电阻焊及各种焊机原理

合集下载

焊接机工作原理

焊接机工作原理

焊接机工作原理焊接机是一种常用于金属加工和制造行业的设备,它用于将金属零件连接在一起。

焊接机的工作原理涉及电磁学、热学和材料科学等多个领域,下面将详细介绍焊接机的工作原理。

1. 焊接机的基本原理焊接机的基本原理是利用电流通过工件产生热量,使工件表面温度升高到熔点以上,然后通过施加外力,使两个工件相互连接在一起。

焊接机可分为电弧焊机、气体保护焊机、电阻焊机等不同类型,但它们的基本原理都是相似的。

2. 电弧焊机的工作原理电弧焊机是最常见的一种焊接机。

它通过产生电弧来加热和熔化焊接材料。

电弧是由两个电极之间的电流通过空气或惰性气体产生的一种电火花。

电弧焊机的工作原理包括以下几个步骤:(1) 接通电源:将电弧焊机连接到电源,使电流流经电极。

(2) 电极接触工件:将电极接触到要焊接的工件上。

(3) 引弧:通过电极之间的间隙施加电压,产生电弧。

电弧产生的热量使工件表面熔化。

(4) 熔化焊材:将焊丝或焊条加热到熔点以上,使其熔化并与工件表面融合。

(5) 冷却固化:断开电源后,焊接区域冷却并固化,形成焊接接头。

3. 气体保护焊机的工作原理气体保护焊机是一种使用惰性气体或活性气体进行焊接的设备。

它的工作原理与电弧焊机类似,不同之处在于焊接过程中使用了保护气体来防止焊接区域氧化。

气体保护焊机的工作原理包括以下几个步骤:(1) 接通电源:将气体保护焊机连接到电源,使电流流经电极。

(2) 电极接触工件:将电极接触到要焊接的工件上。

(3) 引弧:通过电极之间的间隙施加电压,产生电弧。

电弧产生的热量使工件表面熔化。

(4) 气体保护:在焊接过程中,通过喷射惰性气体或活性气体,形成一个保护气氛,防止焊接区域氧化。

(5) 熔化焊材:将焊丝或焊条加热到熔点以上,使其熔化并与工件表面融合。

(6) 冷却固化:断开电源后,焊接区域冷却并固化,形成焊接接头。

4. 电阻焊机的工作原理电阻焊机是一种利用电阻加热原理进行焊接的设备。

它通过在接触面上施加电流,产生热量来熔化焊接材料。

电阻焊原理和焊接工艺完整版

电阻焊原理和焊接工艺完整版

电阻焊原理和焊接工艺完整版电阻焊是指利用电流通过两个接触电极,通过电流在焊接接头上产生的热量,将两个焊接材料加热至熔化状态,然后冷却固化,实现连接的一种焊接方法。

