_1a,G,b成等比 G2=abm+n=k+l aman=akal不等式不等式的基本性质重要不等式a>b b<aa>b,b>c a>ca>b a+c>b+ca+b>c a>c-ba>b,c>d a+c>b+da>b,c>0 ac>bca>b,c<0 ac<bca>b>0,c>d>0 ac<bda>b>0 dn>bn(n∈Z,n>1)a>b>0 >(n∈Z,n>1)(a-b)2≥0a,b∈R a2+b2≥2ab|a|-|b|≤|a±b|≤|a|+|b|证明不等式的基本方法比较法(1)要证明不等式a>b(或a<b),只需证明a-b>0(或a-b<0=即可(2)若b>0,要证a>b,只需证明,要证a<b,只需证明综合法综合法就是从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式(由因导果)的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单位符号 m kg s m/s m/s2 m/s2 m N N Pa
N·m kg·m/s
N·s rad/s
J J J J W Hz s m m
3
2.%热 学
物理量
符号
温度
T
热量
Q
比热容
c
熔化热
λ
汽化热
L
热值
q
3.%电磁学
物理量 电荷量 电场强度 电势 电势能 电势差(电压) 电动势 电流 电阻 电阻率 电功 电功率 磁通量 磁感应强度 电感系数 电容
p∨q
p或q
tanx
x 的正切
劭p
p 的否定;非 p
cotx
x 的余切
p圯q
p 推出 q
sin2x
sinx 的平方
p圳q p圯q 且 q圯p;p 等价于 q
A圳圳B 或 a
向量A圳圳B 或向量 a
坌x∈M, 对 每 一 个 属 于 M 的 p(x) x,p(x)成立
A圳圳B ( a
)
向 量 A圳圳B(a)的 模
通电
(12)2NaCl + 2H2O
2NaOH + H2↑+ Cl2↑
(13)NH3 + CO2 + H2O
NH4HCO3
NaCl + NH4HCO3 NaHCO3 + NH4Cl
2NaHCO3 △ Na2CO3 + H2O + CO2↑
(14)NaCl + NH3 + CO2 + H2O NaHCO3 ↓+ NH4Cl
速度(速率) 加速度
重力加速度 位移(路程)
力 重力 压强 力矩 动量 冲量 角速度
功 能 动能 势能 功率 频率 周期 振幅 波长
符号 l m t v a g x F G p M p I ω W E Ek Ep P f,ν T A λ
单位名称 米
千克 秒
米每秒 米每二次方秒 米每二次方秒
米 牛顿 牛顿 帕斯卡 牛顿米 千克米每秒 牛顿秒 弧度每秒 焦耳 焦耳 焦耳 焦耳 瓦特 赫兹 秒 米 米
(18)CaCl2 + Na2CO3 CaCO3↓+ 2NaCl
5
2. 氮
放电
(1)N2 + O2
2NO
(2)2NO + O2 2NO2
(3)N2
+
3H2
高温、高压 催化剂
2NH3
(4)NH3 + H2O
NH·3 H2O
(5)NH·3 H2O △ NH3↑+ H2O
(6)NH3 + HCl NH4Cl
A( l OH)3↓+ 3NaCl + 3CO2↑ A( l OH)3↓+ 3NaCl NaAlO2 + 2H2O + 3NaCl
8
(15)NaAlO2 + HCl + H2O A( l OH)3↓+ NaCl
(16)NaAlO2 + 4HCl AlCl3 + NaCl + 2H2O
(17)AlCl3 + 3NaAlO2 + 6H2O 4A( l OH)3↓+ 3NaCl
点燃
(1)4Al + 3O2
2Al2O3
高温
(2)2Al + Fe2O3
2Fe + Al2O3
(3)2Al + 6HCl 2AlCl3 + 3H2↑
(4)2Al + 2NaOH + 2H2O 2NaAlO2 + 3H2↑
电解
(5)2Al2O( 3 熔融) 冰晶石 4Al + 3O2↑
(6)Al2O3 + 6HCl 2AlCl3 + 3H2O (7)Al2O3 + 2NaOH 2NaAlO2 + H2O (8)2A( l OH)3 △ Al2O3 + 3H2O
(14)4HNO( 3 浓) + Cu Cu(NO3)2 + 2NO2↑+ 2H2O