电阻焊可以分为电阻点焊、电阻缝焊和电阻插焊等。

电阻焊的原理是利用焊接接点的电阻加热而焊接材料加热到熔化温度。

焊接接头形成一个电阻,通过焊机施加的电流通过接头,形成焊接接点的电阻加热。

当焊接接头内部电流通过产生的热量超过材料的熔点时,焊接材料开始熔化。

然后通过施加的压力使熔化的焊接材料接触,形成一体化连接。

焊接完成后,断开电流,焊接接头冷却固化,形成强固的连接。

电阻焊的焊接工艺可以从焊材选择、接触电阻、焊接时间、施加压力等多个方面进行控制。

首先,选择合适的焊材能够确保焊接接头的质量。

焊接材料应具备良好的导电性和可焊性。

其次,接触电阻是决定焊接热量的重要因素之一、焊接电极与工件的接触电阻越小,焊接热量就越大。

因此,要采取措施确保接触电阻的稳定和减小接触电阻。

然后,焊接时间是控制焊接热量的另一重要参数。

焊接时间应根据焊接材料的熔点来确定。

焊接时间过短会导致焊接不充分,焊接强度不够;焊接时间过长则容易热损伤焊接接头。

最后,施加的压力也是控制焊接质量的关键。

合适的压力能够保证熔化的焊接材料进一步接触,使焊接接头的凝固过程更加完善。

针对不同焊接材料及材料厚度,电阻焊还可以采用不同的焊接工艺。

例如,电阻点焊广泛应用于金属板材的连接,可以快速、高效地实现金属板材的焊接。

电阻点焊的工艺流程一般包括调整焊机参数、清洁焊接接头、固定焊接接头、施加电流和压力、焊接完成后的冷却和检测等步骤。

电阻点焊的优点是焊接速度快、接头强度高。

此外,电阻焊还有电阻缝焊和电阻插焊等。

总之,电阻焊是利用通过焊接接头的电流加热焊接材料,实现焊接的一种方法。

通过控制焊接材料的选择、接触电阻、焊接时间和施加压力等参数,可以实现高质量的焊接连接。

电阻焊涉及到的焊接工艺可以根据具体的焊接需求进行选择和设计。

电阻焊的原理

电阻焊的原理
它是最通用旳电极材料,广泛地用于点焊低碳钢、低合金钢、不 锈钢、高温合金、电导率低旳铜合金、以及镀层钢等。还合用于制造 轴、夹钳、台板、电极夹头、机臂等电阻焊机中多种导电构件。
第三类:导电较差,但强度(主要是高温强度)最佳,具有更高 旳力学性能,耐磨性好,如铬锌青铜、MЦ4合金、Mo、WCu、W。
合用于焊接强度及硬度较高旳不锈钢、高温合金等。
2)用预热脉冲提升金属旳塑性,使工件易于紧密贴合、预防飞 溅;
3)加大锻压力以压实熔核,预防产生裂纹或缩孔。
4)用回火或缓冷脉冲消除合金钢旳淬火组织,提升焊接点旳力 学性能,或在不加大锻压力旳条件下,预防裂纹和缩孔。
三. 实现焊接旳基本条件
1). 工件接触间一定旳接触电阻 : R 2). 接触电阻R上经过一定旳电流 : I 3) 接触电阻R上经过电流具有一定旳时间 : t 4). 工件上具有一定旳压力: P 5). 电极上具有一定旳冷却温度: T
4.电极压力 电极压力对两电极间总电阻R有明显旳影响,伴随电极压力旳增大,
R明显减小,而焊接电流增大旳幅度却不大,不能影响因R减小引起旳产 热降低。所以,焊点强度总伴随焊接压力增大而减小。处理旳方法是在 增大焊接压力旳同步,增大焊接电流,以弥补电阻减小旳影响,保持焊 接强度不变。电极压力过小,将引起飞溅,也会 使焊点强度降低。
反馈线圈
充电电路
半导晶体管组 电容组
电流分路器
电容储能焊接机
焊接电源
整流电路
脉冲变压器
焊接电极
充电电路
电容组
焊接电源
计数器
可控硅
焊接变压器
焊接头
六. 电阻热产生及其影响原因
电阻热 Q=IIRT 其中Q — 电阻点焊能量 I — 焊接电流 R — 电焊过程中旳动态电阻 T — 焊接时间

电阻焊的原理和方法

电阻焊的原理和方法

电阻焊的原理和方法电阻焊是一种常用的金属焊接方法,它利用电流通过金属工件产生的热量来实现焊接。

本文将介绍电阻焊的基本原理和方法。

一、电阻焊的原理电阻焊利用电流通过金属工件时产生的电阻热来实现金属焊接。

当电流通过金属工件时,由于金属的电阻率较大,电流通过时会产生热量。

这种热量可以使金属材料局部加热,达到焊接的目的。

二、电阻焊的方法1. 电阻焊的设备电阻焊通常使用电阻焊机进行焊接。

电阻焊机主要由电源、电极和控制系统组成。

电源提供所需的电流,电极接触金属工件并传递电流,控制系统用于调节电流和焊接时间。

2. 准备工作在进行电阻焊前,需要进行准备工作。

首先,将要焊接的金属工件清洁干净,以确保焊接的质量。

其次,根据所需的焊接参数设置电阻焊机,包括电流大小、焊接时间等。

3. 焊接过程焊接过程中,将电极放置在金属工件的接触面上,并施加一定的压力。

然后,通电使电流通过工件,产生热量。

热量使金属材料局部加热,达到焊接的温度。

当达到设定的焊接时间后,断开电流,让焊点冷却。

最后,移除电极,完成焊接。

4. 优点和应用电阻焊具有焊接速度快、焊接质量高、焊点牢固等优点。

它广泛应用于汽车制造、航空航天、电子设备等行业中的金属焊接。

三、注意事项1. 选择合适的电流和焊接时间,以确保焊接质量和安全性。

2. 确保金属工件表面清洁,以免影响焊接质量。

3. 在进行电阻焊时,应戴好防护设备,避免触电和烫伤等事故。

总结:电阻焊是一种常用的金属焊接方法,它利用电流通过金属工件产生的热量来实现焊接。

通过电阻焊的设备、准备工作和焊接过程的介绍,我们了解到了电阻焊的基本原理和方法。

电阻焊具有焊接速度快、焊接质量高的优点,并广泛应用于各个行业中的金属焊接。

在进行电阻焊时,需要注意合适的参数选择和安全防护,以确保焊接质量和人身安全。

通过学习和掌握电阻焊的原理和方法,我们可以更好地应用于实际生产中,提高焊接效率和质量。

电阻焊的工作原理

电阻焊的工作原理

电阻焊的工作原理
电阻焊是利用电阻加热原理进行焊接的一种方法。

具体工作原理如下:
1. 电流通过焊接部件:在电阻焊中,焊接部件通常由两个金属工件组成,它们需要被连接在一起。

电流会通过这两个工件中的一个或者两个。

2. 电阻发热:当电流通过焊接部件时,由于工件的电阻会产生一定的电阻热。

这是由欧姆定律决定的,其公式为 V=I*R,
其中 V 是电压,I 是电流,R 是电阻。

较高的电流或较高的电
阻将导致较高的发热量。

3. 转化为热能:电阻发热后,会将电能转化为热能,使焊接部件升温。

升温过程中,焊接部件的温度逐渐升高,直至达到金属熔点。

4. 压力施加:一旦焊接部件达到足够高的温度,需要施加一定的压力来确保焊接。

5. 金属溶合:当施加足够的压力后,金属在高温和高压下开始融化。

融化的金属将会通过浸渍或者烧结的方式将工件连接在一起。

6. 固化:待焊点冷却后,溶解的金属重新凝固,焊点变得坚固。

总的来说,电阻焊利用电流通过焊接部件产生的电阻热进行焊
接,通过施加压力使金属融化并连接在一起,最后冷却形成坚固的焊点。

电阻焊的焊接方法

电阻焊的焊接方法

电阻焊的焊接方法电阻焊是一种常见的焊接方法,它是利用电阻加热的原理,将两个金属表面加热至熔点,使它们融合在一起。

电阻焊具有焊接速度快、焊接质量高等优点,被广泛应用于各种金属制品的生产中。

本文将介绍电阻焊的工作原理、焊接方法以及注意事项。

一、电阻焊的工作原理电阻焊的工作原理是利用电流通过金属产生的阻力,使金属表面产生高温,从而将金属融化。

具体来说,电阻焊的工作原理如下:1. 电源:电阻焊需要一定的电源来产生电流。

通常使用的电源是变压器,它可以将高电压转换为低电压,从而使电流稳定。

2. 电极:电极是将电流传递到工件上的部件。

电极通常由铜制成,因为铜的导电性能好,能够将电流传递到工件上。

3. 工件:工件是被焊接的金属。

在电阻焊中,工件需要放在电极之间,以便电流能够通过工件产生热量。

4. 热量:当电流通过工件时,会产生热量,热量会使工件表面温度升高,从而将工件熔化。

5. 压力:在工件熔化的同时,需要施加一定的压力,以便使工件中的气泡被挤出,从而保证焊接质量。

二、电阻焊的焊接方法电阻焊的焊接方法主要有以下几种:1. 点焊:点焊是将两个金属表面焊接在一起的常用方法。