(15)8HNO( 3 稀)+ 3Cu 3Cu(NO3)2 + 2NO↑+ 4H2O (16)NH4Cl △ NH3↑+ HCl↑ (17)NH4HCO3 △ NH3↑+ H2O↑+ CO2↑ (18)NH4NO3 + NaOH △ NaNO3 + H2O + NH3↑
6. 硅
(1)Si + O2 △ SiO2
(2)SiO2 + 4HF SiF4↑+2H2O
高温
(3)SiO2 + CaO
CaSiO3
(4)SiO2 + 2NaOH Na2SiO3 + H2O
高温
(5)SiO2 + Na2CO3
Na2SiO3 + CO2↑
高温
Hale Waihona Puke (6)SiO2 + CaCO3
CaSiO3 + CO2↑
一定条件
(6)CO + 2H2
CH3OH
催化剂
(7)2CO + 2NO
N2 + 2CO2
高温
(8)CaCO3
CaO + CO2↑
(9)CaCO3 + H2O + CO2 Ca(HCO3)2 (10)Ca(HCO3)2 △ CaCO3 + H2O + CO2↑ (11)Na2CO3 + H2O + CO2 2NaHCO3 (12)2NaHCO3 △ Na2CO3 + H2O + CO2↑
N* 或 N+ 正整数集
直线 a 与直线 b 相交 a∩b=A
于点 A
直线 a 与平面 琢 相交
Z
整数集
a∩琢=A
于点 A
Q
有理数集
二面角 琢- 棱为 AB(l),面为 琢, AB-茁(琢-l-茁) 茁 的二面角
R
实数集
k(l kAB)
直线 ( l AB)的斜率
1
符号
意义
符号
意义
A 事件 A 的对立事件 a⊥b
或长度
埚x0∈M, p(x0)
存在 M 中的元素 p(x0)成立
x0,使
0
零向量
Anm
从 n 个不同元素中取 出 m 个元素的排列数
e
单位向量
Cnm
从 n 个不同元素中取 出 m 个元素的组合数
a∥b 向量a, b平行(共线) n!
n 的阶乘
2
高中物理常用量及单位
1.%力 学
物理量 长度 质量 时间
lgx
以 10 为底 x 的 对数 (常用对数)
A 中子集 B 的补 AB 集或余集
lnx
以 e 为底 x 的对数 (自然对数)
[a,b]
R 中由 a 到 b 的 闭区间
( f x)
函数 f 在 x 的值
(a,b)
R 中由 a 到 b 的 开区间
f ( ′ x)或 y′
( f x)的导函数或 y 的 导函数
(8)Cl2 + 2NaBr 2NaCl + Br2
4. 镁
点燃
(1)2Mg + CO2 2MgO + C (2)Mg + 2H2O △ Mg(OH)2 + H2↑ (3)MgO + C 高温 Mg + CO↑
7
通电
(4)MgCl( 2 熔融) Mg + Cl2↑
(5)MgCl2 + Ca(OH)2 Mg(OH)2↓+ CaCl2 (6)Mg(HCO3)2 △ MgO + 2CO2↑+ H2O (7)MgCO3 + 2NaOH Mg(OH)2 + Na2CO3 5. 铝
高中数学常用符号表
符号
意义
符号
意义
∈
属于
C
复数集
埸
不属于
i
虚数单位,i2=-1
B哿A B 是 A 的子集
z,a+bi
复数 z,实部为 a,虚 部为 b 的复数
B芴A B 是 A 的真子集
z
复数 z 的共轭复数
A∪B A 与 B 的并集
以 a 为底 x 的对数 logax (a>0,a≠1)
A∩B A 与 B 的交集
(13)CaCO3 + 2HCl CaCl2 + H2O + CO2↑
(14)Na2CO3 + 2HCl 2NaCl + H2O + CO2↑
(15)NaHCO3 + HCl NaCl + H2O + CO2↑
(16)NaHCO3 + NaOH Na2CO3 + H2O
(17)Ca(HCO3)2 + Ca(OH)2 2CaCO3↓+ 2H2O
符号 Q E U E U E I R ρ W P Ф B L C
单位名称 开尔文 焦耳
焦耳每千克开尔文 焦耳每千克 焦耳每千克 焦耳每千克
单位符号 K J
J( / kg·K) J/kg J/kg J/kg
单位名称 库仑
伏特每米 伏特 焦耳 伏特 伏特 安培 欧姆
欧姆米 焦耳 瓦特 韦伯
特斯拉 亨利 法拉
向量 a,b 垂直
P(A) 事件 A 发生的概率 a+b 向量 a 与 b 的和
在事件 A 发生的条 P(B A) 件下,事件 B 发生 a-b