在点焊时,电极会在两个金属表面之间施加一定的压力,并通过电流将金属熔化,从而使两个金属表面融合在一起。

2. 缝焊:缝焊是将两个金属板焊接在一起的方法。

在缝焊时,需要将两个金属板的边缘对齐,然后通过电流将金属熔化,最后施加一定的压力,使两个金属板融合在一起。

3. 热压焊:热压焊是将金属和非金属焊接在一起的方法。

在热压焊时,需要将金属和非金属的表面对齐,并通过电流将金属熔化,最后施加一定的压力,使金属和非金属融合在一起。

三、电阻焊的注意事项在进行电阻焊时,需要注意以下几点:1. 电流大小:电流大小会影响焊接的温度和焊接的速度。

如果电流过大,会导致焊接过热,从而影响焊接质量。

如果电流过小,会导致焊接速度过慢,从而影响生产效率。

2. 电极形状:电极的形状会影响焊接的质量。

电阻焊接机的结构和工作原理

电阻焊接机的结构和工作原理

电阻焊接机的结构和工作原理电阻焊接机是一种常用的焊接设备,广泛应用于电子、电器、汽车、航空航天等行业。

它通过利用电阻加热原理,使焊接材料发生熔化和结合,实现焊接操作。

本文将详细介绍电阻焊接机的结构和工作原理。

一、电阻焊接机的结构电阻焊接机通常由以下几部分组成:主机、电源系统、控制系统和压力系统。

1. 主机:主机是电阻焊接机的核心部件,包含焊接变压器、电极、焊接工作台等。

焊接变压器是通过将电能转化为焊接热能的重要设备。

电极是将电能传导到工件上的部件,通常由电极头和电极臂组成。

焊接工作台是用来支撑和固定工件的平台。

2. 电源系统:电源系统是电阻焊接机的能源提供装置,通常由电源控制柜、电缆和连接线组成。

它提供所需的电能,控制焊接电流的流入和流出,并监控焊接过程中的电压、电流等参数。

3. 控制系统:控制系统是用来控制电阻焊接机的工作状态和参数,通常由控制柜和操作面板组成。

控制柜包含电路控制器、温度控制器等,用于控制焊接电流、焊接时间、焊接压力等参数。

操作面板提供操作和参数设定接口,使操作人员可以灵活地控制焊接机的工作。

4. 压力系统:压力系统是电阻焊接机的压力提供装置,通常由气缸、压力传感器等组成。

它通过控制气体的进出,提供所需的压力,确保焊接过程中工件的紧密接触,促进焊接熔池的形成和结合。

二、电阻焊接机的工作原理电阻焊接机的工作原理基于电阻加热的物理原理,主要包括两个步骤:加热和焊接。

1. 加热:当焊接电流通过焊接变压器产生磁场时,焊接电极接触工件表面并施加压力。

焊接电流在焊接电极与工件之间产生电阻,从而使电阻加热。

电阻加热会使焊接部位的温度迅速升高,达到熔点并形成熔池。

加热时间通常很短,一般在几十毫秒至几百毫秒之间。

2. 焊接:在加热阶段结束后,继续施加焊接电流并保持一段时间,使焊点充分熔化和结合。

焊接时间通常是加热时间的几倍,以确保焊接的质量和强度。

焊接完毕后,释放焊接电压和压力,焊点冷却固化,完成焊接过程。

电阻焊和各种焊机原理

电阻焊和各种焊机原理

一、电阻焊定义电阻焊是将被焊工件压紧于两电极之间,并通过电流,利用电流流经接触面及邻近区域产生的电阻热將其加热到熔化或塑性状态,使之形成金属结合的一种方法。

电阻焊是压(力)焊的一种。

二、电阻焊的优、缺点1、优点:※熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。

※加热过程短、热量集中。

故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。

※不需要焊丝、焊条等填充金属,以及氧、乙炔、氦等焊接材料,焊接成本低。

※操作简单,易于实现机械化和自动化,改善了劳动条件。

※生产效率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。

2、缺点※目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,靠各种监控技术来保证焊接稳定性。

※点、缝焊的搭接接头不仅增加了构件的重量,且因在两板之间的熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低※设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。

三、电阻焊工艺分类※点焊※凸焊※缝焊※对焊3.1、点焊•电阻点焊,简称点焊;将焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。

•点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3MM的冲压、轧制的薄板构件3.1.1点焊接头的形成•电阻点焊原理和接头形成,可简述为:将焊件压紧在两电极之间,施加电极压力后,阻焊变压器向焊接区通过强大焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。

塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心,简称“熔核”。

•熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。

•加热停止后,核心液态金属以自由能量最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、电阻焊定义电阻焊是将被焊工件压紧于两电极之间,并通过电流,利用电流流经接触面及邻近区域产生的电阻热將其加热到熔化或塑性状态,使之形成金属结合的一种方法。

电阻焊是压(力)焊的一种。

二、电阻焊的优、缺点1、优点:※熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。

※加热过程短、热量集中。

故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。

※不需要焊丝、焊条等填充金属,以及氧、乙炔、氦等焊接材料,焊接成本低。

※操作简单,易于实现机械化和自动化,改善了劳动条件。

※生产效率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。

2、缺点※目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,靠各种监控技术来保证焊接稳定性。

※点、缝焊的搭接接头不仅增加了构件的重量,且因在两板之间的熔核周围形成夹角,致使接头的抗拉强度和疲劳强度均较低※设备功率大,机械化、自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。

三、电阻焊工艺分类※点焊※凸焊※缝焊※对焊3.1、点焊•电阻点焊,简称点焊;将焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。

•点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3MM的冲压、轧制的薄板构件3.1.1点焊接头的形成•电阻点焊原理和接头形成,可简述为:将焊件压紧在两电极之间,施加电极压力后,阻焊变压器向焊接区通过强大焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。

塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心,简称“熔核”。

•熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。

•加热停止后,核心液态金属以自由能量最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。

•通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点。

•同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强列再结晶而形成塑性环,该环先于熔核形成始终伴随着熔核一起长大,它的存在可防止周围气体侵入和保证熔核态金属不至于沿板缝向外喷溅。

•3.2、凸焊•凸焊,是在一工件的贴合面上预先加工出一个或多个突起点,使其与另一工件表面相接触并通电加热,然后压塌,使这些接触点形成焊点的电阻焊方法。

•凸焊是点焊的一种变形,主要用于焊接低碳钢和低合金钢的冲压件•凸焊在线材、管材等连接上也获得普遍应用3.2.1焊接头形成过程凸焊和点焊一样也是在热-机械(力)联合作用下形成的,但是由于凸点的存在不仅改变了电流场和温度场的形态,而且在凸点压溃过程中使焊接区产生很大的塑性变形,这此情况均对获得优质接头有利。

但同时也使凸焊过程比点焊过程复杂和有其自身特点,在一良好凸焊焊接循环下,由预压、通电加热和冷却结晶三个连续阶段组成3.3、缝焊•缝焊,焊件装配成搭接或对接接头并置于两滚轮电极之间,滚轮电极加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法3.3.1缝焊接头形成过程缝焊时,每一焊点同样要经过预压、通电加热和冷却结晶三个阶段•但由于缝焊时滚轮电极与焊件间相对位置的迅速变化,使此三阶段不像点焊时区分得那样明,可以认为:1、在滚轮电极直接压紧下,正被通电加热的金属,系处于“通电加热阶段”。

2、即将进入滚轮电极下面的邻近金属,受到一定的预热和滚轮电极部分压力作用,系处在“预压阶段”。

3、刚从滚轮电极下面出来的邻近金属,一方面开始冷却,同时尚受到滚轮电极部分压力作用,系处在“冷却结晶阶段”因此,正处于滚轮电极下的焊接区和邻近它的两边金属材料,在同一时刻将分别处于不同阶段。

而对于焊缝上的任一焊点来说,从滚轮下通过的过程也是经历“预压—通电加压—冷却结晶”三个过程。

由于该过程是在动态下进行的,预压和冷却结晶阶段时的压力作用不够充分,就使缝焊接头质量一般比点焊时差,易出现裂纹、缩孔等缺陷。

3.4、对焊•对焊,把两工件端部相对放置,利用焊接电流加热,然后加压完成焊接的电阻焊方法。

•对焊包括电阻对焊及闪光对焊两种对焊缝焊四、电阻焊基本原理焊接热的产生及影响产热的因素。

点焊时产生的热量由下式决定:Q=I2RT•公式中:Q-产生的热量(J)I-焊接电流(A)R-电极间电阻(Ω)T-焊接时间(S)4.1电阻R及影响R的因素•公式中的电极间电阻包括工件本身电阻Rw两工件间接触电阻Rc,电阻与工件间接触电阻Rew.•R=2Rw+Rc+2Rew•当工件和电极已定时,工件的电阻取决于它的电阻率。

由于,电阻率是被焊材料的重要性能。

电阻率高的金属其导热性差(如不锈钢),电阻率低的金属其导热性好(如铝合金)。

因此,点焊不锈钢时产热快而散热慢,点焊铝合金时产热慢而散热快,点焊时,前者可以用较小电流(几千安培),后者就必须用很大电流(几万安培)。

•电阻率不仅取决于金属种类,还与金属的热处理状态和加工方式有关。

•通常金属中含合金元素越多,电阻率就越高。

•淬火状态又比退火状态的高:例如退火状态的LY12铝合金电阻率为4.3μΩ.cm,淬火时效则的则高达7.3μΩ.cm•各种金属的电阻率还与温度有关,随着温度的升高,电阻率增高,并且金属熔化时的电阻率比熔化前高1-2倍•随着温度升高,除电阻率增高使工件增高外,同时金属的压溃强度降低,使工件与工件、工件与电极间的接触面增大,因而引起工件电阻减小,•点焊低碳钢时,在两种矛盾的因素影响下,加热开始时工件电阻逐渐增高,熔核形成时又逐渐降低,这一现象,给当前已开始应用于生产的动态电阻监控提供了依据。

•电极压力变化将改变工件与工件、工件与电极间的接触面,从而也将影响电流线的分布,随着电极压力的增大,电流线的分布将较分散,因而工件电阻将减小。

•熔核开始形成时,由于熔化区的电阻增大,将迫使更大部分电流从其周围的压接区(塑性环)流过,使该区再陆续熔化,熔核不断扩展,但熔核直径受电极端面直径的制约,一般不超过电极端机直径的20%,熔核过分扩展,将使塑性环因失压而难以形成,而导致熔化金属的溅出(飞溅)。

电阻公式中的接触电阻Rc由两方面原因形成:1、工件和电极表面有高电阻系数的氧化物或脏物层,使电流受到较大电阻碍,过厚的氧化物和脏物层甚至会使电流不能导通。

2、在表面十分洁净的条件下,由于表面的微观不平度,使工件只能在粗糙表面的局部形成接触点,在接触点处形成电流线的收拢,由于电流通道的缩小而增加了接触处的电阻。

电极压力增大时,粗糙表面的凸点将被压溃,凸点的接触面增大,数量增多,表面上的氧化膜也更易被挤破;温度升高时,金属的压溃强度降低(低碳钢600度时,铝合金350度时,压溃强度急趋于0),即使电极压力不变,也会有凸点接触面增大、数量增多的结果,可见,接触电阻将随电极压力的增大和温度的升高而显著减小,因此,当表面清理十分洁净时,接触电阻仅在通电开始极短的时间内存在,随后会迅速减小以至消失。

接触电阻尽管存在的时间极短,但以很短的加热时间点焊铝合金薄件时,对熔核的形成和焊点强度的稳定性仍有非常显著的影响。

4.2焊接电流的影响从公式中可见,电流对产热的影响比电阻和时间两者都大;因此,在点焊过程中,它是一个必须严格控制的参数;引起电流变化的主要原因是电网电压波动和交流焊机次级回路阻抗变化;阻抗变化是因回路的几何形状或因在次级回路中引入了不同量的磁性金属;对于直流焊,次级回路阻抗变化对电流无明显影响。

除焊接电流总量小,电流密度也对加热有显著影响,通过已成型焊点的分流,以及增大电极接触面积或凸焊时的凸点尺寸,都会降低电流密度和焊接热,从而使接头强度显著下降。

随着电流的增大,熔核尺寸和接头的抗翦强度将增大,图中曲线的陡峭段AB,相当于未熔化焊接,倾斜段BC,相当于熔化焊接,接近C点处,抗剪强度增强缓慢,说明电流的变化对抗剪强度影响小;因此,点焊时应选用接近C点的电流,越过C点后,由于飞溅或工件表面压痕过深,抗剪强度会明显降低。

4.3焊接时间的影响为了保证熔核尺寸和焊点强度,焊接时间与焊接电流在一定范围内可以互为补充;为了获得一定强度的焊点,可以采用大电流和短时间(硬规范),也可以采用小电流和长时间(软规范);选用硬规范还是软规范,则取决于金属的性能、厚度和所用焊机的功率;但对于不同性能和厚度的金属所需的电流时间,都仍有一个上、下限,超过此限,将无法形成合格的熔核。

4.4电极压力的影响•电极压力对两电极间总电阻R有显著影响,随着电极压力的增大,R显著减小,此时焊接电流虽略有增大,但不能影响因R减小而引起的产热减小,因此,焊点强度总是随着电极压力增大而降低,在增大电极压力的同时,增大焊接电流或延长焊接时间,以弥补电阻减小的影响,可以保持焊点强度不变,采用这种焊接条件有利于提高焊点强度的稳定性,电极压力过小,将引起飞溅,也会使焊点强度降低。

4.5电极形状及材料性能的影响•由于电极的接触面决定着电流密度,电极材料的电阻率和导热性关系着热量的产生和散失,因而电极的形状和材料对熔核的形成有显著的影响。

•随着电极端头的变形和磨损,接触面积将增大,焊点强度将降低。

4.6工件表面状况的影响工件有面上的氧化物、污垢、油和其他杂质增大了接触电阻。

过厚的氧化物层甚至会使电流不能通过。

局部的导通,由于电流密过大,则会产生飞溅和表面烧损,严重时会出现炸火现象。

氧化物层的不均匀性还会影响各个焊点加热不一致,引起焊接质量的波动。

彻底清理工件表面是保证获得段质接头的必要条件。

4.7热平衡、散热及温度分布•点焊时,产生的热量Q只有较小部分用于形成熔核,较大部分将因向邻近物质的传导和辐射而损失掉,其热平衡方程式如下:Q=Q1+Q2式中Q1=形成熔核的热量Q2=损失的热量有效热量Q1取决于金属的热理性质及熔化金属量,而与所用的焊接条件无关•Q1≈10~30%Q:电阻率低、导热性好的金属(铝、铜合金等)取低限;电阻率高、导热性差的金属(不锈钢、高温合金等)取高限。

•损失的热量Q2主要包括通过电极传导的热量(≈30~50%Q)和通过工件传导的热量(≈20%Q);辐射到大气中的热量只约点5%,可以忽略不计•通过电极传导的热量是主要的散热损失,它与电极的材料、形状、冷却条件,以及所采用的焊接条件有关,例如采用硬规范的热损失,就要比采用软规范小得多。

•由于损失的热量随焊接时间的延长和金属温度的升高而增加,因此,当焊接电流不足时,只延长焊接时间,会在某一时刻达到热量的产生与散失相平衡,继续延长焊接时间,将无助于熔核的增大,这说明了用小功率焊机不能焊接厚钢板和铝合金的原因。

相关文档
最新文档